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Abstract

We explain in fairly complete detail the construction of two continuous 27-periodic functions.
The first has Fourier series that is uniformly but not absolutely convergent. The second has its
Fourier series diverge at a point. All this well known and very old. The only point is to give an
accessible exposition with minimal overhead, complementing the results proven in my course on
Functional Analysis.

1 Introduction

We write C(S!, C) for the set of continuous 27-periodic functions.
If f: R — C is 2w-periodic and integrable over bounded intervals we put

—~ 1 [27 .
f) =5 [ s
and N
Swf.) = 3 Flkye. (L.1)
k=—N

If Y rez |f(k)\ < 0o then (1.1) converges absolutely uniformly to some g € C(S!,C). By the

uniform convergence one has g(k) = f(k) Yk € Z. This implies g = f, cf. Proposition 2.3(ii).
The goal of these notes is to define fairly simple fi, fo € C(S1,C) such that

e Sn(f1,2) converges to fi(x) uniformly in x as N — oo, but >, |f1(k‘)| = 00.

e Sn(f2,0) diverges as N — oo.

2 Reminders

For 2m-periodic f, g we define the convolution product f x g by

1

27
(f*9) =5 i f(t)glz —t)dt.

Now f % g is 2m-periodic. Convolution is commutative and associative. Defining || f|1 =
% 027T |f('75)|d~75 we have
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thus || f  glleo < [[fllcollgll1-
It is straightforward to prove Sy (f,z) = (Dn * f)(z), where

o) = S e S + i

s X
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is the Dirichlet kernel. (The quickest way to check the last identity is the telescoping calculation
N N
(ei:c/2 - e—ix/?)DN(x) _ Z ei:c(k+1/2) _ Z eix(k—1/2) _ eix(N-‘rl/?) _ e—ioc(N—i—l/Q)’
k=—N k=—N

together with € — e~ = 2isinx.) Now we define the Fejér kernel

N
F(2) = g (Do(w) + -+ D (2) = > (1= o) e

(some authors would call this Fjy;1) which has the property that

1

on(f,z) = (Fnx f)(x) = m(

So(f)(@) + S1(f)(@) + -+ + Sw(f)(=))

is the N-th Cesaro mean of the sequence {Sy(f)} of partial Fourier sums of f.

2.1 EXERCISE Prove
1 sin? %ZL‘

Fn(w) = N +1 sin?

.~ YNeNl (2.1)
2

2.2 LEMMA {Fn}nen Is an approximate unit for x, i.e.
(i) Fx(xz) >0 for all N, x.

(ii) ||[Fn|1 =1 VN.

(iii) limpy 00 faé\xlﬁﬂ |Fn(z)|dz — 0.

Proof. (i) is obvious from the explicit formula (2.1). (ii) follows from (i) since it gives ||Fn|1 =

% 02” Fy(x) = 1, the second equality being obvious from the definition of Fi as finite sum.
in2? N+l

iii) It is easy to see that w is bounded on {z | € < |z| < 7w} for each € > 0. Now the
sim- 5
2

result is obvious. [ ]

We note for later that (ii) implies ||on(f)|lco = ||f * FN oo < || floo VN.

2.3 PROPOSITION Let f,g € C(S',C). Then

(i) on(f,:) = Fn % f converges uniformly to f as N — oo.
(i) If f(k) = (k) Vk € N then f = g.
Proof. (i) Omitted. See e.g. [2, 1]. The proof uses uniform continuity of f and holds for every
approximeﬂ:e unit.
(ii) If f(k) = g(k) Yk € Z then clearly Sy(f,z) = Sn(g,z) for all N, z, thus also on(f,x) =
on(g,x) for all N,x. Now the result follows from (i). [ |



3 Preparations

3.1 PROPOSITION If f € L*(R,C) is 2r-periodic and f(k) =
bounded uniformly in N, x.

O(1/k) then {Sn(f,z)} is

Proof. We compute

N

SN(fvx)_o-N(.ﬂx) =

N ikx |k‘
Zf k_zf <_N+1

> ezkx

— Z flk N+1 ;
which gives
_ <
[Sn(f,2) — on(f, )] Z ’f N+1° N+1 Z 7

In view of f(k) = O(1/k), equivalent to kf(k) = O(1), this gives that |Sy(f,z) — on(f, z)| is
bounded uniformly in N, z. We have seen before that |[on(f)]|co < ||flloc < o0 for all N, thus

on(f,x) is bounded uniformly in N, x. With |Sy(f,z)| < |[Sn(f,z) —on(f,z)| + |on(f, )| the
same holds for Sy (f, z). [ ]

3.2 EXERCISE Define f : R — C by f(x) =
f(z) =i(m+z), so as to be odd on (—m

i(m —x) for z € (0, 7). For z € (—m,0) define f by
7). Now extend f to be R by 27-periodicity. (i) Prove

o~

flky=> Vk#0,  f(0)=0.

—~ |

(ii) Conclude that the partial sums Sy(f,x) are bounded uniformly in N, z.

/
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Figure 1: The sawtooth function £ (picture from [1])

Using standard results from Fourier analysis and the fact that f has left and right derivatives
at all points, it is easy to show that the Fourier series Y .- ; Si“kkx converges for all x, namely to
zero if x € 277 and to the sawtooth function f/2i elsewhere. In the next section we will show
that one has uniform convergence, thus a continuous limit function, if the denominator grows

faster than k.




4 A function with uniformly but not absolutely con-
vergent Fourier series

4.1 PROPOSITION Let {aj}ren C [0,00) such that kay N\, 0 as k — oo. Then > ;2 apsinkx
converges uniformly in x.

Proof. We put Tp(z) = 0 and Ty (z) = Zk =i Kz Tn the preceding section we have proven

boundedness, uniform in N, z, of >4 <y Z]:I ch\[zl M = 2iTn(x). Thus |Ty(x)| <
C < o for all N,z and some C. Now a standard partial summation gives

N

N N .
. sin kzx
kEMak sinkx = E kay, = E kap(Ti(z) — Tp—1(x))

= Z kaka Z kaka 1
k=M

N N-1
= Z kaka Z (k -+ 1)ak+1Tk(x)
=M k=M-1

N-1
= NCLNTN( ) M(IMTM 1 + Z kak— k—i-l akH)Tk( )
k=M

Thus
N N-1
> agsinkz| < |NanTn(x)| + [MayTy-1(x)| + Y [(kag — (k + Dag1)Te(x))|
k=M k=M
N—-1
< (NCLN+MQM)C+ |(kak—(k:+1)ak+1)|C
k=M
N—-1

= (NCLN + M(LM)C + ((k:ak — (k‘ + 1)ak+1))C
k=M
= (Nany + Map)C + (Map — Nan)C = 2Mayy,

where we used kay — (k + 1)agx11 > 0 to remove the absolute value sign. Now the fact that
Map; — 0 implies that the series is Cauchy uniformly in z, thus uniformly convergent. |

4.2 COROLLARY (i) Ifkay N\, 0 but > 7, ap = oo then f(x) = Y 72, ajsin kx is a continuous
function whose Fourier series converges uniformly, but not absolutely: Y . |f(k)| = oo

klogk for k > 2, leading to fi(z) = 5o sin ka

(ii)) One such choice is a; = 0, ap = Flogh-

Proof. (i) Continuity of f follows from the uniform convergence. Now f(O) = 0, and for n # 0 we
have f(k) = %. The Fourier series just is the series ), ajsinkz, and ), |F(k)| = o0
(ii) We have (logk)™! \, 0 and > 72, ngk = 00, cf. e.g. [3, Theorem 3.29]. [ |

4.3 REMARK 1. The uniform convergence of Y 7, aj sin kx remains valid if we only assume

that ar ~\( 0 and kar — 0, which is weaker than ka; \, 0. But the proof becomes more
complicated, involving the conjugate Dirichlet kernel. Cf. [5, Section V.1] or [I, Section 7.2].
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2. The above fi probably is the simplest function in C(S!, C) with non-absolutely summable
Fourier coefficients. Of course others can be found using (i), but there are also examples not

in this class. E.g. Y 22 engogkeim for all &« > 0 and 8 € (1/2,1]. But for these functions the
proof of uniform convergence is more involved. Cf. [5]. O

5 A function with Fourier series diverging at a point

We now discuss Fejér’s example of a continuous function whose Fourier series diverges at a
point. We will closely follow the expositions in [5, 1] quite closely. Note that the proof ‘recycles’
the fundamental ingredient already used in the preceding section.

For p,q € N we define ¢, 4(z) = 2sinpz 3°7_, S8k By Exercise 3.2 the sums ) f_, Si2kz
are bounded uniformly in z, ¢, thus also the family {¢,,} is bounded uniformly in p, ¢, z. Thus
if {a; }ren satisfies D, |ay| < oo then the series

o0
flz)= Zak tprar
=1

converges uniformly to a continuous 27-periodic function for any choice of the pg, g € N. Since
all the t,, are even functions, so is f. Thus f(z) = Y52, ¢ cos kz and Sy (f)(0) = Spy -
The goal now is to choose the py, gr in such way as to have Sy(f,0) = Z,]CV:_N f(k:) diverge
as N — oo. (This may seem to contradict the fact that ¢,,(0) = 0 for all p, g, but this is not
the case.)
Not wanting to look up trigonometric identities, we compute

mpsiny = (o€ e 2L ity milat) _ gio—y) _ pmila—)
sinzsiny = ( 5; )( 5 )= 1 (e +e —e —e )
_ cos(z —y) — cos(x + y)
= 5 ,
so that
cos(p—q)r cos(p—q+1)x cos(p—1)xr cos(p+1)x cos(p +q)x
byo(z) = (p—q)z  coslp—g+lz coslp—lz coslp+lz  _ cosp+ g
q q—1 1 1
(5.1)
If we impose the restrictions
1<aqr <pk,  Pk+a <Pkl — Qrt1, (5.2)
the summands ¢, 4, for different k£ have ‘frequencies’ in non-overlapping intervals. Thus
1 1 1
Spesar (£:0) = Sy (£.0)] = lo] (T + 5+ + =) > laul log i, (53)

where we used > ;_, 1/k > flnH dzx/x = log(n 4+ 1) > logn. If we choose the oy so as to have
liminfy_, o0 |ag| log gx > 0 then (5.3) implies that {Sn(f,0)} is divergent (since it clearly is not
Cauchy).

A possible choice of parameters satisfying the above restrictions is:

3 3 1
pr =211 g =2, =13

E.g., |ai|log g = k~2k31og 2. The verification of (5.2) is left to the reader. [ |

b}



5.1 EXERCISE Give a more precise description of Sy(f,0) as a function of N, for the above
choice of parameters. In particular give an upper bound for the growth of Sy (f,0).

5.2 REMARK For f € C(S',C) then as an immediate consequence of ||D,|; = O(logn) and
[SN(f,0)| < ||IDN * flloo < |PNI1]|f]]co one has Sy (f,0) = O(log N). This can be improved to
o(log N), cf. [5, Theorem I1.11.9]. And for every sequence {Ay} with Ay = o(log N) one can
find a continuous 27-periodic f with |Sy(f,0)| > Anx for infinitely many N. Cf. [5, Theorem
VIIL1.2]. 0
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