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Supersel. theory, d > 2 + 1

Superselection theory for d > 2 + 1

Algebraic QFT (Local Quantum Physics):
e Spacetime M (R, S, M*+1 (M, g),...)
@ Nice regions: I CR, O C M.
@ Vacuum Hilbert space Hy
@ Local (von Neumann) algebras: O — A(O) C B(Hy).

Axioms:
e Isotony: O C Oy = A(O;) C A(O3).
o Locality: O1 L Oy = [A(O1), A(O2)] = {0}.
e Irreducibility: \/ A(O) = B(H).
@ Vacuum 2 € Hy.

e Covariance, Positive energy, ...



Supersel. theory, d > 2 + 1

Superselection theory (DHR)

Let A be the global C*-algebra associated to {A(O)}.
A DHR representation (Doplicher-Haag-Roberts representation) is
a representation 7 : A — B(H) such that

Assuming Haag duality (strong version of locality)
A(0) = A(O") VO

and d > 2+ 1, DHR (1971) prove that the *-category DHR(A) of
DHR representations is a symmetric tensor *-category with
irreducible tensor unit 1.

The full subcategory DHR¢(.A) of finite representations is rigid
(has duals). From now on we only consider DHRf(.A) and drop
the subscript.



Supersel. theory, d > 2 + 1

Galois theory for local fields

@ Doplicher/Roberts 1989/90:
o Unique compact (super)group G s.th. Rep G ~ DHR(A).
Net O — F(O) C B(H) satisfying (graded) locality.
G acts unitarily on F and F¢ = A.
F(O)NA(O) =C1 V0.
Restricted to A, the vacuum representation of F contains all
DHR representations of A.
DHR(F) is trivial. (Conti/Doplicher/Roberts)
o For every local extension B D A, there is closed subgroup
HCGsth B2 FH,

@ Mathematical interpretation: Galois theory for local fields.
G(DHR(.A)) = absolute Galois group, F = Galois closure of
A, etc.

@ Proof is involved and somewhat monolithic.



Supersel. theory, d > 2 + 1
Alternative approach

based on work by Roberts (unpublished), Deligne, Bichon + ¢. Cf.
Halvorson/M. (2006).

@ C symmetric semisimple rigid tensor category with simple 1 ~~
symm. fiber functor E : C — Vectc. (Deligne 1990, Bichon
1998)

@ C x-category ~ fiber functor can be chosen x-preserving. (M.)
@ ~» G :=AutgF is compact and C ~ Rep G. (Tannaka 1939)

Q -~ field net F = A xg C acted upon by G. (Roberts 1970s).
ldea: F = {(4,p,1)) | A€ A pe DHR(A), ¢ € E(p)}/ ~,
where (AT, p,v) ~ (A, p', E(T)v) when T € Hom(p, p').

Advantages:
© Proof is modular and quite transparent.
@ Simplifies matters in applications.

© Partially applicable in low dimensions.



Low dim. spacetimes
Low dimensional spacetimes

Low dimensions: R, S', M'*1 What changes?
Fredenhagen/Rehren/Schroer (1989): DHR(.A) has same
properties as before, except: DHR(.A) is only braided.
In fact (Kawahigashi/Longo/M. 2001): If A is completely rational
theory on R, i.e.

@ Strong additivity.

@ Split property.

Q@ IccJ =pu=[AUJ)NAI): A(JNT")] < .
then

@ All irreducible DHR reps are finite, thus have duals.

o Finitely many irreps, dim DHR(A) = >, d(p;)* = p.

e DHR(.A) is modular category, i.e. maximally non-symmetric:

p simple, 21 = Jo s.th. ¢(p,0) o c(o, p) # id.

Clear: DHR(.A) % Rep G for G compact group.



Low dim. spacetimes

What to do?

DHR(.A) not symmetric = no proof of existence of fiber
functor.

At least: Given a x-preserving fiber functor E, Roberts’
construction ~~ field net F, Woronowicz's Tannaka theorem
~~ discrete quantum group @ acting on F with F¢ = A and
R-matrix describing space-like commutation relations.

@ In general: fiber functor E : DHR(.A) — Hilb does not exist.
@ Hayashi (1980s)/Ostrik (2003): C finite semisimple fusion

category ~~ weak Hopf algebra H s.th. C ~ H-Mod. Related
to ‘reduced field bundle’ (FRS 1990).
Problems:
e H non-unique ~» No good physical interpretation.
o F(O)NA(O) # C1 in reduced field bundle.
Solution:
o Consider the category DHR(.A) as fundamental.
o Categorical approach to local extensions etc.



Local extensions
Local extensions

@ Local extension of QFI A: Inclugi\on of local nets
A(O) — B(O) C B(H) (where H 2 H).
o Index [B: A] = [B(O) : A(O)] € [1,q] (indep. of O)
e AC Bwith [B: Al <oo = Acpl rtl. & Bcpl. rtl. and

dim DHR(A) = [B : AJ? - dim DHR(B).

@ Obvious consequence: There are maximal local extensions;
every local extension is contained in a maximal one.

@ Maximal local extensions usually not unique!

@ But all maximal local extensions have equivalent
representation categories, denoted DHR/(Bpax)-

e But: In general, DHR(Bax) is not trivial!
Question: Under which condition on A is DHR(Bpax) trivial?



Local extensions

Longo-Rehren: Classification of local extensions

@ Longo/Rehren (1995): Bijection local extensions B D A «
commutative Q-systems (I',m,n) in DHR(A).

e Under this correspondence, [B: A] = d(I).

@ Modulo technicalities, a Q-system in a ®-category C is just an
algebrain C, i.e. T' € Obj(C), m: '@ =T, n:1— T s.th.
mo(m®id) =mo (id®m), mon®id =m =moid®n.
A Q-system (I',m,n) is commutative if mo ¢(I',T) = m.

@ Question: Determine braided category DHR(B) for local
extension B O A corresponding to (I', m,n) € DHR(A).

@ Other issues: Composition of extensions, intermediate
extensions, ...



Local extensions
Representation Categories of Local extensions

o Candidate: Category I' — Mod¢ of ‘T'-modules in C’, i.e. pairs
(X, p) with 4 : ' ® X — X satisfying obvious axioms.

@ C symmetric ~ I' — Mod¢ symmetric.

@ C braided ~» I' — Mod¢ monoidal, but not necessarily braided!!

e Pareigis (1995): I'-module (X, ) is local (‘dyslexic’) if
poc(X,I')oce(l', X) = u. The full subcategory
I' — Mod2 C T — Mode of local modules is monoidal and
braided!

e Kirillov Jr./Ostrik (2003): C modular, I' commut. algebra in C
= T — Mod2 modular and dimT" — Mod = dim C/d(T")2.

@ Theorem (M.): A completely rational QFT, I" commutative
Q-system in DHR(A) with d(T") < co. If B D A is the local

extension corresponding to I then
DHR(B) ~ T — Mod;;x(A) as braided tensor *-categories.



Local extensions
Representation Categories of Local extensions

@ Remarks:
o Proof uses a-induction (Bdckenhauer/Evans), quite simple.
o Analogous result for VOAs stated by Kirillov/Ostrik, but no
complete proof given.
@ Corollary: A local extension B > A with DHR(B) trivial exists
iff 3 commutative algebra I' € DHR(A) with d(I')? = dim(C)
(which is the maximal possible dimension.)

@ Question: Which modular categories satisfy this condition?

@ Theorem (M. 2006/7): A modular category C contains a
commutative algebra T" with d(T")> = dim C iff there exists a
fusion category D such that C ~ Z(D). (Drinfeld centre)

e Conjectured by A. Kitaev (2006). = also proven by

Drinfeld/Gelaki/Nikshych /Ostrik (2007), Work related to <
by Bruguieres/Virelizier (2008).



Local extensions

Reminder: The Drinfeld centre

@ Let C be tensor category, X € C. A half braiding for X is a family
{ex(Y): X®@Y — Y ® X}yec, natural w.r.t. Y and satisfying

ex(Y®Z)=idy ®ex(Z) o ex(Y)®idz VY, Z.
e Z(C) = category with objects (X, ex),
Homye)((X,ex), (Y,ey)) ={s: X =Y |ey(Z) os®idz = idz ®@soex(Z) VZ}.
With (X,ex) ® (Y,ey) = (X ® Y, exgy), where
exer(Z) = ex(Z) ® idy oidy ®ey (Z) VZ

and ¢((X,ex), (Y,ey)) = ex(Y), one proves that Z(C) is
braided tensor category. (Drinfeld, Majid, Joyal/Street ~ 1990).
Theorem (M. 2003): Let C be a fusion category (C-linear
spherical tensor category, semisimple, finitely many simple objects,
simple unit) satisfying dimC # 0 then Z(C) is semisimple, finite
with dim Z(C) = (dimC)? and modular. If C is modular then
Z(C) ~CRC. (C = C as ®-category, opposite braiding.)
Remark: Proof inspired by work of Ocneanu, Longo/Rehren,
Izumi in subfactor theory.

June 18, 2010: Turaev/Virelizier: For every C as above and every
3-manifold: RT(M, Z(C)) = BW(M,C) VC. (BW:
Barrett-Westbury state-sum invariant, no braiding on C needed.)



Local extensions
Applications

@ Thus: Characterization of those modular categories that arise
from Drinfeld’s centre.

e NB: 3 many modular categories C # Z (D), e.g. most of those
obtained from quantum groups at roots of unity and all
arising from lattices.

@ Corollary: A completely rational QFT A admits local
extensions B O A with trivial DHR(B) < DHR(A) is
Drinfeld centre of some fusion category.

e Corollary: Let B be completely rational with trivial DHR(B5)
(‘holomorphic’), G finite group of unitarily implemented
automorphisms and A := B“. Then Iw] € H3(G,T) s.th.

DHR(A) ~ D*(G) — Mod,

where D¥(G) is the twisted quantum double
(Dijkgraaf/Pasquier/Roche 1990).



Modular Invariants
Preliminaries

@ Turaev 1992: A modular category C gives rise to a fin.dim.
(unitary) representation 7 of the modular group SL(2,7Z).

@ Long-standing problem: Construction of d = 2 conformal field
theories out of two chiral (“d =1") CFTs AL, Ag.

o (Actually: What is a d =2 CFT?? By now various proposals.)

@ Old fashioned approach to d = 2 CFT: Study modular
invariants: Zxo-valued matrices (Z;;) indexed by the simple
objects of the representation categories of Ay, AR, resp.,
satisfying Zpo = 1 and Z7r(-) = 7(-)Z.

@ More sophisticated approach needed.

e First proposal: Bockenhauer/Evans/Kawahigashi (1998-),
based on subfactor theory.

o Categorical reformulation: Ostrik (2003),
Fuchs/Runkel /Schweigert (2006). (Appl. to d =2 CFT.)



Modular Invariants

The Bockenhauer-Evans-Kawahigashi approach to modular

invariants according to Ostrik-Fuchs-Runkel-Schweigert

e Non-commutative k-algebra I" ~~ centre Z(T").

@ Same works in any semisimple symmetric tensor category C,
giving rise to commutative algebra Z(T") € C.

@ C only braided ~~ two centres Z1,(I"), Zr(T"). (The definitions
of the two centres differ only by ~s )

N

@ C modular = One also obtains an equivalence
E:T9 — Mod — I'} — Mod

of braided categories, where 'y, := Zp /g(I').
@ The triple (I',,I'r, E') depends only on the Morita-class of .

e F/R/S construct ‘topological d =2 CFT’ starting from
modular category C and (non-comm.) algebra I' € C.



Rehren's QFT Approach

e Drawbacks of BEK/O/FRS approach: 1) Works only in
left-right symmetric situation: C;, = Cg. 2) Involves
non-commutative algebras in ®-categories, not corresponding
to local extensions.

@ Rehren (2000): Local QFT approach to modular invariants:
Let Az, Agr be completely rational CFTs on R. Define local
net of VNAs on M1t by

O=1; x IRb—mA(O) :AL(IL)®TR(IR)

and study finite local extensions B O A.

@ ~» Z>p-valued matrix (Z;;) satisfying Zgpop = 1 and

ZTR:TLZ where TL/R—’/TL/R< (1) 1 >



Rehren's QFT Approach

® ZSp=5.Z for Sy g =7p/R ( (1) _01 > (and thus
Zrr(-) = 7r(-)Z) holds iff DHR(1) is trivial. (Conjectured
by Rehren, proven by M. and by Kawahigashi/Longo.)

@ Recall: Local extensions B O A with trivial DHR(B)
correspond to commutative algebras I'" with
d(T')? = dim DHR(A). Thus every such T gives a modular
invariant matrix Z.

@ In fact, one has more: Given local extension
B> A= A ® AR, Rehren (2000) proves existence of
maximal local chiral extensions fTL D Ap, ER D Ag
satisfying A;, ® Ag C AL ® Ar C B. Also: The categories
é\L/R = DHR(/TL/R) have isomorphic fusion rules.

@ Even better: Braided monoidal equivalence E : 5,; = 53.
(Kawahigashi/Longo 2003)



Modular Invariants

Categorical reformulation

@ Recall: A\L/R D Ap g <> comm. algebras I'y ) € Cp/r and
Cr/r = DHR(Ap/p) > Ty —Modg, .

@ Thus: A commutative algebra of maximal dimension in
Cr X Cr gives rise to a triple (I'z,, I'r, ), where 'y ), € Cp /i
are commutative algebras and
E:Tp —Mod} = Tx—Modf, isa braided monoidal
equivalence. Converse is also true. (Follows from LR 1995).

@ Def.: A modular invariant for a pair (Cr,Cr) of modular
categories is a triple (I', I'r, F') as above.

@ Results are independent of whether or not Cy,,Cp arise from
local nets:

@ Theorem (DMNO): For modular categories Cr,,Cr there is a
bijection, modulo suitable equivalences, between commutative
algebras I' € C; K C with d(I")% = dim Cy, - dim Cg and
modular invariants for (Cr,Cg).



Witt group

Witt Group of Modular Categories

@ Def.: Modular categories C1,Cy are called Witt equivalent
(C1 ~ Cg) if there exists a modular invariant for (Cy1,Cs).

@ By the characterization of Drinfeld centres:
C1 ~Cy & C1 KR Cy~ Z(D) for D fusion (Drinfeld centre).
@ Theorem: Witt equivalence is an equivalence relation
(including braided equivalence).

e Rem.: Symmetry is easy, reflexivity follows from
CXC ~ Z(C). Transitivity requires more work.

@ Def.: Wy = {C modular}/ ~.

e With [Cl] . [CQ] = [Cl IZCQ] and 1 = Vecte, W)y is a
commutative monoid.

o In view of CXC ~ Z(C) ~ 1, defining [C]~! = [C] turns W),
into an abelian group, the Witt Group of modular categories.
(Due to A. Kitaev (+M.), V. Drinfeld et al., A. Davydov.)



Witt group

Comments

@ For every fusion category D, we have Z(D) ~ Vectc, i.e.
[Z(D)] = 1. Thus passing to the Witt group kills all Drinfeld
centres. This is good since there is no hope of ‘classifying’ all
fusion categories. But W), should be computable.

o T' comm. algebra in C = [I' — Mod%] = [C]. Thus: A C B
cpl. rtl. with [B: Al < oo = [DHR(A)| = [DHR(B)].

@ Def: A modular category C is completely anisotropic if 1 is
the only commutative algebra in C.

@ Theorem: Every Witt class contains a unique completely
anisotropic category (up to braided equivalence).

@ ~» Uniqueness of DHR(Bpax).

e Wy contains the classical Witt group W (related to
quadratic forms) as a subgroup. The latter is known explicitly.

o Conjecture: Wy is generated by W and [U,(g) — Mod]

(¢"V = 1) with relations given by conformal extensions, cosets
and low-dim. exceptions. (=Rigorous version of QFT folklore.)



Witt group

Selected Open Problems

@ Determine Witt group Wy of modular categories.

@ Inverse problem: Which modular categories arise from
completely rational QFTs? [Solved in symmetric case
d > 2+ 1. (Doplicher/Piacitelli)]

o Classify completely rational QFTs A with trivial DHR(.A).
(Contains the classification of self-dual lattices, thus probably
hopeless.)

@ The requirement that DHR(B) be trivial is central in Rehren’s
approach to modular invariants. Use this as starting point for
an analytic approach to defining full d =2 CFT.

Thank you!
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