Michael Müger

Institute for Mathematics, Astrophysics and Particle Physics Radboud University, Nijmegen, The Netherlands e-mail: mueger@math.ru.nl

September 11, 2017

Abstract

Motivated by analytic number theory, we explore remainder versions of Ikehara's Tauberian theorem yielding power law remainder terms. More precisely, for $f:[1,\infty)\to\mathbb{R}$ non-negative and non-decreasing we prove $f(x)-x=O(x^{\gamma})$ with $\gamma<1$ under certain assumptions on f. We state a conjecture concerning the weakest natural assumptions and show that we cannot hope for more.

1 Motivation and results

The following was proven in 1931 by Wiener's student Ikehara [4]. (For a much better proof see [1] or [2, Section 3.5].)

1.1 Theorem (Ikehara, 1931) Let $f:[1,\infty)\to\mathbb{R}$ be non-negative and non-decreasing. Assume that

$$F(s) = \int_{1}^{\infty} f(x)x^{-s} \frac{dx}{x}$$

converges for s>1 (thus F is holomorphic on $\{\operatorname{Re} s>1\}$). Assume that $F(s)-\frac{A}{s-1}$ has a continuous extension to the closed half-plane $\{\operatorname{Re} s\geq 1\}$. Then f(x)=Ax+o(x).

This result gives rise to what still is the simplest proof of the prime number theorem $\pi(x) \sim \frac{x}{\log x}$. In most approaches to giving more precise estimates of $\pi(x) - \text{Li}(x)$, or rather of $\psi(x) - x$, Tauberian theorems have not played a major rôle. One exception is provided by [5, 3], where remainder terms of the form $\frac{x}{\log^k x}$ are proven under somewhat stronger assumptions than in Theorem 1.1, which are then used to give the simplest known proofs of $\psi(x) - x = O(\frac{x}{\log^k x}) \ \forall k \in \mathbb{N}$, invoking only properties of $\zeta(s)$ for Re $s \geq 1$. More general results on remainder estimates in Ikehara's theorem are found in [7, §7.5], [6], but the Tauberian conditions considered here are different:

- 1.2 QUESTION Assume that $f:[1,\infty)\to\mathbb{R}$ is non-negative and non-decreasing, the integral $F(s)=\int_1^\infty f(x)x^{-s-1}dx$ converges for s>1 (thus for $\mathrm{Re}\,s>1$), and $F(s)-\frac{A}{s-1}$ has a holomorphic extension to the half-plane $\{\mathrm{Re}\,s>\alpha\}$, where $\alpha\in(0,1)$. Does this imply $f(x)=Ax+O(x^{\lambda+\varepsilon})$ for some $\lambda<1$?
- 1.3 Remark 1. Ikehara's theorem shows that there is a unique A such that f(x) Ax = o(x). 2. It is trivial that if $g: [1, \infty) \to \mathbb{R}$ is measurable and $g(x) = O(x^{\gamma})$, then $G(s) = \int_{1}^{\infty} g(x)x^{-s-1}dx$ is convergent for $\text{Re } s > \gamma$ and defines a holomorphic function on this domain. The above question is equivalent to asking to which extent this can be inverted under the additional

assumption that $x \mapsto g(x) + Ax$ is non-decreasing for some A (keeping in mind that the domain of holomorphicity of G can be larger than the domain of convergence of the integral).

3. If the answer to the question was positive with $\lambda = \alpha$ in case A > 0, it would provide a very simple deduction of $\psi(x) - x = O(x^{\alpha + \varepsilon})$ from Re $s > \alpha \Rightarrow \zeta(s) \neq 0$. However, we will prove see that this is not the case.

But there is a weaker positive answer to the question. To wit, we will prove the following:

- 1.4 Theorem Let $f:[1,\infty)\to\mathbb{R}$ be non-negative and non-decreasing. Assume that $F(s)=\int_1^\infty f(x)x^{-s-1}dx$ converges for s>1 and that $F(s)-\frac{A}{s-1}$ has a holomorphic continuation to $\{\operatorname{Re} s>\alpha\}$, where $\alpha\in(0,1)$. Then $f(x)=Ax+O(x^{\gamma+\varepsilon})$, where
 - (I) $\gamma = \alpha$ if A = 0.
- (II) $\gamma = \frac{\alpha+1}{2}$ if A > 0 and f(x) Ax is of fixed sign for $x \ge x_0$ for some x_0 .

These exponents are optimal under the given assumptions.

These results will be proven in Section 2. In Section 3 we show that the statement in Case II is false without the sign condition. We also conjecture that $\gamma = \frac{\alpha+2}{3}$ always works and provide some evidence.

Acknowledgment. I thank G. Tenenbaum for alerting me [8] of a serious error in the first version of this note and for pointing out that Proposition 2.3 is about convergence, not absolute convergence, which led to a simpler proof. I also thank a perspicatious referee for rectifying some (smaller) slips.

2 Proofs

Case (I) in Theorem 1.4 is fairly trivial and surely well-known. We only include the proof as a preparation for the following one.

2.1 Lemma Let $\alpha > 0$ and $f:[1,\infty) \to \mathbb{R}$ be non-negative and non-decreasing. If $\int_1^\infty f(x) x^{-s-1} dx$ converges for all $s > \alpha$ then $f(x) = O(x^{\alpha+\varepsilon})$.

Proof. Assume $f(x) = \Omega(x^{\gamma})$ with $\gamma > \alpha$. Then there are C > 0 and arbitrarily large z such that $f(z) \geq Cz^{\gamma}$. For such a z, we have $f(x) \geq f(z) \geq Cz^{\gamma}$ whenever $x \geq z$. Taking $s = \gamma$, we have $\int_{z}^{2z} f(x)x^{-s-1}dx \geq Cz^{\gamma} \int_{z}^{2z} x^{-s-1}dx = Cs^{-1}(1-2^{-s}) > 0$. This contradicts the assumed convergence of $\int_{1}^{\infty} f(x)x^{-s-1}dx$ (since the latter means that for every $\varepsilon > 0$ there is a T such that $T \leq x_1 \leq x_2$ implies $|\int_{x_1}^{x_2} f(x)x^{-s-1}dx| < \varepsilon$). This contradiction proves that $f(x) = o(x^{\gamma})$ for all $\gamma > \alpha$, which is equivalent to the assertion.

- 2.2 Remark With $f(x) = x^{\alpha} \log x$, we have convergence of $\int_{1}^{\infty} f(x) x^{-s-1} dx$ for all $s > \alpha$, but $f(x) = O(x^{\gamma})$ holds if and only if $\gamma > \alpha$. This proves optimality of the result of the lemma.
- 2.3 Proposition Let $f:[1,\infty)\to\mathbb{R}$ be non-negative and non-decreasing. Then
 - (i) If A > 0 and $\gamma \in (0,1)$ are such that $f(x) Ax = \Omega(x^{\gamma})$ then $\int_{1}^{\infty} (f(x) Ax)x^{-s-1} dx$ diverges whenever $s \leq 2\gamma 1$.
- (ii) If the integral $\int_1^\infty (f(x)-Ax)x^{-s-1}dx$ converges in the half-plane $\{\text{Re } s>\alpha\}$ then $f(x)-Ax=O(x^{\gamma+\varepsilon})$, where $\gamma=\frac{\alpha+1}{2}$.

Proof. (i) The assumption $f(x) - Ax = \Omega(x^{\gamma})$ means that there are C > 0 and arbitrarily large x such that $|f(x) - Ax| \ge Cx^{\gamma}$. Assume x_1 is such that $f(x_1) - Ax_1 \ge Cx_1^{\gamma}$. Since f is non-decreasing, we have $f(x) \ge f(x_1) \ge Ax_1 + Cx_1^{\gamma}$ for all $x \ge x_1$. Put $x_2 = x_1 + \frac{Cx_1^{\gamma}}{2A}$. Then for all $x \in [x_1, x_2]$ we have

$$f(x) - Ax \ge Ax_1 + Cx_1^{\gamma} - Ax_2 = Cx_1^{\gamma} - A(x_2 - x_1) = Cx_1^{\gamma} - A\frac{Cx_1^{\gamma}}{2A} = \frac{Cx_1^{\gamma}}{2}.$$

Thus for $s \ge -1$ we have

$$\int_{x_1}^{x_2} \frac{f(x) - Ax}{x^{s+1}} dx \geq \frac{Cx_1^{\gamma}}{2A} \frac{Cx_1^{\gamma}}{2} \frac{1}{x_2^{s+1}} = \frac{C^2x_1^{2\gamma}}{4A(x_1 + \frac{Cx_1^{\gamma}}{2A})^{s+1}} = \frac{C^2}{4A} \frac{x_1^{2\gamma - s - 1}}{(1 + \frac{C}{2Ax_1^{1 - \gamma}})^{s+1}}.$$

Now assume x_2 is such that $f(x_2) - Ax_2 \le -Cx_2^{\gamma}$. Since f is non-decreasing, this implies that $f(x) \le Ax_2 - Cx_2^{\gamma}$ for all $x \le x_2$. Define $x_1 = x_2 - \frac{Cx_2^{\gamma}}{2A}$. By a reasoning similar to the one above we have $f(x) - Ax \le -\frac{Cx_2^{\gamma}}{2}$ for all $x \in [x_1, x_2]$, implying

$$\int_{x_1}^{x_2} \frac{f(x) - Ax}{x^{s+1}} dx \le -\frac{C^2}{4A} \frac{x_2^{2\gamma - s - 1}}{(1 - \frac{C}{2Ax_2^{1 - \gamma}})^{s + 1}}.$$

If $s \leq 2\gamma - 1$ then $2\gamma - s - 1 \geq 0$. Then the above computations and $f(x) - Ax = \Omega(x^{\gamma})$ imply that for every $T \geq 1$ we can find an interval $[x_1, x_2] \subseteq [T, \infty)$ such that

$$\left| \int_{x_1}^{x_2} \frac{f(x) - Ax}{x^{s+1}} dx \right| \ge \frac{C^2}{4A \cdot 2} x_1^{2\gamma - s - 1} \ge \frac{C^2}{4A \cdot 2}.$$

But this clearly implies that $\int_1^\infty (f(x) - Ax)x^{-s-1}dx$ diverges.

(ii) This is essentially the contraposition of (i).

Note that the above does not assume f(x) - Ax to be ultimately of constant sign.

The following is a version of the Phragmén-Landau theorem on Dirichlet series with positive coefficients, cf. e.g. [7, Sec. II.1, Theorem 1.9].

2.4 Proposition Assume that $g:[1,\infty)\to\mathbb{R}$ is non-negative and measurable, that

$$G(s) = \int_{1}^{\infty} g(x)x^{-s} \frac{dx}{x} \tag{1}$$

converges for $\operatorname{Re} s > 1$ and that the function G has a holomorphic extension to the half-plane $\{\operatorname{Re} s > \alpha\}$, where $\alpha \in (0,1)$. Then the integral in (1) converges to G whenever $\operatorname{Re} s > \alpha$.

Proof. Let $\alpha < t < 1 < s$. Since G is holomorphic at s, it has a power series expansion

$$G(z) = \sum_{n=0}^{\infty} \frac{(z-s)^n G^{(n)}(s)}{n!}.$$
 (2)

Since $\int_1^\infty g(x)x^{-s}\frac{dx}{x}<\infty$ for all s>1 and $(\log x)^k=O(x^\varepsilon)$ for any $k,\varepsilon>0$, we also have $\int_1^\infty |g(x)|(\log x)^nx^{-s}\frac{dx}{x}<\infty$ for all $s>1,n\in\mathbb{N}$. With $\frac{d^n}{ds^n}x^{-s}=(-\log x)^nx^{-s}$ and Lebesgue's dominated convergence theorem we can differentiate G(s) under the integral sign and obtain

$$G^{(n)}(s) = \int_{1}^{\infty} g(x)(-\log x)^{n} x^{-s} \frac{dx}{x}.$$

Since G is holomorphic on the half-plane $\{\operatorname{Re} z > \alpha\}$, the domain of convergence of (2) includes t. Thus

$$G(t) = \sum_{n=0}^{\infty} \frac{(t-s)^n}{n!} \int_1^{\infty} g(x) (-\log x)^n x^{-s} \frac{dx}{x} = \sum_{n=0}^{\infty} \int_1^{\infty} \frac{(s-t)^n}{n!} g(x) (\log x)^n x^{-s} \frac{dx}{x}.$$

Since the integrand is non-negative and the double integral converges by our assumptions, by Fubini-Tonelli we may reverse the order of summation and integration:

$$G(t) = \int_{1}^{\infty} \left(\sum_{n=0}^{\infty} \frac{(s-t)^{n}}{n!} (\log x)^{n} \right) g(x) x^{-s} \frac{dx}{x} = \int_{1}^{\infty} e^{(s-t)\log x} g(x) x^{-s} \frac{dx}{x}$$
$$= \int_{1}^{\infty} x^{s-t} g(x) x^{-s} \frac{dx}{x} = \int_{1}^{\infty} g(x) x^{-t} \frac{dx}{x},$$

where the rightmost integral converges.

Proof of Theorem 1.4, Case (II). Assume that g(x) := f(x) - Ax has constant sign for $x \ge x_0$. Since $\int_1^{x_0} (f(x) - Ax) x^{-s-1} dx$ converges for all $s \in \mathbb{C}$ and defines an entire function, we may replace the lower integration bound 1 by x_0 in the argument that follows, so that g has constant sign on the domain of integration. It is clear that $G(s) = \int_{x_0}^{\infty} g(x) x^{-s-1} dx$ converges for all s > 1, and the function G by assumption continues holomorphically to $\{\text{Re } s > \alpha\}$. Thus Proposition 2.4 (which of course also holds for non-positive functions) implies that the integral converges to G for $\text{Re } s > \alpha$. Now the claim follows from Proposition 2.3.

That the statements of Proposition 2.3 and Case II of the theorem are optimal follows from the following example:

- 2.5 Proposition For every $\gamma \in (0,1)$ there exists a function $f:[1,\infty) \to \mathbb{R}$ such that
 - f is non-decreasing and $f(x) \ge x \ \forall x \ge 1$,
 - f(x) x is $O(x^{\gamma})$ and $\Omega(x^{\gamma})$ (thus not $O(x^{\gamma'})$ for any $\gamma' < \gamma$).
 - $F(s) = \int_{1}^{\infty} f(x)x^{-s-1}dx$ converges for s > 1,
 - $G(s) = \int_{1}^{\infty} (f(x) x)x^{-s-1} dx$ converges if and only if $s > 2\gamma 1$,
 - $G(s) = F(s) \frac{1}{s-1}$ is holomorphic on $\{\text{Re } s > 2\gamma 1\}$ and has a singularity at $2\gamma 1$.

Proof. Let $\{x_n\}, \{h_n\}$ be sequences satisfying $x_1 \ge 1$ and $x_{n+1} \ge x_n + h_n \ \forall n$. Define $f: [1, \infty) \to \mathbb{R}$ by

$$f(x) = \begin{cases} x_i + h_i & \text{if } x \in [x_i, x_i + h_i] \text{ for some } i \\ x & \text{otherwise} \end{cases}$$

It is obvious that f is non-negative, non-decreasing and satisfies $f(x) - x \ge 0 \ \forall x$. With $h_n = x_n^{\gamma}$ it is immediate that f(x) - x is $O(x^{\gamma})$ and $\Omega(x^{\gamma})$ (since $f(x_i) = x_i + x_i^{\gamma}$ for all i and $x_i \to \infty$). In view of $0 \le f(x) - x \le h_i = x_i^{\gamma}$ for $x \in [x_i, x_i + h_i]$, we have

$$G(s) = \int_{1}^{\infty} (f(x) - x)x^{-s-1} dx \le \sum_{i=1}^{\infty} x_{i}^{2\gamma_{i}} x_{i}^{-s-1}.$$

Taking $x_i = 2^i$, the r.h.s. becomes $\sum_{i=1}^{\infty} 2^{(2\gamma - s - 1)i}$, which converges whenever $2\gamma - s - 1 < 0$, or $s > 2\gamma - 1$. Thus for the integral defining G we have $\sigma_c = \sigma_a \le 2\gamma - 1$, and G is holomorphic on $\{\text{Re } s > 2\gamma - 1\}$. Proposition 2.3 gives $\sigma_c \ge 2\gamma - 1$ and Proposition 2.4 implies that G has a singularity at σ_c (which a more careful computation shows to be a pole of order one).

3 Another example and a conjecture

Let $\gamma \in (0,1)$. Given a sequence $\{x_n\}$ satisfying $x_n + h_n \leq x_{n+1} - h_{n+1}$, where $h_n = x_n^{\gamma}$, put

$$f(x) = \begin{cases} x_i - h_i & \text{if } x \in [x_i - h_i, x_i] \\ x_i + h_i & \text{if } x \in (x_i, x_i + h_i] \\ x & \text{otherwise} \end{cases}$$

Again, f is non-negative, non-decreasing and both $O(x^{\gamma})$ and $\Omega(x^{\gamma})$. The abscissas σ_c, σ_a of convergence of $\int_1^{\infty} (f(x) - x) x^{-s-1} dx$ satisfy $\sigma_c \geq 2\gamma - 1$ by Proposition 2.3, while comparison of f with the function considered in the proof of Proposition 2.5 gives $\sigma_a \leq 2\gamma - 1$. This implies $\sigma_c = \sigma_a = 2\gamma - 1$.

With g(x) = f(x) - x, we have

$$G(s) = \int_{1}^{\infty} g(x)x^{-s-1}dx = \sum_{i=1}^{\infty} \left(\int_{x_{i}-h_{i}}^{x_{i}} \frac{x_{i}-h_{i}-t}{t^{s+1}}dt + \int_{x_{i}}^{x_{i}+h_{i}} \frac{x_{i}+h_{i}-t}{t^{s+1}}dt \right).$$

Since g assumes positive and negative values, we must argue more carefully than above. Focusing on a summand for fixed i, we have

$$\int_{x_{i}-h_{i}}^{x_{i}} \frac{x_{i}-h_{i}-t}{t^{s+1}} dt + \int_{x_{i}}^{x_{i}+h_{i}} \frac{x_{i}+h_{i}-t}{t^{s+1}} dt
= \frac{x_{i}-h_{i}}{s} \left(\frac{1}{(x_{i}-h_{i})^{s}} - \frac{1}{x_{i}^{s}} \right) + \frac{x_{i}+h_{i}}{s} \left(\frac{1}{x_{i}^{s}} - \frac{1}{(x_{i}+h_{i})^{s}} \right) - \frac{1}{1-s} \left((x_{i}+h_{i})^{1-s} - (x_{i}-h_{i})^{1-s} \right)
= \frac{2h_{i}}{sx_{i}^{s}} + \frac{1}{s(1-s)} \left((x_{i}-h_{i})^{1-s} - (x_{i}+h_{i})^{1-s} \right)
= \frac{2h_{i}}{sx_{i}^{s}} + \frac{x_{i}^{1-s}}{s(1-s)} \left((1-\frac{h_{i}}{x_{i}})^{1-s} - (1+\frac{h_{i}}{x_{i}})^{1-s} \right).$$
(3)

In view of $h_i \ll x_i$, we expand the term in the large brackets using the binomial series:

$$(1 - \frac{h_i}{x_i})^{1-s} - (1 + \frac{h_i}{x_i})^{1-s}$$

$$= \left(1 - (1-s)\frac{h_i}{x_i} + \frac{(1-s)(-s)}{2}(\frac{h_i}{x_i})^2 - \frac{(1-s)(-s)(-s-1)}{3!}(\frac{h_i}{x_i})^3\right)$$

$$- \left(1 + (1-s)\frac{h_i}{x_i} + \frac{(1-s)(-s)}{2}(\frac{h_i}{x_i})^2 + \frac{(1-s)(-s)(-s-1)}{3!}(\frac{h_i}{x_i})^3\right) + O((\frac{h_i}{x_i})^5)$$

$$= -2(1-s)\frac{h_i}{x_i} - \frac{1}{3}(1-s)s(s+1)(\frac{h_i}{x_i})^3 + O((\frac{h_i}{x_i})^5).$$

Plugging this into (3), the first order terms cancel and we get

$$\int_{x_i - h_i}^{x_i + h_i} g(x) x^{-s - 1} dx = -2(s + 1) x^{1 - s} \left(\frac{1}{3!} \left(\frac{h_i}{x_i} \right)^3 + \frac{(s + 2)(s + 3)}{5!} \left(\frac{h_i}{x_i} \right)^5 + \cdots \right).$$

With $h_i = x_i^{\gamma}$, where $\gamma \in (0, 1)$, we have

$$\int_{1}^{\infty} g(x)x^{-s-1}dx = -\frac{1}{3}(s+1)\sum_{i=1}^{\infty} x_{i}^{1-s} \left(\left(\frac{x_{i}^{\gamma}}{x_{i}}\right)^{3} + O\left(\left(\frac{h_{i}}{x_{i}}\right)^{5}\right) \right)$$

$$= -\frac{1}{3}(s+1)\sum_{i=1}^{\infty} x_{i}^{3\gamma-s-2} + O\left(\sum_{i} x_{i}^{5\gamma-s-4}\right).$$

With $x_i=2^i$, the leading term equals $-\frac{1}{3}(s+1)\sum_{i=1}^{\infty}2^{(3\gamma-s-2)i}$. From this it follows that the series converges if $\operatorname{Re}(3\gamma-s-2)<0$, or $\operatorname{Re}s>3\gamma-2$, while the sum over the higher order terms converges for $\operatorname{Re}s>5\gamma-4$. In view of $\sum_{i=1}^{\infty}2^{(3\gamma-s-2)i}=\frac{1}{1-2^{3\gamma-s-2}}-1$, G is meromorphic on $\{\operatorname{Re}s>5\gamma-4\}$ with first order poles at $3\gamma-2+i\frac{2\pi}{\log 2}\mathbb{Z}$.

For Re $s > 2\gamma - 1 = \sigma_a$, it is clear that the above series converges to $\int_1^\infty (f(x) - x)x^{-s-1}dx$, so that the series gives an analytic continuation of the integral to $\{\text{Re } s > 3\gamma - 2\}$. We thus have:

- 3.1 Proposition For every $\gamma \in (0,1)$ there exists a function $f:[1,\infty) \to \mathbb{R}$ such that
 - f is non-negative and non-decreasing,
 - f(x) x is $O(x^{\gamma})$ and $\Omega(x^{\gamma})$,
 - $F(s) = \int_1^\infty f(x)x^{-s-1}dx$ converges for s > 1,
 - $G(s) = \int_{1}^{\infty} (f(x) x)x^{-s-1} dx$ converges if and only if $s > 2\gamma 1$,
 - $G(s) = F(s) \frac{1}{s-1}$ analytically continues to $\{\text{Re } s > 3\gamma 2\}$ and has a singularity at $3\gamma 2$.
- 3.2 Remark 1. In view of $3\gamma 2 < 2\gamma 1$, the maximal half-plane of holomorphicity of G is larger than the half-plane of convergence of the integral defining it, reflecting the fact that the Phragmén-Landau theorem does not apply to the function g, which is not ultimately of one sign.
- 2. This shows that holomorphicity of G on $\{\operatorname{Re} s > \alpha\}$ is compatible with $f(x) Ax = O(x^{\gamma})$ being true only for $\gamma \geq \frac{\alpha+2}{3} > \frac{\alpha+1}{2}$, showing that Theorem 1.4 is false for A > 0 if we drop the sign condition on f(x) Ax.
- 3. The above function f was designed in such a way as to maximize cancellations in the integral defining G(s), while being non-negative, non-decreasing and $x + \Omega(x^{\gamma})$. It is hard to see how one could construct a function with the properties in the above proposition, but with G extending holomorphically to a larger half-plane. (One could replace the numbers $x_i + h_i$ and $x_i h_i$ by $x_i + h_i'$ and $x_i h_i''$, respectively, allowing $h_i' \neq h_i''$ in the hope of achieving higher order cancellations in the above computation. But the converse happens: While the cancellation of first order terms still goes through, it breaks down in second order.)
- 4. While the above considerations provide only some evidence for the conjecture that follows, they prove that we cannot hope for more. \Box
- 3.3 Conjecture Let $f:[1,\infty)\to\mathbb{R}$ be non-negative and non-decreasing. Assume that $F(s)=\int_1^\infty f(x)x^{-s-1}dx$ converges for s>1 and that $F(s)-\frac{A}{s-1}$ has a holomorphic continuation to $\{\operatorname{Re} s>\alpha\}$, where $\alpha\in(0,1)$. Then $f(x)=Ax+O(x^{\frac{\alpha+2}{3}+\varepsilon})$.

Equivalently: If $g:[1,\infty)\to\mathbb{R}$ is such that $x\mapsto g(x)+Ax$ is non-decreasing for some A, $G(s)=\int_1^\infty g(x)x^{-s-1}dx$ converges for s>1 and G(s) extends holomorphically to $\{\operatorname{Re} s>\alpha\}$, where $\alpha\in(0,1)$, then $g(x)=O(x^{\frac{\alpha+2}{3}+\varepsilon})$.

References

- [1] S. Bochner: Ein Satz von Landau und Ikehara. Math. Zeit. 37, 1-9 (1933).
- [2] D. Choimet, H. Queffelec: Twelve landmarks of twentieth-century analysis. Cambridge University Press, 2015.
- [3] J. Čížek: On the proof of the prime number theorem. Časopis Pěst. Mat. 106, 395-401 (1981).
- [4] S. Ikehara: An extension of Landau's theorem in the analytical theory of numbers. J. of Math. Phys. (MIT) 10, 1-12 (1931).
- [5] A. Kienast: Beweis des Satzes $x^{-1} \log^q(\psi(x) x) \to 0$ ohne Überschreitung der Geraden $\sigma = 1$. Math. Zeit. **43**, 113-119 (1938). (1962).

- [6] S. G. Révész, A. de Roton: Generalization of the effective Wiener-Ikehara theorem. Int. J. Num. Th. 9, 2091-2128 (2013).
- [7] G. Tenenbaum: Introduction to analytic and probabilistic number theory. Third edition. American Mathematical Society, 2015.
- [8] G. Tenenbaum: Private communication (e-mail messages december 6 and 9, 2016).