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Abstract

We give a simple proof of the Prime Number Theorem (PNT), the main aims being to minimize
and isolate the input from number theory and to avoid the Euler factorization of the zeta function.
We will use some very basic complex and harmonic analysis, proving all we need of the latter.

1 The Prime Number Theorem

Part (ii) of the following lemma is the only place where the fundamental theorem of arithmetic and
related number theoretic reasoning play a rôle. P denotes the set of primes.

1.1 Lemma (i) There is a unique arithmetic function Λ : N→ R satisfying∑
d|n

Λ(d) = log n ∀n ∈ N. (1.1)

(ii) This solution is given by the ‘von Mangoldt function’ defined by

Λ(n) =

{
log p if n = pk, p ∈ P, k ∈ N
0 else

(1.2)

(iii) We have 0 ≤ Λ(n) ≤ log n for all n ∈ N.

Proof. (i) For n = 1 we have Λ(1) =
∑
d|1 Λ(d) = log 1 = 0. For n ≥ 2 we are forced to inductively

define
Λ(n) = log n−

∑
d|n
d<n

Λ(d). (1.3)

This shows that (1.1) has a unique solution. (ii) By the fundamental theorem of arithmetic, every
n ∈ N has a unique prime factorization n = pk11 · · · pkmm , and the divisors of n are of the form
p`11 · · · p`mm where 0 ≤ `i ≤ ki. The only divisors d of n for which the Λ of (1.2) is non-zero are
{pki | i = 1, . . . ,m, k = 1, . . . , km}. Thus

∑
d|n

Λ(n) =

m∑
i=1

ki∑
k=1

log pi =

m∑
i=1

ki log pi = log

m∏
i=1

pkii = log n,

proving that (1.2) is a, thus the, solution of (1.1). Now (iii) is an obvious consequence of (ii). �

For use in the following proofs, we recall one fact from basic complex analysis: If f : Ω→ C is
meromorphic, then for every z0 ∈ Ω there is a unique n(z0) ∈ Z such that f(z) = (z−z0)n(z0)gz0(z),
where gz0 is holomorphic in some neighborhood of z0 and gz0(z0) 6= 0. Furthermore, the function

z 7→ f ′(z)
f(z) is meromorphic on Ω, has a pole of order one and residue n(z) whenever f has a zero or

pole at z, and is holomorphic elsewhere. Thus n(z) = limε→0 ε(f
′/f)(z + ε).
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1.2 Proposition The series

ζ(z) =

∞∑
n=1

1

nz
(1.4)

defines a holomorphic function on the open halfplane Re z > 1. It there satisfies ζ(z) 6= 0 and

ζ ′(z) = −
∞∑
n=1

log n

nz
, (1.5)

−ζ
′(z)

ζ(z)
=

∞∑
n=1

Λ(n)

nz
. (1.6)

Proof. In view of |nz| = nRe z and the convergence of
∑∞
n=1 1/nα for α > 1, it is clear that (1.4)

converges absolutely for Re z > 1 and uniformly for Re z ≥ α > 1. It therefore defines a holomorphic
function on the open half plane Re z > 1. By basic complex analysis, we may differentiate under
the sum and obtain (1.5). Using the consequence |Λ(n)| ≤ log n of Lemma 1.1(iii), we similarly

see that
∑∞
n=1

Λ(n)
nz defines a holomorphic function on Re z > 1. Since the series (1.4) and (1.6)

converge absolutely for Re z > 1, we may compute

ζ(z) ·
∞∑
n=1

Λ(n)

nz
=

∞∑
n=1

1

nz
·
∞∑
m=1

Λ(m)

mz
=

∞∑
n,m=1

Λ(m)

(nm)z

=

∞∑
n=1

1

nz

∑
d|n

Λ(d) =

∞∑
n=1

log n

nz
= −ζ ′(z),

where we used (1.1) and (1.5). Since ζ clearly does not vanish identically, it has only isolated zeros,
and for ζ(z) 6= 0 we have proven (1.6). But since ζ ′/ζ has poles at all zeros of ζ, whereas the r.h.s.
of (1.6) is holomorphic on Re z > 1, we have proven that ζ(z) 6= 0 for Re z > 1. �

1.3 Lemma There is a holomorphic function g : {z |Re z > 0} → C such that ζ(z) = g(z) + 1
z−1

when Re z > 1. Thus ζ has a meromorphic extension, which we also denote ζ, to {z |Re z > 0}\{1}.

Proof. For Re z > 1 we have
∫∞

1
t−zdt = 1

z−1 . Thus

g(z) = ζ(z)− 1

z − 1
=

∞∑
n=1

(
1

nz
−
∫ n+1

n

1

tz
dt

)
=

∞∑
n=1

∫ n+1

n

(
1

nz
− 1

tz

)
dt. (1.7)

Now, ∣∣∣∣∫ n+1

n

(
1

nz
− 1

tz

)
dt

∣∣∣∣ =

∣∣∣∣z ∫ n+1

n

∫ t

n

du

uz+1
dt

∣∣∣∣ ≤ sup
u∈[n,n+1]

∣∣∣ z

uz+1

∣∣∣ =
|z|

nRe(z)+1
,

so that (1.7) converges, and thus defines g(z) as a holomorphic function on Re z > 0. �

1.4 Proposition (i) We have ζ(1 + it) 6= 0 for all 0 6= t ∈ R.

(ii) The function z 7→ − ζ
′

ζ (z)− 1
z−1 extends continuously to Re z ≥ 1.

Proof. (i) We have ζ(z) ∈ R for real z > 1, implying ζ(z) = ζ(z), thus n(1 + it) = n(1 − it). By

Lemma 1.3 we have limε↘0 ε
ζ′

ζ (1 + ε) = n(1) = −1 and, assuming t 6= 0,

lim
ε↘0

ε
ζ ′

ζ
(1 + ε± it) = n(1± it) =: µ, lim

ε↘0
ε
ζ ′

ζ
(1 + ε± 2it) = n(1± 2it) =: ν,
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where µ, ν ≥ 0 since ζ(z) is holomorphic at 1 + it for t 6= 0. With (1.6) we have

−
2∑

r=−2

(
4

2 + r

)
ζ ′

ζ
(1 + ε+ irt) =

∞∑
n=1

Λ(n)

n1+ε
(nit/2 + n−it/2)4 ≥ 0,

since Λ ≥ 0 and nit/2 +n−it/2 ∈ R. Multiplying by ε and taking ε↘ 0 gives 6− 8µ− 2ν ≥ 0. (The
5th row

(
4
•
)

of Pascal’s triangle is 1, 4, 6, 4, 1.) Thus n(1 + it) = µ = 0, which means ζ(1 + it) 6= 0.
(ii) By Lemma 1.3, ζ is holomorphic on Re z > 0 with the exception of the simple pole at

z = 1. By (i), ζ(1 + it) 6= 0 for t 6= 0. Thus −ζ ′/ζ is holomorphic at 1 + it for t 6= 0 and has a
simple pole of residue 1 at z = 1. The latter is cancelled by the subtraction of the term (z−1)−1. �

1.5 Lemma Defining ψ(x) =
∑
n≤x Λ(n), we have

z

∫ ∞
0

e−zxψ(ex)dx =

∞∑
n=1

Λ(n)

nz
= −ζ

′(z)

ζ(z)
for Re(z) > 1. (1.8)

Proof. In view of Lemma 1.1, we have ψ(x) = O(x log x) = O(x1+ε), thus the integral converges
absolutely. Now

z

∫ ∞
0

e−zxψ(ex)dx = z

∫ ∞
0

e−zx

∑
n≤ex

Λ(n)

 dx = z

∞∑
n=1

Λ(n)

∫ ∞
logn

e−zxdx

= z

∞∑
n=1

Λ(n)

[
−1

z
e−zx

]∞
logn

=

∞∑
n=1

Λ(n)

nz

proves the first identity of (1.8). The second identity was proven in Proposition 1.2. �

The following Tauberian theorem, due to Ikehara and not involving number theory, will be
proven in the Appendix:

1.6 Theorem Let f : R+ → R+ be non-decreasing. If there are a, c ≥ 0 such that the integral

F (z) =

∫ ∞
0

f(x)e−zxdx,

converges absolutely for Re(z) > a [thus automatically defines a continuous function there] and
F (z)− c

z−a has a continuous extension to the half-plane Re(z) ≥ a then

f(x) ∼ ceax as x→ +∞.

1.7 Proposition ψ(x) ∼ x as x→∞.

Proof. By Lemma 1.5, the integral
∫∞

0
e−zxψ(ex)dx converges for Re(z) > 1 and equals − ζ′(z)

zζ(z) .

By Proposition 1.4(ii), the function z 7→ − ζ
′(z)
ζ(z) −

1
z−1 has a continuous extension to Re(z) ≥ 1,

thus also − ζ′(z)
zζ(z) −

1
z−1 = 1

z (− ζ
′(z)
ζ(z) −

1
z−1 − 1). In view of Λ ≥ 0, the function ψ(x) =

∑
n≤x Λ(n)

is non-decreasing. Now Theorem 1.6 gives ψ(ex) ∼ ex as x→∞, and therefore ψ(x) ∼ x. �

1.8 Theorem (Prime Number Theorem) Let π(x) = #(P ∩ [1, x]), and let pn denote the n-th
prime. Then

π(x) ∼ x

log x
and pn ∼ n log n as x, n→∞.
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Proof. Using Lemma 1.1(ii), we compute

ψ(x) =
∑
n≤x

Λ(n) =
∑
pk≤x

log p =
∑
p≤x

log p

⌊
log x

log p

⌋
≤
∑
p≤x

log x = π(x) log x.

If 1 < y < x then

π(x)− π(y) =
∑

y<p≤x

1 ≤
∑

y<p≤x

log p

log y
≤ ψ(x)

log y
.

Thus π(x) ≤ y + ψ(x)/ log y. Taking y = x/(log x)2 this gives

ψ(x)

x
≤ π(x) log x

x
≤ ψ(x)

x

log x

log(x/(log x)2)
+

1

log x
.

In view of log(x/(log x)2) = log x− 2 log log x ∼ log x and ψ(x) ∼ x from Proposition 1.7 we have
π(x) ∼ x/log x.

Taking logarithms of π(x) ∼ x/log x, we have log π(x) ∼ log x − log log x ∼ log x and thus
π(x) log π(x) ∼ x. Taking x = pn and using π(pn) = n gives n log n ∼ pn. �

1.9 Remark • We avoided the Euler factorization of the zeta-function (which at any rate just
is an analytic restatement of the unique prime factorization) and the power series expansion
of the logarithm. Instead we directly arrived at the Dirichlet series (1.6) for the logarithmic
derivative ζ ′/ζ, using the very basic theory of Λ and the relation between Dirichlet convolution
of arithmetic functions and pointwise multiplication of the associated Dirichlet series.

• Arithmetic (or number-theoretic) reasoning is confined to the proof of part (ii) of Lemma
1.1. That result is used only via its consequence (iii). More precisely, to prove ζ(z) 6= 0 for
Re z > 1 we only needed the slow growth of Λ. The positivity of Λ gave the monotonicity of
ψ, needed to apply Theorem 1.6, and went into the proof of ζ(1 + it) 6= 0.

• Actually, Λ(n) ≤ log n ∀n is clearly implied by the elementary identity (1.3) together with
Λ ≥ 0. Thus the latter statement is the only arithmetic input needed for the proof.

• But eliminating the use of Λ ≥ 0 or proving it without use of the fundamental theorem of
arithmetic seems impossible: Even the simplest ‘elementary’ (i.e. ζ-free) proof of the PNT
uses Λ ≥ 0. Circumventing this by taking (1.2) as the definition of Λ is no solution, since then
one needs the fundamental theorem of arithmetic for proving that Λ satisfies Λ ? 1 = log.

2

A Proof of Ikehara’s Tauberian theorem

The proof of Theorem 1.6 will be given using the Fourier transform on R, concerning which we
only need the definition and an easy special case of the Riemann-Lebesgue Lemma:

A.1 Lemma Let f : R→ C be continuous with compact support. Then the Fourier transform

f̂(ξ) :=

∫
f(x)e−iξxdx (A.1)

(integrals without bounds always extend over R) satisfies f̂(ξ)→ 0 as |ξ| → ∞.

Proof. For ξ 6= 0, we have

f̂(ξ) = −
∫
f(x)e−iξ(x−

π
ξ )dx = −

∫
f(x+

π

ξ
)e−iξxdx,
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which leads to

f̂(ξ) =
1

2

∫ (
f(x)− f(x+

π

ξ
)

)
e−iξxdx. (A.2)

Being continuous with compact support, f is uniformly continuous, thus supx |f(x)−f(x+ε)| → 0
as ε→ 0. Inserting this in (A.2) and keeping in mind that supp(f) is bounded, the claim follows. �

Proof of Theorem 1.6. As a preparatory step, pick any continuous, compactly supported even
function g : R→ R such that g(0) = 1 and ĝ(ξ) ≥ 0 ∀ξ, where ĝ is as in (A.1). (A possible choice
is the tent function g(x) = max(1 − |x|, 0). By an easy computation, ĝ(ξ) = 2(1 − cos ξ)/ξ2 ≥ 0,
so that all assumptions are satisfied.) Then the Fourier inversion theorem applies, thus g(x) =
(2π)−1

∫
ĝ(ξ)eiξxdξ, and in particular we have

∫
ĝ(ξ)dξ = 2πg(0) = 2π. (This is our only use of

Fourier inversion, and it can be avoided at the expense of showing
∫
ĝ(ξ)dξ = 2π ‘by hand’, which

can be done for the above choice of g, if somewhat arduously.1)
Defining gn(x) = g(x/n), it is immediate that ĝn(ξ) = nĝ(nξ) and

∫
ĝn = 2π for all n. For every

δ > 0 we have
∫
|ξ|≥δ ĝn(ξ) =

∫
|u|≥nδ ĝ(u)du, which tends to zero as n→ 0 since ĝn is integrable and

non-negative. Thus the normalized functions hn = ĝn/2π constitute an approximation of unity.

(I.e.
∫
fhn

n→∞−→ f(0) for sufficiently nice f .)
Let G(z) be the continuous extension (clearly unique) of F (z) − c

z−a to Re(z) ≥ a. Defining

φ(x) = e−axf(x), we have for all t ∈ R, ε > 0:

G(a+ ε+ it) = F (a+ ε+ it)− c

ε+ it
=

∫ ∞
0

(φ(x)− c)e−(ε+it)xdx =

∫ ∞
0

ψε(x)e−itxdx, (A.3)

where we abbreviate ψε(x) = e−εx(φ(x) − c) to make the following computation readable. Multi-
plying (A.3) by eiytgn(t) and integrating over t, we have∫

eiytgn(t)G(a+ ε+ it)dt =

∫
eiytgn(t)

(∫ ∞
0

ψε(x)e−itxdx

)
dt

=

∫ ∞
0

ψε(x)

(∫
gn(t)eit(y−x)dt

)
dx

=

∫ ∞
0

ψε(x)ĝn(y − x)dx

=

∫ ∞
0

e−εxφ(x)ĝn(y − x)dx− c
∫ ∞

0

e−εxĝn(y − x)dx. (A.4)

(The second equality holds by Fubini’s theorem, since ψε and gn are integrable. The third identity
uses that gn is even.) We now consider the limit ε ↘ 0 of (A.4). Since G by assumption is
continuous on Re(z) ≥ a, we have G(a+ε+ it)→ G(a+ it), uniformly for t in the compact support
of gn. Thus

lim
ε↘0

∫
eiytgn(t)G(a+ ε+ it)dt =

∫
eiytgn(t)G(a+ it)dt.

Since φ and ĝn are non-negative, the monotone convergence theorem gives

lim
ε↘0

∫ ∞
0

e−εxφ(x)ĝn(y − x)dx =

∫ ∞
0

φ(x)ĝn(y − x)dx,

lim
ε↘0

∫ ∞
0

e−εxĝn(y − x)dx =

∫ ∞
0

ĝn(y − x)dx =

∫ y

−∞
ĝn(x)dx.

Thus the ε↘ 0 limit of (A.4) is∫
eiytgn(t)G(a+ it)dt =

∫ ∞
0

φ(x)ĝn(y − x)dx− c
∫ y

−∞
ĝn(x)dx. (A.5)

1Let a, b > 0. Twofold partial integration gives
∫∞
0

e−ax cos bx dx = a
a2+b2

. Applying
∫ c
0
· · · db gives∫∞

0
e−ax sin cx

x
dx = arctan c

a
. Applying

∫ f
0
· · · dc gives

∫∞
0

e−ax 1−cos fx
x2

dx = f arctan f
a
− a

2
log
(
1 + ( f

a
)2
)
. (The ex-

changes of integration order are justified by absolute convergence and Fubini.) Taking f = 1 and the limit a ↘ 0 we
obtain

∫∞
0

1−cos x
x2

dx = π
2

.
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Since t 7→ gn(t)G(a+ it) is continuous and compactly supported, Lemma A.1 gives

lim
y→+∞

∫
eiytgn(t)G(a+ it)dt = 0,

with which the complex numbers leave the stage. Obviously,

lim
y→+∞

∫ y

−∞
ĝn(x)dx =

∫
ĝn(x)dx = 2π.

Thus for y → +∞, (A.5) becomes (in terms of hn = ĝn/2π)

lim
y→+∞

∫ ∞
0

φ(x)hn(y − x)dx = c. (A.6)

It remains to show that this implies limx→+∞ φ(x) = c, using that {hn} is an approximate unit
and that f(x) = eaxφ(x) is non-decreasing. For δ > 0 we have∫

φ(x+ δ − y)hn(y)dy =

∫
f(x+ δ − y)e−a(x+δ−y)hn(y)dy

≥
∫ δ

−δ
f(x+ δ − y)e−a(x+δ−y)hn(y)dy

≥
∫ δ

−δ
f(x)e−a(x+2δ)hn(y)dy

= φ(x)e−2aδ

∫ δ

−δ
hn(y)dy = φ(x)e−2aδIn(δ),

where we write In(δ) =
∫ δ
−δ hn(y)dy. By (A.6), the l.h.s. tends to c as y →∞, so that

lim sup
x→+∞

φ(x) ≤ c e
2aδ

In(δ)
∀n ∈ N, δ > 0.

Recalling that In(δ)
n→∞−→ 1 for each δ > 0, taking n → ∞ gives lim supx→+∞ φ(x) ≤ ce2aδ for

every δ > 0. Taking δ ↘ 0 we obtain lim supx→+∞ φ(x) ≤ c. This also implies that φ is bounded
above: φ(x) ≤M for some M > 0.

On the other hand,∫
φ(x− δ − y)hn(y)dy ≤

∫ δ

−δ
φ(x− δ − y)hn(y)dy +M

∫
|y|≥δ

hn(y)dy

=

∫ δ

−δ
f(x− δ − y)e−a(x−δ−y)hn(y)dy +M

(
1−

∫ δ

−δ
hn(y)dy

)
≤ φ(x)e2aδIn(δ) +M(1− In(δ)).

This gives

φ(x) ≥
∫
φ(x− δ − y)hn(y)dy −M(1− In(δ))

e2aδIn(δ)
.

With (A.6) we obtain

lim inf
x→∞

φ(x) ≥ c−M(1− In(δ))

e2aδIn(δ)
.

Taking n→∞ we find lim infx→∞ φ(x) ≥ c
e2aδ

, and δ ↘ 0 gives lim infx→∞ φ(x) ≥ c.
We have thus proven φ(x)→ c as x→ +∞, which is equivalent to f(x) ∼ ceax. �
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