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Abstract

1 Introduction

Once one has defined the notion of differentiability of a function of one variable, it is easy to prove:

1.1 Lemma Assume f : [a, b]→ R is continuous, differentiable on (a, b) and non-decreasing. Then
f ′(x) ≥ 0 for all x ∈ (a, b).

(The function f : R → R, x 7→ x3 has f ′(0) = 0 despite being strictly increasing. Thus the
implication ‘strictly increasing ⇒ f ′(x) > 0 for all x ∈ (a, b)’ is not true.)

As to converses, the following is true, but harder to prove:

1.2 Theorem Let f : [a, b]→ R be continuous and differentiable on (a, b).

(i) If f ′(x) ≥ 0 for all x ∈ (a, b) then f is non-decreasing (=weakly increasing).

(ii) If f ′(x) > 0 for all x ∈ (a, b) then f is strictly increasing.

(iii) If f ′(x) = 0 for all x ∈ (a, b) then f is constant.

(iv) If m ≤ f ′(x) ≤ M for all x ∈ (a, b) then m(x′ − x) ≤ f(x′) − f(x) ≤ M(x′ − x) for all
x, x′ ∈ [a, b].

1.3 Remark 1. (iv) has been called the Mean Value Inequality. Of course, (iii) is just the special
case m = M = 0.

2. It is an understandable, yet serious, beginner’s mistake to think that the above results are

obvious. E.g., f ′ ≡ 0 only means that limy→x
f(y)−f(x)

y−x = 0 for all x. A priori, this implies nothing

about f(y)− f(x) for finite non-zero y− x. Proving that such an implication actually does exist is
quite non-trivial and one of the deeper results of classical analysis.

3. The standard textbook proof of the theorem uses the Mean Value Theorem (MVT): Under

the given assumptions there is a c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a . Combining this with the

hypotheses on f ′, the theorem follows immediately, despite the fact that nothing more can be said
about c. However, dissecting this proof shows that it is quite involved: While the MVT is an easy
corollary of Rolle’s theorem (just as (iv) of the Theorem follows from (i)), proving Rolle’s theorem
is not straightforward. One combines the (easy) fact that f ′(x) = 0 at a local extremum x ∈ (a, b)
with the (harder) result that every continuous function on a closed bounded interval is bounded and
assumes its bounds. The latter in turn can be proven using abstract compactness arguments, but
in an introductory course one usually invokes the Bolzano-Weierstrass theorem to the effect that
bounded sequences have convergent subsequences. One way of proving this uses iterated halving
of intervals. Such an argument will also be used to give one proof of part (i) of the Theorem.
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4. The theorem also follows easily from the half of the Fundamental Theorem of Calculus

according to which f(b) − f(a) =
∫ b

a
f ′(t)dt if f : [a, b] → R is everywhere differentiable and f ′ is

Riemann integrable. (The second assumption is trivially true in case (iii), but not in the others.)
However, the proof of this half of the Fundamental Theorem invariably uses the MVT, so that such
an approach of proving Theorem 1.2 would be more complicated than the more direct invocation
of MVT described above.

5. There has been some controversy about the rôle of the MVT in the teaching of classical
analysis: Some authors, e.g. [1, 2, 3, 5, 9, 10], advocate the elimination of the MVT in favour of of
the (supposedly) more natural and direct proofs of the theorem given below, while others disagree
[12]. However this may be, such an approach is rarely spelt out in full detail, and doing so is the
motivation for this note. We begin by reducing the proof to that of (i). 2

Proof of Theorem 1.2(ii)-(iv), assuming (i). (ii) If f ′(x) > 0 for all x ∈ (a, b) then of course f ′ ≥ 0,
thus f is non-decreasing by (i). Thus for a ≤ x < x′ ≤ b we have f(x) ≤ f(x′). Thus if f is
not strictly increasing, there are x < x′ with f(x) = f(x′). But then f is constant on [x, x′], thus
f ′ ≡ 0 on (x, x′), contradicting the hypothesis. Thus f is strictly increasing.

(iii) We have f ′ ≥ 0 everywhere, so that f is non-decreasing by (i). On the other hand, (−f)′ ≥ 0
everywhere, so that −f is non-decreasing. Thus f is non-increasing. Combining, we get that f is
constant.

(iv) Consider the auxiliary function g(x) = f(x)−mx. Then g′ = f ′−m, which is non-negative
by the assumption. Thus g is non-decreasing by (i), so that x < x′ implies f(x)−mx ≤ f(x′)−mx′.
This is equivalent to f(x′)− f(x) ≥ m(x′ − x), which is one of the desired inequalities. The other
one is proven analogously by considering the auxiliary function h(x) = Mx− f(x), which satisfies
h′ = M − f ′ ≥ 0 and therefore is non-decreasing. �

2 First proof of (i)

Proof. Assume that f is not non-decreasing. Then there are x1, x2 with a ≤ x1 < x2 ≤ b such
that f(x2) < f(x1). If necessary, we can use the continuity of f to change x1, x2 slightly so that

a < x1 < x2 < b and f(x2) < f(x1). Thus f is differentiable at x1, x2. Now λ := f(x2)−f(x1)
x2−x1

< 0.
The set

A =

{
x ∈ (x1, x2] | f(x)− f(x1)

x− x1
≤ λ

}
is bounded below (by x1) and non-empty (since x2 ∈ A), thus x∗ = inf(A) exists (order completeness

of R). In view of λ < 0 ≤ f ′(x1) = limx↘x1

f(x)−f(x1)
x−x1

, we have f(x)−f(x1)
x−x1

> λ for all x ∈ (x1, x2]
close enough to x1. Thus x∗ > x1. If {yn} ⊆ A is a sequence converging to x∗ then f(yn)−f(x1) ≤
λ(yn − x1) for all n, and taking n→∞ gives

f(x∗)− f(x1) ≤ λ(x∗ − x1). (1)

(Thus x∗ ∈ A.) If now x1 < x′ < x∗ (here we use x1 < x∗) then x′ 6∈ A, thus f(x′) − f(x1) >
λ(x′ − x1), which is equivalent to f(x1)− f(x′) < λ(x1 − x′). Adding this to (1), we obtain

f(x∗)− f(x′) < λ(x∗ − x′) ∀x′ ∈ (x1, x
∗). (2)

But in view of λ < 0 ≤ f ′(x∗) = limx′↗x∗
f(x∗)−f(x′)

x∗−x′ , for x′ ∈ (x1, x
∗) close enough to x∗ we have

f(x∗)−f(x′)
x∗−x′ > λ, which contradicts (2). �

The above proof is similar to those in [9] and in [1] (where the hypotheses are f ′ = 0 and f ′ > 0,
respectively).
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3 Second proof of (i), by interval dissection

3.1 Definition If f : [a, b]→ R is a function and a ≤ c < d ≤ b, we call f(d)−f(c)
d−c the inclination

of f on the interval [c, d].

Proof. Assume that (i) is false. Then there are c0, d0 such that a ≤ c0 < d0 ≤ b such that
f(d0) < f(c0). This means that the inclination λ0 of f on [c0, d0] is negative. Define e0 =
(c0 + d0)/2. Assume that the inclination of f on both intervals [c0, e0] and [e0, d0] is larger than

λ0, to wit f(e0)−f(c0)
e0−c0 > λ0 and f(d0)−f(e0)

d0−e0 > λ0. In view of c0 < e0 < d0, this is equiva-
lent to f(e0) − f(c0) > λ0(e0 − c0) and f(d0) − f(e0) > λ0(d0 − e0). Adding these inequalities

gives f(d0) − f(c0) > λ0(d0 − c0), which is equivalent to λ0 = f(d0)−f(c0)
d0−c0 > λ0, which is ab-

surd. Thus one of the two inclinations must be ≤ λ0. [A more geometric argument goes like

this: If f(e0) = f(c0)+f(d0)
2 then the inclinations of f on [c0, e0] and [e0, d0] both equal λ0. If

f(e0) > f(c0)+f(d0)
2 then the inclinations of f on [c0, d0] and [e0, d0] are > λ0 and < λ0, respec-

tively. For f(e0) < f(c0)+f(d0)
2 , the converse holds.] If this is true for [c0, e0], we put c1 = c0, d1 = e0,

otherwise we put c1 = e0, d1 = d0. It is clear that this construction can be iterated, giving a se-
quence {[cn, dn]} of intervals such that dn − cn = 2−n(d0 − c0) and such that the inclination of f
is ≤ λ0 on all intervals [cn, dn]. The sequence {cn} is non-decreasing and bounded above (by d0)
and therefore converges to some x ∈ [a, b]. In view of dn− cn = 2−n(d0− c0), we also have dn → x.
(In fact, {x} =

⋂
n[cn, dn].) Since we have cn ≤ x ≤ dn for all n and dn − cn ↘ 0, Lemma 3.2

below gives that the inclination λn of f on [cn, dn] converges to f ′(x). By construction, we have
λn ≤ λ0 < 0 for all n, implying f ′(x) ≤ λ0 < 0. This, however, contradicts the assumption f ′ ≥ 0,
proving that Theorem 1.2(i) is true. �

3.2 Lemma Assume f : [a, b] → R is differentiable at x (one-sided differentiability if x ∈ {a, b}).
Let {un}, {vn} be sequences satisfying a ≤ un ≤ x ≤ vn ≤ b and vn − un > 0 for all n and
vn − un → 0. Then

lim
n→∞

f(vn)− f(un)

vn − un
= f ′(x).

Proof. Since f is differentiable at x, there is a function g such that g(z) = o(z) (i.e. limz→0
g(z)
z = 0)

and f(y) = f(x) + (y − x)f ′(x) + g(y − x) for all y ∈ [a, b]. Then

f(vn)− f(un) = (vn − un)f ′(x) + g(un − x)− g(vn − x).

Since vn − un > 0 for all n, this gives

f(vn)− f(un)

vn − un
= f ′(x) +

g(un − x)− g(vn − x)

vn − un
. (3)

The assumption un ≤ x ≤ vn implies |un − x| ≤ vn − un and |vn − x| ≤ vn − un, thus in particular
un → x and vn → x. Combining these facts with g(z) = o(z) we have

lim
n→∞

|g(un − x)|
vn − un

≤ lim
n→∞

|g(un − x)|
|un − x|

= 0.

In the same way we prove limn→∞
g(vn−x)
vn−un

= 0, and in view of (3) we have proven the claim. �

3.3 Remark 1. If one considers the lemma as obvious (as some authors seem to do, e.g. [13]), the
second proof of Theorem 1.2(i) is more ‘natural’ and intuitive than the first. But if one takes the
proof of the lemma into account, the first proof is shorter.

2. Note that neither the statement of the lemma nor the proof assumes that un 6= x or vn 6= x.
This would be inconsistent with the other assumptions when x ∈ {a, b}. 2
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4 Third approach

In this approach, we first prove (ii) of the Theorem and then deduce (i).

Proof. We will first prove that f ′(x) > 0 ∀x ∈ (a, b) implies that f is non-decreasing. (This
statement is weaker than either of (i) or (ii).)

To this purpose, assume f ′ > 0 and assume that f is not non-decreasing. Then there are x1, x2
with a ≤ x1 < x2 ≤ b such that f(x2) < f(x1). Choose any t satisfying f(x2) < t < f(x1). The
set S = {x ∈ [x1, x2] | f(x) ≥ t} is bounded above and non-empty (since x1 ∈ S), thus we can
put s = sup(S). We have f(x) < t for all x > s, and there are x < s arbitrarily close to s with
f(x) ≥ t, by definition of the supremum. Thus continuity of f implies f(s) = t. [Note that we
just have reproven the Intermediate Value Theorem.] Also by continuity, there is an ε > 0 such
that f(x) < t for all x ∈ (x2 − ε, x2]. Thus s < x2, so that (s, x2] 6= ∅. Similarly, s > x1 ≥ a, so

that f is differentiable at s. For u ∈ (s, x2] we have f(u) < t = f(s), thus f(u)−f(s)
u−s < 0. Thus

f ′(s) = limu↘s
f(u)−f(s)

u−s ≤ 0, contradicting the assumption f ′ > 0.
If f ′ > 0, the statement just proven implies (ii) in exactly the same way as earlier. Now,

assume f ′ ≥ 0. For each ε > 0, the function f(x) + εx has derivative ≥ ε > 0, and therefore is
strictly increasing by (ii). Thus for x′ > x we have f(x′) + εx′ > f(x) + εx, which is equivalent to
f(x′)− f(x) > −ε(x′ − x). Taking the limit ε↘ 0 gives f(x′)− f(x) ≥ 0, thus (i) holds. �

The above proof, which is from [14] with just a few details added, is the simplest known to the
author. In the next two sections, we discuss alternative proofs that can be found in the literature.

5 Overview of the related literature

• As explained above, the standard way of proving Theorem 1.2 is via the MVT, deduced
from Rolle’s theorem, which in turn is proven using the Extreme Value Theorem (EVT):
A continuous real-valued function on a closed bounded interval is bounded and assumes its
bounds. While the standard proof of the EVT uses Bolzano-Weierstrass (or compactness),
there are direct proofs using interval dissection. Cf. e.g. [7, p. 67-68].

• Theorem 1.2(i) has been called the Increasing Function Theorem (IFT), cf. [13]. Proofs like
the one given in Section 3 can be found e.g. in [13], but not always with sufficient detail or
rigor. In particular our Lemma 3.2 seems unavoidable.

• Theorem 1.2(iii) could be called the Zero Derivative Theorem. There are direct proofs of the
latter using interval dissection, cf. e.g. [5] or [11, p. 206-207], or without dissection [9]. But
since it is less immediate to deduce the IFT from the Zero Derivative Theorem, it seems more
natural to consider the IFT as point of departure.

• Deducing Theorem 1.2 from the MVT is easy, but it is not clear that the converse is true.
But one can prove the MVT by similar methods, cf. [8, Theorem 4].

• The discussion about the merits or drawbacks of the Mean Value Theorem in teaching calculus
has been intense and often unnecessarily ideological, as is witnessed by the titles of the
papers [1, 3, 5]. This ideological fervor is hard to understand since all this just is about
alternative proofs, while outstanding mathematicians like M. Atiyah often emphasize that one
only properly understands a theorem if one has seen many different proofs. (Furthermore,
the title of [13] is misleading since the proofs given in this note are just as rigorous as the
standard one using the MVT.)

• It is a fact that certain results, like the more general versions of l’Hôpital’s theorem, are best
proven using the MVT (or Cauchy’s generalized MVT). Avoiding the MVT tends to lead to
more restrictive assumptions, like the continuity of f ′ imposed in [2].

4



• Another common application of the MVT is to proving remainder estimates for Taylor ex-
pansions. Here, however, rather satisfactory results can be proven using only the Mean Value
Inequality, cf. [13, Theorem 2].

• For rather more sophisticated approaches to the results discussed in this note see [4, 6].
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