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Abstract

We explain a fairly simple proof of the Prime Number Theorem that uses only basic real anal-
ysis and the elementary arithmetic of complex numbers. This includes the ζ-function (as real-
differentiable function) and the Fourier transform on R, but neither Fourier inversion nor anything
from complex analysis.

1 Introduction

The first proof of the Prime Number Theorem (PNT), found in 1896 by Hadamard and de la
Vallée-Poussin (independently), made massive use of complex analysis, well beyond relying on the
Riemann function ζ(z) for complex z. Its crucial ingredient is the non-vanishing of ζ on the line
Re(z) = 1, but it requires additional estimates on ζ to ensure the existence of certain integrals.
Landau gave a more conceptual proof of the PNT in terms of a Tauberian theorem, cf. [11, §241],
which however still needed a growth condition. In the 1930s, Ikehara [5] used Wiener’s general
Tauberian theory [17, 18] to eliminate the growth condition from Landau’s Tauberian theorem,
thereby deducing the PNT from ζ(1 + it) 6= 0 alone. Bochner [1] finally gave a simple proof of the
Landau-Ikehara theorem without appealing to Wiener’s Tauberian theory.

The point of this note is just to make plain that this approach to the PNT can be formulated
in a way that, while keeping the complex numbers for notational convenience and using ζ, avoids
all notions and results from complex analysis, like holomorphicity, analytic continuation, Cauchy’s
theorem, etc. The resulting proof probably is the simplest imaginable. (There is, of course, nothing
new about this. Cf. e.g. [9].)

2 The ζ-function: Re z > 1

For z ∈ C with Re(z) > 1 we define

ζ(z) =

∞∑
n=1

1

nz
. (2.1)

In view of |nz| = nRe(z) and the convergence of
∑∞
n=1 1/nα for α > 1, it is clear that the above sum

converges absolutely for Re(z) > 1 and uniformly for Re(z) ≥ α > 1. It therefore defines a ‘nice’
function on the open half plane Re(z) > 1. For our purposes it will be sufficient to read ‘nice’ as
‘C1’.

2.1 Remark As explained in the Introduction, the proof given below makes no use of complex
analysis but does involve complex numbers. Writing z = s+ it, we have

ζ(z) =

∞∑
n=1

e−z logn =

∞∑
n=1

e−it logn

ns
=

∞∑
n=1

cos(t log n)

ns
− i

∞∑
n=1

sin(t log n)

ns
.
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Since the dependence of ζ(s+ it) on the real variables s and t is quite different, and since we do not
need the holomorphicity of ζ, we could interpret ζ as a function from an open half-plane in R2 to
R2. But since a complex number just is a pair of real numbers, this seems pointless, in particular
since multiplying complex numbers, which is inconvenient in terms of pairs of reals, is essential for
the proof, cf. e.g. Lemma 2.2. Furthermore, the Fourier transform, which we use in Section 4, is
much more natural for complex-valued than for real-valued functions since R → C∗, t 7→ eit is a
homomorphism, which is not true for sin t, cos t. It really does not seem that there is a reasonable
way of writing proofs of the PNT involving the ζ-function in purely real terms. (As opposed to the
‘elementary’ proofs, cf. e.g. [13].) 2

2.2 Lemma Denoting by P the set of primes, for Re(z) > 1 we have

ζ(z) =
∏
p∈P

1

1− p−z
. (2.2)

Proof. By the definition of infinite products, the r.h.s. of the above equation is the limit x→∞ of

∏
p∈P
p≤x

1

1− p−z
=
∏
p∈P
p≤x

( ∞∑
k=0

1

pz

)
=

∞∑
k1=0

· · ·
∞∑
kl=0

1

(pk11 · · · p
kl
l )z

=

∞∑
n=1

P+(n)≤x

1

nz
,

where {p1, · · · , pl} = P ∩ [1, x] and P+(n) is the largest prime factor of n. The last identity is due
to the ‘fundamental theorem of arithmetic’, i.e. the existence and uniqueness of the decomposition
of n into primes. Now, as x → ∞ the summation in the last term runs over all of N, and the
expression tends to (the absolutely convergent) expression

∑
n n
−z = ζ(z). �

We now want a function H such that ζ(z) = eH(z) for Re(z) > 1. Here some care is required
since the exponential function is not injective (‘the logarithm is multi-valued’).

2.3 Lemma (i) The series F (z) = −
∑∞
k=1

(1−z)k
k converges whenever |z − 1| < 1.

(ii) If z ∈ (0, 2) then F (z) = log z, the real logarithm of z.

(iii) For every z ∈ C such that |z − 1| < 1, we have eF (z) = z.

Proof. (i) is obvious, and (ii) is well-known. Now (ii) implies eF (z) = z for z ∈ (0, 2). The ex-
ponential function and F being given by power series, the power series identity eF (z) = z (which
essentially is an algebraic fact) continues to hold for all complex z satisfying |z − 1| < 1. �

2.4 Proposition Write

H(z) =
∑
p∈P

∞∑
k=1

1

kpkz
. (2.3)

(i) The sum in (2.3) converges absolutely if Re(z) > 1 and defines a nice function on this open
half-plane.

(ii) For real z > 1, H(z) is the (real) logarithm of ζ(z).

(iii) For all z with Re(z) > 1 we have ζ(z) = exp(H(z)) and thus ζ(z) 6= 0.

Proof. (i) It is obvious from (2.1) that ζ(s) > 0 for real s > 1. Since also (1− p−s)−1 > 0, equation
(2.2), together with continuity of the logarithm (for positive argument) gives

log ζ(s) =
∑
p∈P

log

(
1

1− p−s

)
= −

∑
p∈P

log(1− p−s) =
∑
p∈P

∞∑
k=1

1

kpks
, (2.4)

where the last identity follows the fact that p−s < 1 and parts (i) and (ii) of Lemma 2.3.
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For s = Re(z) > 1 we have∑
p∈P

∞∑
k=1

∣∣∣∣ 1

kpkz

∣∣∣∣ =
∑
p∈P

∞∑
k=1

1

kpks
= log ζ(s) <∞,

using (2.4). Thus the double sum in (2.3) converges absolutely and defines a ‘nice’ function on
{z |Re(z) > 1}.

(ii) This is just (2.4).
(iii) With |p−z| = p−s < 1, part (iii) of Lemma 2.3 gives exp[

∑
k(kpkz)−1] = (1− p−z)−1 when-

ever Re(z) > 1. Now eH(z) = limx→∞ exp(
∑
p≤x

∑∞
k=1

1
kpkz

) = limx→∞
∏
p≤x(1 − p−z)−1 = ζ(z)

by continuity of exp. This clearly implies ζ(z) 6= 0 for Re(z) > 1. �

2.5 Lemma Defining the von Mangoldt function by

Λ(n) =

{
log p if n = pk, p ∈ P, k ∈ N
0 else

,

and ψ(x) =
∑
n≤x Λ(n), we have for Re(z) > 1:

−ζ
′(z)

ζ(z)
=

∞∑
n=1

Λ(n)

nz
= z

∫ ∞
0

e−zxψ(ex)dx (2.5)

Proof. Using Proposition 2.4, we have

−ζ
′(z)

ζ(z)
= −H ′(z) = −

∑
p∈P

∑
k≥1

1

kpkz

′ =
∑
p∈P

∑
k≥1

log p

pkz
=

∞∑
n=1

Λ(n)

nz
,

where the differentiation under the sum is justified by the uniform convergence of the sum of the
derivatives. This is the first half of (2.5), proving also the absolute convergence of the middle sum.
Convergence of the integral follows from ψ(x) = O(x log x) = O(x1+ε). Now

z

∫ ∞
0

e−zxψ(ex)dx = z

∫ ∞
0

e−zx

∑
n≤ex

Λ(n)

 dx = z

∞∑
n=1

Λ(n)

∫ ∞
logn

e−zxdx

= z

∞∑
n=1

Λ(n)

[
−1

z
e−zx

]∞
logn

=

∞∑
n=1

Λ(n)

nz

proves the second half of (2.5). �

3 The ζ-function: Re z ≥ 1

3.1 Lemma There is a C1-function g : {z |Re(z) > 0} → C such that ζ(z) = g(z) + 1
z−1 when

s = Re(z) > 1. Thus ζ has a C1-extension, which we also denote ζ, to {z |Re(z) > 0}\{1}.

Proof. For Re(z) > 1 we have
∫∞
1
t−zdt = 1

z−1 . Thus

g(z) = ζ(z)− 1

z − 1
=

∞∑
n=1

(
1

nz
−
∫ n+1

n

1

tz
dt

)
=

∞∑
n=1

∫ n+1

n

(
1

nz
− 1

tz

)
dt. (3.1)

Now, ∣∣∣∣∫ n+1

n

(
1

nz
− 1

tz

)
dt

∣∣∣∣ =

∣∣∣∣z ∫ n+1

n

∫ t

n

du

uz+1
dt

∣∣∣∣ ≤ sup
u∈[n,n+1]

∣∣∣ z

uz+1

∣∣∣ =
|z|
ns+1

,

so that (3.1) converges, and thus defines g(z) as a C1-function on Re(z) > 0. �

3



3.2 Remark The above argument of course also shows that ζ(z) extends to a meromorphic func-
tion on Re(z) > 0 with a simple pole of residue one at z = 1. This extension clearly is unique. We
will have no use for this, since we will only need that ζ(z)−1/(z−1) has a C1-extension. Extensions
of differentiable functions are, of course, not unique since there exist compactly supported smooth
functions. This is not a problem since we only need a continuous extension of ζ(z) − 1/(z − 1)
to the closed half plane Re(z) ≥ 1, telling us that lims↘1 ζ(s + it) − 1

s+it−1 exists for all t. This
extension (whose existence follows from the lemma) still is unique for simple reasons of point set
topology (the Hausdorff property of R2). 2

3.3 Proposition We have ζ(z) 6= 0 whenever Re(z) ≥ 1 and z 6= 1.

Proof. We already know that ζ(z) 6= 0 when Re(z) > 1. It remains to prove ζ(1 + it) 6= 0 for t 6= 0.
With Proposition 2.4 and z = s+ it we obtain

log |ζ(z)| = log |eH(z)| = Re(H(z)) =
∑
p∈P

∞∑
k=1

Re

(
1

kpkz

)
=
∑
p∈P

∞∑
k=1

Re
(
e−ikt log p

)
kpks

. (3.2)

Using

Re(3 + 4eiθ + e2iθ) = 3 + 2eiθ + 2e−iθ +
e2iθ + e−2iθ

2
=

(2 + eiθ + e−iθ)2

2
≥ 0

with θ = −kt log p and (3.2) we have

log
∣∣ζ3(s)ζ4(s+ it)ζ(s+ 2it)

∣∣ =
∑
p

∞∑
k=1

Re(3 + 4e−ikt log p + e−2ikt log p)

kpks
≥ 0,

thus
∣∣ζ3(s)ζ4(s+ it)ζ(s+ 2it)

∣∣ ≥ 1. This can be restated as

|(s− 1)ζ(s)|3
∣∣∣∣ζ(s+ it)

s− 1

∣∣∣∣4 |ζ(s+ 2it)| ≥ 1

s− 1
. (3.3)

If t 6= 0, the function ζ(z) = ζ(s+ it) as extended in Lemma 3.1 clearly has the partial derivative
∂sζ(s+ it) ≡ ζ ′ at z = 1 + it. Assuming that ζ(1 + it) = 0, it follows that the limit

lim
s↘1

ζ(s+ it)

s− 1
= lim
s↘1

ζ(s+ it)− ζ(1 + it)

s− 1
= ζ ′(1 + it)

exists. Together with lims↘1(s− 1)ζ(s) = 1, this implies that the l.h.s. of (3.3) tends to the finite
limit |ζ ′(1 + it)|4|ζ(1 + 2it)| as s↘ 1, whereas the r.h.s. of (3.3) diverges. This contradiction shows
that ζ(1 + it) 6= 0 for all t 6= 0. �

From now on, ζ ′(z), where z = s + it, will always denote the partial derivative ∂sζ(s + it), as
in the above proof. (Since all functions considered are holomorphic, ζ ′(z) of course coincides with
the complex derivative, but this will not be needed.)

3.4 Corollary The function z 7→ − ζ
′(z)
ζ(z) −

1
z−1 , well-defined on Re(z) > 0 by Proposition 2.4(iii),

has a continuous extension to Re(z) ≥ 1.

Proof. By Lemma 3.1, there is a C1-function g on Re(z) > 0 such that ζ(z) = g(z) + 1
z−1 on

Re(z) > 1. Since ζ, ζ ′ are nice functions and ζ(z) 6= 0 on {Re(z) ≥ 1}\{1} by Proposition 3.3, the
claim is clear away from z = 1. To see that this also holds near z = 1, we compute

− ζ ′(z)

ζ(z)
= −

g′(z)− 1
(z−1)2

g(z) + 1
z−1

=
−(z − 1)g′(z) + 1

z−1
(z − 1)g(z) + 1

=
−(z − 1)g′(z)

(z − 1)g(z) + 1
+

1

z − 1

(
1− (z − 1)g(z)

(z − 1)g(z) + 1

)
.
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Thus

−ζ
′(z)

ζ(z)
=

1

z − 1
+ k(z), where k =

−(z − 1)g′(z)− g(z)

(z − 1)g(z) + 1
.

The claim follows, since k is continuous on Re(z) ≥ 1. �

4 Ikehara’s Tauberian theorem

The aim of this section is to prove the following theorem (following [3] quite closely):

4.1 Theorem Let f : R+ → R+ be non-decreasing. If there are a, c ≥ 0 such that the integral

F (z) =

∫ ∞
0

f(x)e−zxdx,

converges for Re(z) > a [thus automatically defines a continuous function there] and F (z) − c
z−a

has a continuous extension to the half-plane Re(z) ≥ a then

f(x) ∼ ceax as x→ +∞.

The proof will be given using the Fourier transform on R, concerning which we only need the
definition and an easy special case of the Riemann-Lebesgue Lemma:

4.2 Lemma Let f : R→ C be continuous with compact support. Then the Fourier transform

f̂(ξ) :=

∫
f(x)e−iξxdx (4.1)

(integrals without bounds always extend over R) satisfies f̂(ξ)→ 0 as |ξ| → ∞.

Proof. For ξ 6= 0, we have

f̂(ξ) = −
∫
f(x)e−iξ(x−

π
ξ )dx = −

∫
f(x+

π

ξ
)e−iξxdx,

which leads to

f̂(ξ) =
1

2

∫ (
f(x)− f(x+

π

ξ
)

)
e−iξxdx. (4.2)

Since f is continuous with compact support, it is uniformly continuous, thus supx |f(x)−f(x+ε)| →
0 as ε→ 0. Inserting this in (4.2) and keeping in mind that supp(f) is bounded, the claim follows. �

Proof of Theorem 4.1. As a preparatory step, pick any continuous, compactly supported even
function g : R → R such that g(0) = 1 and ĝ(ξ) ≥ 0 ∀ξ, where ĝ is as in (4.1). (A possible choice
is the tent function g(x) = max(1 − |x|, 0). By an easy computation, ĝ(ξ) = 2(1 − cos ξ)/ξ2 ≥ 0,
so that all assumptions are satisfied.) Then the Fourier inversion theorem applies, thus g(x) =
(2π)−1

∫
ĝ(ξ)eiξxdξ, and in particular we have

∫
ĝ(ξ)dξ = 2πg(0) = 2π. (This is our only use of

Fourier inversion, and it can be avoided at the expense of showing
∫
ĝ(ξ)dξ = 2π ‘by hand’, which

can be done for the above choice of g, if somewhat arduously.1)
Defining gn(x) = g(x/n), it is immediate that ĝn(ξ) = nĝ(nξ) and

∫
ĝn = 2π for all n. For every

δ > 0 we have
∫
|ξ|≥δ ĝn(ξ) =

∫
|u|≥nδ ĝ(u)du, which tends to zero as n→ 0 since ĝn is integrable and

non-negative. Thus the normalized functions hn = ĝn/2π constitute an approximation of unity.

(I.e.
∫
fhn

n→∞−→ f(0) for sufficiently nice f .)

1Let a, b > 0. Twofold partial integration gives
∫∞
0

e−ax cos bx dx = a
a2+b2

. Applying
∫ c
0
· · · db gives∫∞

0
e−ax sin cx

x
dx = arctan c

a
. Applying

∫ f
0
· · · dc gives

∫∞
0

e−ax 1−cos fx
x2

dx = f arctan f
a
− a

2
log
(
1 + ( f

a
)2
)
. (The ex-

changes of integration order are justified by absolute convergence and Fubini.) Taking f = 1 and the limit a ↘ 0 we
obtain

∫∞
0

1−cos x
x2

dx = π
2

.
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LetG be the continuous extension (clearly unique) of F to Re(z) ≥ a. Defining φ(x) = e−axf(x),
we have for all t ∈ R, ε > 0:

G(a+ ε+ it) = F (a+ ε+ it)− c

ε+ it
=

∫ ∞
0

(φ(x)− c)e−(ε+it)xdx =

∫ ∞
0

ψε(x)e−itxdx, (4.3)

where we abbreviate ψε(x) = e−εx(φ(x) − c) to make the following computation readable. Multi-
plying (4.3) by eiytgn(t) and integrating over t, we have∫

eiytgn(t)G(a+ ε+ it)dt =

∫
eiytgn(t)

(∫ ∞
0

ψε(x)e−itxdx

)
dt

=

∫ ∞
0

ψε(x)

(∫
gn(t)eit(y−x)dt

)
dx

=

∫ ∞
0

ψε(x)ĝn(y − x)dx

=

∫ ∞
0

e−εxφ(x)ĝn(y − x)dx− c
∫ ∞
0

e−εxĝn(y − x)dx. (4.4)

(The second equality holds by Fubini’s theorem, since ψε and gn are integrable. The third identity
uses that gn is even.) We now consider the limit ε↘ 0 of (4.4). Since G by assumption is continuous
on Re(z) ≥ a, we have G(a + ε + it) → G(a + it), uniformly for t in the compact support of gn.
Thus

lim
ε↘0

∫
eiytgn(t)G(a+ ε+ it)dt =

∫
eiytgn(t)G(a+ it)dt.

Since φ and ĝn are non-negative, the monotone convergence theorem gives

lim
ε↘0

∫ ∞
0

e−εxφ(x)ĝn(y − x)dx =

∫ ∞
0

φ(x)ĝn(y − x)dx,

lim
ε↘0

∫ ∞
0

e−εxĝn(y − x)dx =

∫ ∞
0

ĝn(y − x)dx =

∫ y

−∞
ĝn(x)dx.

Thus the ε↘ 0 limit of (4.4) is∫
eiytgn(t)G(a+ it)dt =

∫ ∞
0

φ(x)ĝn(y − x)dx− c
∫ y

−∞
ĝn(x)dx. (4.5)

Since t 7→ gn(t)G(a+ it) is continuous and compactly supported, Lemma 4.2 gives

lim
y→+∞

∫
eiytgn(t)G(a+ it)dt = 0,

with which the complex numbers leave the stage. Obviously,

lim
y→+∞

∫ y

−∞
ĝn(x)dx =

∫
ĝn(x)dx = 2π.

Thus for y → +∞, (4.5) becomes (in terms of hn = ĝn/2π)

lim
y→+∞

∫ ∞
0

φ(x)hn(y − x)dx = c. (4.6)

It remains to show that this implies limx→+∞ φ(x) = c, using that {hn} is an approximate unit
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and that f(x) = eaxφ(x) is non-decreasing. For δ > 0 we have∫
φ(x+ δ − y)hn(y)dy =

∫
f(x+ δ − y)e−a(x+δ−y)hn(y)dy

≥
∫ δ

−δ
f(x+ δ − y)e−a(x+δ−y)hn(y)dy

≥
∫ δ

−δ
f(x)e−a(x+2δ)hn(y)dy

= φ(x)e−2aδ
∫ δ

−δ
hn(y)dy = φ(x)e−2aδIn(δ),

where we write In(δ) =
∫ δ
−δ hn(y)dy. In view of (4.6), we have

lim sup
x→+∞

φ(x) ≤ c e
2aδ

In(δ)
.

Recalling that In(δ)
n→∞−→ 1 for each δ > 0, taking n→∞ gives lim supx→+∞ φ(x) ≤ ce2aδ, and for

δ ↘ 0 we obtain lim supx→+∞ φ(x) ≤ c. This also implies that φ is bounded above: φ(x) ≤M for
some M > 0.

On the other hand,∫
φ(x− δ − y)hn(y)dy ≤

∫ δ

−δ
φ(x− δ − y)hn(y)dy +M

∫
|y|≥δ

hn(y)dy

=

∫ δ

−δ
f(x− δ − y)e−a(x−δ−y)hn(y)dy +M

(
1−

∫ δ

−δ
hn(y)dy

)
≤ φ(x)e2aδIn(δ) +M(1− In(δ)).

This gives

φ(x) ≥
∫
φ(x− δ − y)hn(y)dy −M(1− In(δ))

e2aδIn(δ)
.

With (4.6) we obtain

lim inf
x→∞

φ(x) ≥ c−M(1− In(δ))

e2aδIn(δ)
.

Taking n→∞ we find lim infx→∞ φ(x) ≥ c
e2aδ

, and δ ↘ 0 gives lim infx→∞ φ(x) ≥ c.
We have thus proven φ(x)→ c as x→ +∞, which is equivalent to f(x) ∼ ceax. �

5 Proof of the PNT

5.1 Theorem (Prime Number Theorem) (i) ψ(x) ∼ x as x→∞.

(ii) With π(x) = #(P ∩ [1, x]) we have π(x) ∼ x
log x .

(iii) If pn is the n-th prime, we have pn ∼ n log n.

Proof. (i) By Lemma 2.5, the integral
∫∞
0
e−zxψ(ex)dx converges for Re(z) > 1 and equals − ζ′(z)

zζ(z) .

By Corollary 3.4, the function z 7→ − ζ
′(z)
ζ(z) −

1
z−1 has a continuous extension to Re(z) ≥ 1, thus

also − ζ′(z)
zζ(z) −

1
z−1 = 1

z (− ζ
′(z)
ζ(z) − 1 − 1

z−1 ). In view of Λ ≥ 0, the function ψ(x) =
∑
n≤x Λ(n) is

non-decreasing. Now Theorem 4.1 gives ψ(ex) ∼ ex as x→∞, and therefore ψ(x) ∼ x.
(ii) We compute

ψ(x) =
∑
n≤x

Λ(n) =
∑
pk≤x

log p =
∑
p≤x

log p

⌊
log x

log p

⌋
≤ π(x) log x.
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If 1 < y < x then

π(x)− π(y) =
∑

y<p≤x

1 ≤
∑

y<p≤x

log p

log y
≤ ψ(x)

log y
.

Thus π(x) ≤ y + ψ(x)/ log y. Taking y = x/ log2 x this gives

ψ(x)

x
≤ π(x) log x

x
≤ ψ(x)

x

log x

log(x/ log2 x)
+

1

log x
,

thus ψ(x) ∼ π(x) log x. Together with (i), this gives π(x) ∼ x/ log x.
(iii) Taking logarithms of π(x) ∼ x/ log x, we have log π(x) ∼ log x− log log x ∼ log x and thus

π(x) log π(x) ∼ x. Taking x = pn and using π(pn) = n gives n log n ∼ pn. �

6 Comments

• Should one prefer complex over harmonic analysis (why??), a weak version of Ikehara’s Taube-
rian theorem, sufficient for obtaining the PNT, can be proven using complex analysis, as shown
by Newman [14] (and presented efficiently in [19]). The proof is not simpler than the one
given here and gives rather less insight.

• Without too much more work, cf. [10], the proof of the PNT given above can be strengthened
to the more quantitative statement

ψ(x) = x+O

(
x

logn x

)
∀n ∈ N,

which implies

π(x) = Li(x) +O

(
x

logn x

)
∀n, where Li(x) =

∫ x

2

dt

log t
.

In order to do so, one needs some estimates on ζ(1+it) and its derivatives, but no information
on ζ(z) for Re(z) < 1.

• In order to prove stronger results on the error ψ(x)−x (or π(x)−Li(x)) one needs information
on the non-vanishing of ζ(z) for Re(z) < 1. It is known that

ζ(s+ it) 6= 0 when s > 1− c

logα(|t|+ 1)
, (6.1)

where α ∈ (0, 1), is equivalent to

ψ(x)− x = O(xe−d log
β x), where β =

1

α+ 1
< 1.

With β = 1 this would become ψ(x)− x = O(xe−d log x) = x1−d. It is known that

ζ(s+ it) 6= 0 when s > γ ⇔ ψ(x)− x = O(xγ+ε) ∀ε > 0.

Note that for any β, γ ∈ (0, 1) and n ∈ N we have

xγ

xe−d log
β x
→ 0 and

xe−d log
β x

x
logn x

→ 0.

Since there are (infinitely many) t ∈ R such that ζ( 1
2 + it) = 0, the best possible result is

ψ(x) − x = O(x
1
2+ε) (which then actually implies ψ(x) − x = O(

√
x log2 x)). However, the

best current proven result is (6.1) with α = 2/3, implying an error estimate of the form

O(xe−d log
3/5 x).
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• Most proofs of the PNT do not work directly with π(x), but rather with ψ(x) or with the
(only superficially) simpler function θ(x) =

∑
p≤x log p. See however [8, 2] for a deviation

from this rule, following a Fourier analytic approach similar to the present one (but more
sophisticated due to the use of distributional language and less Tauberian, thus perhaps less
conceptual.)

• The approach to the PNT discussed above combines Tauberian theorems that have no number-
theoretic content themselves with the number-theoretic information contained in the non-
vanishing of ζ(1 + it). A beautiful alternative approach due to Landau [11, §160] and Ingham
[6] uses information about ζ to prove strong Tauberian theorems which, while not looking
particularly number theoretical, actually ‘contain’ the PNT in the sense of implying it with
very little additional work, not appealing to the zeta-function again. Similarly to the history of
the Landau-Ikehara theorem, Landau’s proof used information on ζ stronger than ζ(1+it) 6= 0,
which Ingham eliminated using Wiener’s theory. However, a simpler early result of Wiener
[16], cf. also [12], is sufficient. The latter has much in common with the proof of Ikehara’s
theorem given here.

• In 1948, 50 years after the first proofs of the PNT, Selberg and Erdös found a proof of the
PNT that avoids not only complex analysis, but also harmonic analysis and every use of
C. Not much later, Karamata showed that this approach leads to an elementary proof of a
version of Ingham’s (first) Tauberian theorem, sufficient for the PNT. [Despite the fact that
different elementary proofs of the PNT have appeared since, this author thinks that the one
of Karamata still is the simplest and most conceptual to date. Cf. [13] for an exposition.]

• For some insights on the relationship between the traditional ζ-based and ‘elementary’ proofs
of the PNT cf. [7], [4, Chap. 3, §4] and [15]. But there still is much room for a better
understanding.
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