Superselection theory in low dimensions, modular invariants and categorical ramifications

Michael Müger

Radboud Universiteit Nijmegen

(Partially based on joint work with A. Kitaev; A. Davydov, D. Nikshych, V. Ostrik)

LMS Regional Meeting and workshop on operator algebras Cardiff, June 21-25, 2010

Outline

- 1 Superselection theory for $d \ge 2+1$
- 2 Low dimensional spacetimes
- 3 Local extensions
- 4 Modular Invariants via Local Extensions
- 5 The Witt Group of Modular Categories

Superselection theory for $d \ge 2+1$

Algebraic QFT (Local Quantum Physics):

- Spacetime M ($\mathbb{R}, S^1, M^{s+1}, (M, g), \ldots$)
- Nice regions: $I \subset \mathbb{R}$, $\mathcal{O} \subset M$.
- Vacuum Hilbert space H_0
- Local (von Neumann) algebras: $\mathcal{O} \mapsto A(\mathcal{O}) \subset \mathcal{B}(H_0)$.

Axioms:

- Isotony: $\mathcal{O}_1 \subset \mathcal{O}_2 \Rightarrow A(\mathcal{O}_1) \subset A(\mathcal{O}_2).$
- Locality: $\mathcal{O}_1 \perp \mathcal{O}_2 \Rightarrow [A(\mathcal{O}_1), A(\mathcal{O}_2)] = \{0\}.$
- Irreducibility: $\bigvee A(\mathcal{O}) = \mathcal{B}(H_0)$.
- Vacuum $\Omega \in H_0$.
- Covariance, Positive energy, ...

Local extensions

Superselection theory (DHR)

Let \mathcal{A} be the global C^* -algebra associated to $\{A(\mathcal{O})\}$. A DHR representation (Doplicher-Haag-Roberts representation) is a representation $\pi : \mathcal{A} \to \mathcal{B}(H)$ such that

$$\pi \restriction A(\mathcal{O}') \cong \pi_0 \restriction A(\mathcal{O}') \quad \forall \mathcal{O}.$$

Assuming Haag duality (strong version of locality)

$$A(\mathcal{O})' = A(\mathcal{O}') \quad \forall \mathcal{O}$$

and $d \ge 2 + 1$, DHR (1971) prove that the *-category DHR(A) of DHR representations is a symmetric tensor *-category with irreducible tensor unit 1.

The full subcategory $\text{DHR}_f(\mathcal{A})$ of finite representations is rigid (has duals). From now on we only consider $\text{DHR}_f(\mathcal{A})$ and drop the subscript.

Galois theory for local fields

- Doplicher/Roberts 1989/90:
 - Unique compact (super)group G s.th. Rep $G \simeq DHR(\mathcal{A})$.
 - Net $\mathcal{O} \mapsto F(\mathcal{O}) \subset \mathcal{B}(H)$ satisfying (graded) locality.
 - G acts unitarily on \mathcal{F} and $\mathcal{F}^G \cong \mathcal{A}$.
 - $F(\mathcal{O}) \cap A(\mathcal{O})' = \mathbb{C}\mathbf{1} \ \forall \mathcal{O}.$
 - Restricted to \mathcal{A} , the vacuum representation of \mathcal{F} contains all DHR representations of \mathcal{A} .
 - DHR(\mathcal{F}) is trivial. (Conti/Doplicher/Roberts)
 - For every local extension $\mathcal{B} \supset \mathcal{A}$, there is closed subgroup $H \subset G$ s.th. $\mathcal{B} \cong \mathcal{F}^H$.
- Mathematical interpretation: Galois theory for local fields. $G(DHR(\mathcal{A})) = absolute Galois group, \mathcal{F} = Galois closure of$ \mathcal{A} . etc.
- Proof is involved and somewhat monolithic.

Alternative approach

based on work by Roberts (unpublished), Deligne, Bichon + ε . Cf. Halvorson/M. (2006).

- C symmetric semisimple rigid tensor category with simple $1 \rightsquigarrow$ symm. fiber functor $E : C \rightarrow \text{Vect}_{\mathbb{C}}$. (Deligne 1990, Bichon 1998)
- 2 \mathcal{C} *-category \rightsquigarrow fiber functor can be chosen *-preserving. (M.)
- \rightsquigarrow field net $\mathcal{F} = \mathcal{A} \rtimes_E \mathcal{C}$ acted upon by G. (Roberts 1970s). Idea: $\mathcal{F} = \{(A, \rho, \psi) \mid A \in \mathcal{A}, \rho \in DHR(\mathcal{A}), \psi \in E(\rho)\}/\sim$, where $(AT, \rho, \psi) \sim (A, \rho', E(T)\psi)$ when $T \in Hom(\rho, \rho')$.

Advantages:

- Proof is modular and quite transparent.
- ② Simplifies matters in applications.
- In Partially applicable in low dimensions.

Low dimensional spacetimes

Low dimensions: \mathbb{R}, S^1, M^{1+1} . What changes? Fredenhagen/Rehren/Schroer (1989): DHR(\mathcal{A}) has same properties as before, except: DHR(\mathcal{A}) is only braided. In fact (Kawahigashi/Longo/M. 2001): If \mathcal{A} is completely rational theory on \mathbb{R} , i.e.

- Strong additivity.
- O Split property.

$$I \subset \subset J \ \Rightarrow \mu := [A(J) \cap A(I)' : A(J \cap I')] < \infty.$$

then

- All irreducible DHR reps are finite, thus have duals.
- Finitely many irreps, dim DHR(\mathcal{A}) $\equiv \sum_{i} d(\rho_i)^2 = \mu$.
- DHR(\mathcal{A}) is modular category, i.e. maximally non-symmetric: ρ simple, $\not\cong \mathbf{1} \Rightarrow \exists \sigma$ s.th. $c(\rho, \sigma) \circ c(\sigma, \rho) \neq id$.

Clear: $\mathsf{DHR}(\mathcal{A}) \not\simeq \operatorname{Rep} G$ for G compact group.

What to do?

- $\mathsf{DHR}(\mathcal{A})$ not symmetric \Rightarrow no proof of existence of fiber functor.
- At least: Given a *-preserving fiber functor E, Roberts' construction → field net F, Woronowicz's Tannaka theorem → discrete quantum group Q acting on F with F^Q ≅ A and R-matrix describing space-like commutation relations.
- In general: fiber functor $E : DHR(\mathcal{A}) \to Hilb$ does not exist.
- Hayashi (1980s)/Ostrik (2003): C finite semisimple fusion category → weak Hopf algebra H s.th. C ≃ H-Mod. Related to 'reduced field bundle' (FRS 1990).
- Problems:
 - H non-unique $\ \leadsto$ No good physical interpretation.
 - $F(\mathcal{O}) \cap A(\mathcal{O})' \neq \mathbb{C}\mathbf{1}$ in reduced field bundle.
- Solution:
 - $\bullet~\mbox{Consider}$ the category $\mbox{DHR}(\mathcal{A})$ as fundamental.
 - Categorical approach to local extensions etc.

Local extensions

- Local extension of QFT A: Inclusion of local nets $A(\mathcal{O}) \hookrightarrow B(\mathcal{O}) \subset \mathcal{B}(\widehat{H})$ (where $\widehat{H} \supseteq H$).
- Index $[\mathcal{B}:\mathcal{A}] = [\mathcal{B}(\mathcal{O}):\mathcal{A}(\mathcal{O})] \in [1,\infty]$ (indep. of \mathcal{O})
- $\mathcal{A} \subset \mathcal{B}$ with $[\mathcal{B} : \mathcal{A}] < \infty \Rightarrow \mathcal{A}$ cpl. rtl. $\Leftrightarrow \mathcal{B}$ cpl. rtl. and

$$\dim \mathrm{DHR}(\mathcal{A}) = [\mathcal{B} : \mathcal{A}]^2 \cdot \dim \mathrm{DHR}(\mathcal{B}).$$

- Obvious consequence: There are maximal local extensions; every local extension is contained in a maximal one.
- Maximal local extensions usually not unique!
- But all maximal local extensions have equivalent representation categories, denoted DHR(\mathcal{B}_{max}).
- But: In general, $DHR(\mathcal{B}_{max})$ is not trivial!
- Question: Under which condition on \mathcal{A} is DHR(\mathcal{B}_{max}) trivial?

Longo-Rehren: Classification of local extensions

- Longo/Rehren (1995): Bijection local extensions $B \supset A \leftrightarrow$ commutative Q-systems (Γ, m, η) in $DHR(\mathcal{A})$.
- Under this correspondence, $[\mathcal{B}:\mathcal{A}] = d(\Gamma)$.
- Modulo technicalities, a Q-system in a ⊗-category C is just an algebra in C, i.e. Γ ∈ Obj(C), m : Γ ⊗ Γ → Γ, η : 1 → Γ s.th. m ∘ (m ⊗ id) = m ∘ (id ⊗m), m ∘ η ⊗ id = m = m ∘ id ⊗η. A Q-system (Γ, m, η) is commutative if m ∘ c(Γ, Γ) = m.
- Question: Determine braided category $DHR(\mathcal{B})$ for local extension $\mathcal{B} \supset \mathcal{A}$ corresponding to $(\Gamma, m, \eta) \in DHR(\mathcal{A})$.
- Other issues: Composition of extensions, intermediate extensions, ...

Representation Categories of Local extensions

- Candidate: Category $\Gamma \operatorname{Mod}_{\mathcal{C}}$ of ' Γ -modules in \mathcal{C} ', i.e. pairs (X, μ) with $\mu : \Gamma \otimes X \to X$ satisfying obvious axioms.
- \mathcal{C} symmetric $\rightsquigarrow \Gamma Mod_{\mathcal{C}}$ symmetric.
- \mathcal{C} braided $\rightsquigarrow \Gamma Mod_{\mathcal{C}}$ monoidal, but not necessarily braided!!
- Pareigis (1995): Γ-module (X, μ) is local ('dyslexic') if μ ∘ c(X, Γ) ∘ c(Γ, X) = μ. The full subcategory Γ − Mod⁰_C ⊂ Γ − Mod_C of local modules is monoidal and braided!
- Kirillov Jr./Ostrik (2003): C modular, Γ commut. algebra in C $\Rightarrow \Gamma - Mod_{\mathcal{C}}^{0}$ modular and $\dim \Gamma - Mod_{\mathcal{C}}^{0} = \dim \mathcal{C}/d(\Gamma)^{2}$.
- Theorem (M.): A completely rational QFT, Γ commutative Q-system in DHR(A) with d(Γ) < ∞. If B ⊃ A is the local extension corresponding to Γ then DHR(B) ≃ Γ Mod⁰_{DHR}(A) as braided tensor *-categories.

Representation Categories of Local extensions

- Remarks:
 - Proof uses α -induction (Böckenhauer/Evans), quite simple.
 - Analogous result for VOAs stated by Kirillov/Ostrik, but no complete proof given.
- Corollary: A local extension B ⊃ A with DHR(B) trivial exists iff ∃ commutative algebra Γ ∈ DHR(A) with d(Γ)² = dim(C) (which is the maximal possible dimension.)
- Question: Which modular categories satisfy this condition?
- Theorem (M. 2006/7): A modular category C contains a commutative algebra Γ with d(Γ)² = dim C iff there exists a fusion category D such that C ≃ Z(D). (Drinfeld centre)
- Conjectured by A. Kitaev (2006). ⇒ also proven by Drinfeld/Gelaki/Nikshych/Ostrik (2007), Work related to ⇐ by Bruguières/Virelizier (2008).

Reminder: The Drinfeld centre

• Let C be tensor category, $X \in C$. A half braiding for X is a family $\{e_X(Y): X \otimes Y \xrightarrow{\cong} Y \otimes X\}_{Y \in \mathcal{C}}$, natural w.r.t. Y and satisfying

$$e_X(Y \otimes Z) = \mathrm{id}_Y \otimes e_X(Z) \circ e_X(Y) \otimes \mathrm{id}_Z \quad \forall Y, Z.$$

• $Z(\mathcal{C}) = \text{category with objects } (X, e_X),$

 $\operatorname{Hom}_{Z(\mathcal{C})}((X, e_X), (Y, e_Y)) = \{s : X \to Y \mid e_Y(Z) \circ s \otimes \operatorname{id}_Z = \operatorname{id}_Z \otimes s \circ e_X(Z) \ \forall Z\}.$

With $(X, e_X) \otimes (Y, e_Y) = (X \otimes Y, e_{X \otimes Y})$, where

 $e_{X \otimes Y}(Z) = e_X(Z) \otimes \operatorname{id}_Y \circ \operatorname{id}_X \otimes e_Y(Z) \quad \forall Z$

and $c((X, e_X), (Y, e_Y)) = e_X(Y)$, one proves that $Z(\mathcal{C})$ is braided tensor category. (Drinfeld, Majid, Joyal/Street ~ 1990).

- Theorem (M. 2003): Let C be a fusion category (C-linear spherical tensor category, semisimple, finitely many simple objects, simple unit) satisfying dim $\mathcal{C} \neq 0$ then $Z(\mathcal{C})$ is semisimple, finite with dim $Z(\mathcal{C}) = (\dim \mathcal{C})^2$ and modular. If \mathcal{C} is modular then $Z(\mathcal{C}) \simeq \mathcal{C} \boxtimes \mathcal{C}$. ($\mathcal{C} = \mathcal{C}$ as \otimes -category, opposite braiding.)
- Remark: Proof inspired by work of Ocneanu, Longo/Rehren, Izumi in subfactor theory.
- June 18, 2010: Turaev/Virelizier: For every C as above and every 3-manifold: $RT(M, Z(\mathcal{C})) = BW(M, C) \ \forall \mathcal{C}.$ (BW:

Barrett-Westbury state-sum invariant, no braiding on C needed.)

- Thus: Characterization of those modular categories that arise from Drinfeld's centre.
- NB: ∃ many modular categories C ≠ Z(D), e.g. most of those obtained from quantum groups at roots of unity and all arising from lattices.
- Corollary: A completely rational QFT A admits local extensions B ⊃ A with trivial DHR(B) ⇔ DHR(A) is Drinfeld centre of some fusion category.
- Corollary: Let B be completely rational with trivial DHR(B) ('holomorphic'), G finite group of unitarily implemented automorphisms and A := B^G. Then ∃![ω] ∈ H³(G, T) s.th.

$$\mathrm{DHR}(\mathcal{A}) \simeq D^{\omega}(G) - \mathrm{Mod},$$

where $D^{\omega}(G)$ is the twisted quantum double (Dijkgraaf/Pasquier/Roche 1990).

Preliminaries

- Turaev 1992: A modular category C gives rise to a fin.dim. (unitary) representation π of the modular group $SL(2,\mathbb{Z})$.
- Long-standing problem: Construction of d = 2 conformal field theories out of two chiral ("d = 1") CFTs A_L, A_R .
- (Actually: What is a d = 2 CFT?? By now various proposals.)
- Old fashioned approach to d = 2 CFT: Study modular invariants: $\mathbb{Z}_{\geq 0}$ -valued matrices (Z_{ij}) indexed by the simple objects of the representation categories of A_L, A_R , resp., satisfying $Z_{00} = 1$ and $Z\pi_R(\cdot) = \pi_L(\cdot)Z$.
- More sophisticated approach needed.
- First proposal: Böckenhauer/Evans/Kawahigashi (1998-), based on subfactor theory.
- Categorical reformulation: Ostrik (2003), Fuchs/Runkel/Schweigert (2006). (Appl. to d = 2 CFT.)

The Böckenhauer-Evans-Kawahigashi approach to modular invariants according to Ostrik-Fuchs-Runkel-Schweigert

- Non-commutative $k\text{-algebra }\Gamma \ \leadsto \ {\rm centre} \ Z(\Gamma).$
- Same works in any semisimple symmetric tensor category C, giving rise to commutative algebra $Z(\Gamma) \in C$.
- C only braided \rightsquigarrow two centres $Z_L(\Gamma), Z_R(\Gamma)$. (The definitions of the two centres differ only by \longrightarrow .)
- $\bullet \,\, \mathcal{C} \,\, \text{modular} \Rightarrow \text{One also obtains an equivalence}$

$$E: \Gamma_L^0 - \operatorname{Mod} \xrightarrow{\simeq} \Gamma_R^0 - \operatorname{Mod}$$

of braided categories, where $\Gamma_{L/R}:=Z_{L/R}(\Gamma).$

- The triple (Γ_L, Γ_R, E) depends only on the Morita-class of Γ .
- F/R/S construct 'topological d = 2 CFT' starting from modular category C and (non-comm.) algebra $\Gamma \in C$.

Rehren's QFT Approach

- Drawbacks of BEK/O/FRS approach: 1) Works only in left-right symmetric situation: $C_L = C_R$. 2) Involves non-commutative algebras in \otimes -categories, not corresponding to local extensions.
- Rehren (2000): Local QFT approach to modular invariants: Let A_L, A_R be completely rational CFTs on ℝ. Define local net of VNAs on M¹⁺¹ by

$$\mathcal{O} = I_L \times I_R \mapsto \mathcal{A}(\mathcal{O}) = A_L(I_L) \otimes \overline{A_R}(I_R)$$

and study finite local extensions $\mathcal{B}\supset\mathcal{A}.$

• $\rightsquigarrow \mathbb{Z}_{\geq 0}$ -valued matrix (Z_{ij}) satisfying $Z_{00} = 1$ and $ZT_R = T_L Z$ where $T_{L/R} = \pi_{L/R} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Rehren's QFT Approach

• $ZS_R = S_L Z$ for $S_{L/R} = \pi_{L/R} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (and thus

 $Z\pi_R(\cdot) = \pi_L(\cdot)Z)$ holds iff $\overline{\text{DHR}}(\mathcal{B})$ is trivial. (Conjectured by Rehren, proven by M. and by Kawahigashi/Longo.)

- Recall: Local extensions B ⊃ A with trivial DHR(B) correspond to commutative algebras Γ with d(Γ)² = dim DHR(A). Thus every such Γ gives a modular invariant matrix Z.
- In fact, one has more: Given local extension
 B ⊃ A ≡ A_L ⊗ A_R, Rehren (2000) proves existence of maximal local chiral extensions Â_L ⊃ A_L, Â_R ⊃ A_R satisfying A_L ⊗ A_R ⊂ Â_L ⊗ Â_R ⊂ B. Also: The categories Ĉ_{L/R} = DHR(Â_{L/R}) have isomorphic fusion rules.
- Even better: Braided monoidal equivalence $E: \widehat{\mathcal{C}}_L \xrightarrow{\simeq} \widehat{\mathcal{C}}_R$. (Kawahigashi/Longo 2003)

Categorical reformulation

- Recall: $\widehat{A}_{L/R} \supset A_{L/R} \leftrightarrow \text{comm. algebras } \Gamma_{L/R} \in \mathcal{C}_{L/R}$ and $\widehat{\mathcal{C}}_{L/R} := \text{DHR}(\widehat{A}_{L/R}) \simeq \Gamma_{L/R} \text{Mod}_{\mathcal{C}_{L/R}}^{0}$.
- Thus: A commutative algebra of maximal dimension in $\mathcal{C}_L \boxtimes \widetilde{\mathcal{C}}_R$ gives rise to a triple (Γ_L, Γ_R, E) , where $\Gamma_{L/R} \in \mathcal{C}_{L/R}$ are commutative algebras and $E: \Gamma_L \operatorname{Mod}_{\mathcal{C}_L}^0 \xrightarrow{\simeq} \Gamma_R \operatorname{Mod}_{\mathcal{C}_R}^0$ is a braided monoidal equivalence. Converse is also true. (Follows from LR 1995).
- Def.: A modular invariant for a pair $(\mathcal{C}_L, \mathcal{C}_R)$ of modular categories is a triple (Γ_L, Γ_R, E) as above.
- Results are independent of whether or not C_L, C_R arise from local nets:
- Theorem (DMNO): For modular categories C_L, C_R there is a bijection, modulo suitable equivalences, between commutative algebras Γ ∈ C_L ⊠ C̃_R with d(Γ)² = dim C_L · dim C_R and modular invariants for (C_L, C_R).

Witt Group of Modular Categories

- Def.: Modular categories C_1, C_2 are called Witt equivalent $(\mathcal{C}_1 \sim \mathcal{C}_2)$ if there exists a modular invariant for $(\mathcal{C}_1, \mathcal{C}_2)$.
- By the characterization of Drinfeld centres: $\mathcal{C}_1 \sim \mathcal{C}_2 \iff \mathcal{C}_1 \boxtimes \mathcal{C}_2 \simeq Z(\mathcal{D})$ for \mathcal{D} fusion (Drinfeld centre).
- Theorem: Witt equivalence is an equivalence relation (including braided equivalence).
- Rem.: Symmetry is easy, reflexivity follows from $\mathcal{C} \boxtimes \widetilde{\mathcal{C}} \simeq Z(\mathcal{C})$. Transitivity requires more work.
- Def.: $W_M = \{\mathcal{C} \text{ modular}\} / \sim$.
- With $[\mathcal{C}_1] \cdot [\mathcal{C}_2] := [\mathcal{C}_1 \boxtimes \mathcal{C}_2]$ and $\mathbf{1} = \operatorname{Vect}_{\mathbb{C}}, W_M$ is a commutative monoid.
- In view of $\mathcal{C} \boxtimes \widetilde{\mathcal{C}} \simeq Z(\mathcal{C}) \sim \mathbf{1}$, defining $[\mathcal{C}]^{-1} = [\widetilde{\mathcal{C}}]$ turns W_M into an abelian group, the Witt Group of modular categories. (Due to A. Kitaev (+M.), V. Drinfeld et al., A. Davydov.)

Comments

- For every fusion category \mathcal{D} , we have $Z(\mathcal{D}) \sim \operatorname{Vect}_{\mathbb{C}}$, i.e. $[Z(\mathcal{D})] = \mathbf{1}$. Thus passing to the Witt group kills all Drinfeld centres. This is good since there is no hope of 'classifying' all fusion categories. But W_M should be computable.
- Γ comm. algebra in $\mathcal{C} \Rightarrow [\Gamma Mod^0_{\mathcal{C}}] = [\mathcal{C}]$. Thus: $\mathcal{A} \subset \mathcal{B}$ cpl. rtl. with $[\mathcal{B} : \mathcal{A}] < \infty \Rightarrow [DHR(\mathcal{A})] = [DHR(\mathcal{B})]$.
- Def: A modular category C is completely anisotropic if 1 is the only commutative algebra in C.
- Theorem: Every Witt class contains a unique completely anisotropic category (up to braided equivalence).
- \rightsquigarrow Uniqueness of $DHR(\mathcal{B}_{max})$.
- W_M contains the classical Witt group W (related to quadratic forms) as a subgroup. The latter is known explicitly.
- Conjecture: W_M is generated by W and [U_q(g) Mod] (q^N = 1) with relations given by conformal extensions, cosets and low-dim. exceptions. (=Rigorous version of QFT folklore.)

Selected Open Problems

- Determine Witt group W_M of modular categories.
- Inverse problem: Which modular categories arise from completely rational QFTs? [Solved in symmetric case d ≥ 2 + 1. (Doplicher/Piacitelli)]
- Classify completely rational QFTs A with trivial DHR(A). (Contains the classification of self-dual lattices, thus probably hopeless.)
- The requirement that $DHR(\mathcal{B})$ be trivial is central in Rehren's approach to modular invariants. Use this as starting point for an analytic approach to defining full d = 2 CFT.

Thank you!