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Abstract

We explain in fairly complete detail the construction of two continuous 2π-periodic functions.
The first has Fourier series that is uniformly but not absolutely convergent. The second has its
Fourier series diverge at a point. All this well known and very old. The only point is to give an
accessible exposition with minimal overhead, complementing the results proven in my course on
Functional Analysis.

1 Introduction

We write C(S1,C) for the set of continuous 2π-periodic functions.
If f : R→ C is 2π-periodic and integrable over bounded intervals we put

f̂(k) =
1

2π

∫ 2π

0
f(x)e−ikxdx

and

SN (f, x) =

N∑

k=−N
f̂(k)eikx. (1.1)

If
∑

k∈Z |f̂(k)| < ∞ then (1.1) converges absolutely uniformly to some g ∈ C(S1,C). By the

uniform convergence one has ĝ(k) = f̂(k) ∀k ∈ Z. This implies g = f , cf. Proposition 2.3(ii).
The goal of these notes is to define fairly simple f1, f2 ∈ C(S1,C) such that

• SN (f1, x) converges to f1(x) uniformly in x as N →∞, but
∑

k∈Z |f̂1(k)| =∞.

• SN (f2, 0) diverges as N →∞.

2 Reminders

For 2π-periodic f, g we define the convolution product f ? g by

(f ? g) =
1

2π

∫ 2π

0
f(t)g(x− t)dt.

Now f ? g is 2π-periodic. Convolution is commutative and associative. Defining ‖f‖1 =
1
2π

∫ 2π
0 |f(x)|dx we have

|(f ? g)(x)| = 1

2π

∣∣∣∣
∫ 2π

0
f(t)g(x− t) dt

∣∣∣∣ ≤
1

2π

∫ 2π

0
|f(t)||g(x− t)| dt ≤ ‖f‖∞‖g‖1
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thus ‖f ? g‖∞ ≤ ‖f‖∞‖g‖1.
It is straightforward to prove SN (f, x) = (DN ? f)(x), where

DN (x) =
N∑

k=−N
eikx =

sin(N + 1
2)x

sin x
2

is the Dirichlet kernel. (The quickest way to check the last identity is the telescoping calculation

(eix/2 − e−ix/2)DN (x) =

N∑

k=−N
eix(k+1/2) −

N∑

k=−N
eix(k−1/2) = eix(N+1/2) − e−ix(N+1/2),

together with eix − e−ix = 2i sinx.) Now we define the Fejér kernel

FN (x) =
1

N + 1
(D0(x) + · · ·+DN (x)) =

N∑

k=−N

(
1− |k|

N + 1

)
eikx,

(some authors would call this FN+1) which has the property that

σN (f, x) = (FN ? f)(x) =
1

N + 1

(
S0(f)(x) + S1(f)(x) + · · ·+ SN (f)(x)

)

is the N -th Cesàro mean of the sequence {SN (f)} of partial Fourier sums of f .

2.1 Exercise Prove

FN (x) =
1

N + 1

sin2 N+1
2 x

sin2 x
2

∀N ∈ N. (2.1)

2.2 Lemma {FN}N∈N is an approximate unit for ?, i.e.

(i) FN (x) ≥ 0 for all N, x.

(ii) ‖FN‖1 = 1 ∀N .

(iii) limN→∞
∫
ε≤|x|≤π |FN (x)|dx→ 0.

Proof. (i) is obvious from the explicit formula (2.1). (ii) follows from (i) since it gives ‖FN‖1 =
1
2π

∫ 2π
0 FN (x) = 1, the second equality being obvious from the definition of FN as finite sum.

(iii) It is easy to see that
sin2 N+1

2
x

sin2 x
2

is bounded on {x | ε ≤ |x| ≤ π} for each ε > 0. Now the

result is obvious. �

We note for later that (ii) implies ‖σN (f)‖∞ = ‖f ? FN‖∞ ≤ ‖f‖∞ ∀N .

2.3 Proposition Let f, g ∈ C(S1,C). Then

(i) σN (f, ·) = FN ? f converges uniformly to f as N →∞.

(ii) If f̂(k) = ĝ(k) ∀k ∈ N then f = g.

Proof. (i) Omitted. See e.g. [2, 4]. The proof uses uniform continuity of f and holds for every
approximate unit.

(ii) If f̂(k) = ĝ(k) ∀k ∈ Z then clearly SN (f, x) = SN (g, x) for all N, x, thus also σN (f, x) =
σN (g, x) for all N, x. Now the result follows from (i). �
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3 Preparations

3.1 Proposition If f ∈ L∞(R,C) is 2π-periodic and f̂(k) = O(1/k) then {SN (f, x)} is
bounded uniformly in N, x.

Proof. We compute

SN (f, x)− σN (f, x) =
N∑

k=−N
f̂(k)eikx −

N∑

k=−N
f̂(k)

(
1− |k|

N + 1

)
eikx

=

N∑

k=−N
f̂(k)

|k|
N + 1

eikx,

which gives

|SN (f, x)− σN (f, x)| ≤
N∑

k=−N

∣∣∣∣f̂(k)
|k|

N + 1
eikx

∣∣∣∣ =
1

N + 1

N∑

k=−N
|kf̂(k)|.

In view of f̂(k) = O(1/k), equivalent to kf̂(k) = O(1), this gives that |SN (f, x) − σN (f, x)| is
bounded uniformly in N, x. We have seen before that ‖σN (f)‖∞ ≤ ‖f‖∞ < ∞ for all N , thus
σN (f, x) is bounded uniformly in N, x. With |SN (f, x)| ≤ |SN (f, x)−σN (f, x)|+ |σN (f, x)| the
same holds for SN (f, x). �

3.2 Exercise Define f : R→ C by f(x) = i(π − x) for x ∈ (0, π). For x ∈ (−π, 0) define f by
f(x) = i(π+ x), so as to be odd on (−π, π). Now extend f to be R by 2π-periodicity. (i) Prove

f̂(k) =
1

k
∀k 6= 0, f̂(0) = 0.

(ii) Conclude that the partial sums SN (f, x) are bounded uniformly in N, x.
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Figure 6. The sawtooth function

[Hint: Use Dirichlet’s test for convergence of a series
P

anbn.]

9. Let f(x) = ¬[a,b](x) be the characteristic function of the interval [a, b] Ω
[°º, º], that is,

¬[a,b](x) =

Ω
1 if x 2 [a, b],
0 otherwise.

(a) Show that the Fourier series of f is given by

f(x) ª b ° a

2º
+
X

n6=0

e°ina ° e°inb

2ºin
einx.

The sum extends over all positive and negative integers excluding 0.

(b) Show that if a 6= °º or b 6= º and a 6= b, then the Fourier series does not
converge absolutely for any x. [Hint: It su±ces to prove that for many
values of n one has | sin nµ0| ∏ c > 0 where µ0 = (b ° a)/2.]

(c) However, prove that the Fourier series converges at every point x. What
happens if a = °º and b = º?

10. Suppose f is a periodic function of period 2º which belongs to the class Ck.
Show that

f̂(n) = O(1/|n|k) as |n| ! 1.

This notation means that there exists a constant C such |f̂(n)| ∑ C/|n|k. We
could also write this as |n|kf̂(n) = O(1), where O(1) means bounded.

[Hint: Integrate by parts.]

11. Suppose that {fk}1k=1 is a sequence of Riemann integrable functions on the
interval [0, 1] such that

Z 1

0

|fk(x) ° f(x)| dx ! 0 as k ! 1.

Figure 1: The sawtooth function f
2i

(picture from [4])

Using standard results from Fourier analysis and the fact that f has left and right derivatives
at all points, it is easy to show that the Fourier series

∑∞
k=1

sin kx
k converges for all x, namely to

zero if x ∈ 2πZ and to the sawtooth function f/2i elsewhere. In the next section we will show
that one has uniform convergence, thus a continuous limit function, if the denominator grows
faster than k.
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4 A function with uniformly but not absolutely con-

vergent Fourier series

4.1 Proposition Let {ak}k∈N ⊆ [0,∞) such that kak ↘ 0 as k → ∞. Then
∑∞

k=1 ak sin kx
converges uniformly in x.

Proof. We put T0(x) = 0 and TN (x) =
∑N

k=1
sin kx
k . In the preceding section we have proven

boundedness, uniform in N, x, of
∑

1≤|k|≤N
eikx

k =
∑N

k=1
eikx−e−ikx

k = 2iTN (x). Thus |TN (x)| ≤
C <∞ for all N, x and some C. Now a standard partial summation gives

N∑

k=M

ak sin kx =
N∑

k=1

kak
sin kx

k
=

N∑

k=M

kak(Tk(x)− Tk−1(x))

=

N∑

k=M

kakTk(x)−
N∑

k=M

kakTk−1(x)

=
N∑

k=M

kakTk(x)−
N−1∑

k=M−1
(k + 1)ak+1Tk(x)

= NaNTN (x)−MaMTM−1(x) +
N−1∑

k=M

(kak − (k + 1)ak+1)Tk(x).

Thus
∣∣∣∣∣
N∑

k=M

ak sin kx

∣∣∣∣∣ ≤ |NaNTN (x)|+ |MaMTM−1(x)|+
N−1∑

k=M

|(kak − (k + 1)ak+1)Tk(x)|

≤ (NaN +MaM )C +
N−1∑

k=M

|(kak − (k + 1)ak+1)|C

= (NaN +MaM )C +

N−1∑

k=M

((kak − (k + 1)ak+1))C

= (NaN +MaM )C + (MaM −NaN )C = 2MaM ,

where we used kak − (k + 1)ak+1 ≥ 0 to remove the absolute value sign. Now the fact that
MaM → 0 implies that the series is Cauchy uniformly in x, thus uniformly convergent. �

4.2 Corollary (i) If kak ↘ 0 but
∑∞

k=1 ak =∞ then f(x) =
∑∞

k=1 ak sin kx is a continuous

function whose Fourier series converges uniformly, but not absolutely:
∑

k∈Z |f̂(k)| =∞.

(ii) One such choice is a1 = 0, ak = 1
k log k for k ≥ 2, leading to f1(x) =

∑
k≥2

sin kx
k log k .

Proof. (i) Continuity of f follows from the uniform convergence. Now f̂(0) = 0, and for n 6= 0 we

have f̂(k) =
sgn(k)a|k|

2i . The Fourier series just is the series
∑

k ak sin kx, and
∑

k∈Z |f̂(k)| =∞.
(ii) We have (log k)−1 ↘ 0 and

∑∞
k=2

1
k log k =∞, cf. e.g. [3, Theorem 3.29]. �

4.3 Remark 1. The uniform convergence of
∑∞

k=1 ak sin kx remains valid if we only assume
that ak ↘ 0 and kak → 0, which is weaker than kak ↘ 0. But the proof becomes more
complicated, involving the conjugate Dirichlet kernel. Cf. [5, Section V.1] or [1, Section 7.2].
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2. The above f1 probably is the simplest function in C(S1,C) with non-absolutely summable
Fourier coefficients. Of course others can be found using (i), but there are also examples not

in this class. E.g.
∑∞

k=1
eiαk log k

kβ
eikx for all α > 0 and β ∈ (1/2, 1]. But for these functions the

proof of uniform convergence is more involved. Cf. [5]. 2

5 A function with Fourier series diverging at a point

We now discuss Fejér’s example of a continuous function whose Fourier series diverges at a
point. We will closely follow the expositions in [5, 1] quite closely. Note that the proof ‘recycles’
the fundamental ingredient already used in the preceding section.

For p, q ∈ N we define tp,q(x) = 2 sin px
∑q

k=1
sin kx
k . By Exercise 3.2 the sums

∑q
k=1

sin kx
k

are bounded uniformly in x, q, thus also the family {tp,q} is bounded uniformly in p, q, x. Thus
if {αk}k∈N satisfies

∑
k |αk| <∞ then the series

f(x) =

∞∑

l=1

αk tpk,qk

converges uniformly to a continuous 2π-periodic function for any choice of the pk, qk ∈ N. Since
all the tp,q are even functions, so is f . Thus f(x) =

∑∞
k=0 ck cos kx and SN (f)(0) =

∑N
k=0 ck.

The goal now is to choose the pk, qk in such way as to have SN (f, 0) =
∑N

k=−N f̂(k) diverge
as N → ∞. (This may seem to contradict the fact that tp,q(0) = 0 for all p, q, but this is not
the case.)

Not wanting to look up trigonometric identities, we compute

sinx sin y = (
eix − e−ix

2i
)(
eiy − e−iy

2i
) =
−1

4
(ei(x+y) + e−i(x+y) − ei(x−y) − e−i(x−y))

=
cos(x− y)− cos(x+ y)

2
,

so that

tp,q(x) =
cos(p− q)x

q
+

cos(p− q + 1)x

q − 1
+ · · ·+ cos(p− 1)x

1
− cos(p+ 1)x

1
+ · · · − cos(p+ q)x

q
.

(5.1)
If we impose the restrictions

1 ≤ qk ≤ pk, pk + qk < pk+1 − qk+1, (5.2)

the summands tpk,qk for different k have ‘frequencies’ in non-overlapping intervals. Thus

|Spk+qk(f, 0)− Spk(f, 0)| = |αk|
(

1

1
+

1

2
+ · · ·+ 1

qk

)
> |αk| log qk, (5.3)

where we used
∑n

k=1 1/k ≥
∫ n+1
1 dx/x = log(n + 1) > log n. If we choose the αk so as to have

lim infk→∞ |αk| log qk > 0 then (5.3) implies that {SN (f, 0)} is divergent (since it clearly is not
Cauchy).

A possible choice of parameters satisfying the above restrictions is:

pk = 2k
3+1, qk = 2k

3
, αk =

1

k2
.

E.g., |αk| log qk = k−2k3 log 2. The verification of (5.2) is left to the reader. �
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5.1 Exercise Give a more precise description of SN (f, 0) as a function of N , for the above
choice of parameters. In particular give an upper bound for the growth of SN (f, 0).

5.2 Remark For f ∈ C(S1,C) then as an immediate consequence of ‖Dn‖1 = O(log n) and
|SN (f, 0)| ≤ ‖DN ? f‖∞ ≤ ‖DN‖1‖f‖∞ one has SN (f, 0) = O(logN). This can be improved to
o(logN), cf. [5, Theorem II.11.9]. And for every sequence {λN} with λN = o(logN) one can
find a continuous 2π-periodic f with |SN (f, 0)| ≥ λN for infinitely many N . Cf. [5, Theorem
VIII.1.2]. 2
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