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Abstract

1 Introduction

1.1 Definition A C∗-algebra A is a W ∗-algebra if there is a Banach space V such that
V ∗ ∼= A as Banach spaces.

By [2, Theorem 4.2.9], every von Neumann algebra is a W ∗-algebra. As I mentioned,
the converse is also true:

1.2 Theorem A C∗-algebra is isomorphic to a von Neumann algebra if and only if it is
a W ∗-algebra.

See [4, Theorem III.3.5] for a proof. (Takesaki defines W ∗-algebras as C∗-algebras
A having a faithful representation (H,π) such that π(A) ⊆ B(H) is a von Neumann
algebra. Thus he must state the theorem slightly differently. Of course both definitions
are equivalent as consequence of the theorem.)

This is nice since it gives a representation-free characterization of von Neumann al-
gebras. But in practice another characterization of von Neumann algebras often is more
useful, and we will sketch it in the next section.

Every commutative von Neumann algebra A is a commutative unital C∗-algebra, thus
there is a compact Hausdorff space X such that A ∼= C(X,C) as C∗-algebras. It is natural
to ask what can be said about X as consequence of A being von Neumann. (Unfortunately,
Murphy does not go into this at all.) In fact, there is a very satisfactory characterization
of the spaces X for which C(X) is a commutative W ∗-algebra. We will discuss this in
Section 3.

2 Monotone complete C∗-algebras

Recall that we have a partial ordering on the set Asa of self-adjoint elements of a C∗-
algebra A, given by a ≤ b ⇔ 0 ≤ b − a. I assume known the notion of a least upper
bound in a partially ordered set.

2.1 Definition A C∗-algebra A is called monotone complete if every bounded increasing
net {aι} ⊆ Asa has a least upper bound.

2.2 Lemma Every von Neumann algebra is monotone complete.
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Proof. Let A ⊆ B(H) be a von Neumann and {aι}ι∈I an increasing net of positive el-
ements. (The general case of a net in Asa is easily reduced to this, as Murphy does.)
By Vigier’s theorem, aι converges strongly to an a ∈ B(H)sa, which is in A by strong
closedness. It is easy to check that a is a least upper bound for {aι | ι ∈ I}. (After all, a
was constructed using the fact that every increasing net {xι} in R that is bounded above
converges to its supremum.) �

It is easy to see that not every C∗-algebra is monotone complete. In addition, not
every monotone complete C∗-algebra is isomorphic to a von Neumann algebra.

2.3 Definition Let A be a monotone complete C∗-algebra. A positive functional ϕ ∈ A∗
is called normal if limι ϕ(aι) = ϕ(a) holds for every bounded increasing net {aι} ⊆ A+

and its least upper bound a.
We say that A has enough normal states if for every 0 6= a ∈ A+ there is a normal

state such that ϕ(a) > 0.

2.4 Lemma Every von Neumann algebra has enough normal states.

Proof. Let A be a von Neumann algebra and 0 < a ∈ A. In view of A ∼= (A∗)
∗ there

is a ϕ ∈ A∗ (thus an ultraweakly continuous ϕ ∈ A∗) such that ϕ(a) 6= 0. Since ϕ is a
linear combination of finitely many positive normal functionals, there must be a positive
ultraweakly continuous functional ϕ with ϕ(a) > 0. Now ϕ is also normal, cf. [2, Exercise
IV.4]. �

2.5 Proposition Let A be a monotone complete C∗-algebra and ϕ ∈ A∗ normal. Let
(Hϕ, πϕ) be the corresponding GNS representation. Then πϕ is normal (defined as for
functionals) and πϕ(A) ⊆ B(Hϕ) is a von Neumann algebra.

Proof. Not very difficult. See [4, Proposition 3.15], which is a slight generalization of [2,
Theorem 4.3.4]. �

2.6 Theorem A monotone complete C∗-algebra is isomorphic to a von Neumann algebra
(thus is a W ∗-algebra) if and only if it has enough normal functionals.

Proof. If A is isomorphic to a von Neumann algebra then it has enough normal functionals
by Lemma 2.4.

Now assume that A has enough normal functionals. Consider the universal represen-
tation (H,π) =

⊕
ϕ(Hϕ, πϕ), where ϕ runs through the set of normal states of A. By

Proposition 2.5, each πϕ is strongly continuous, and the same holds for π =
⊕
π. Thus

π(A) is a von Neumann algebra. If 0 6= a ∈ A then a∗a > 0, thus by assumption there is
a normal ϕ with ϕ(a∗a) > 0. Now it is straightforward to see that πϕ(a) 6= 0. This proves
that π is faithful. �

3 The abelian case

3.1 Definition A topological space X is called totally disconnected if its connected
components all are singletons. (Equivalently, X has no connected subspace Y with more
than one element.) A Stone space is a totally disconnected compact Hausdorff space.

3.2 Definition A topological space X is called extremely disconnected (some authors
write ‘extremally disconnected’) if the closure of every open U ⊆ X is open (and closed,
thus ‘clopen’). A stonean space is an extremely disconnected compact Hausdorff space.
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3.3 Lemma Every extremely disconnected space X is totally disconnected. In particular,
every stonean space is a Stone space.

Proof. Let x, y ∈ X, x 6= y. By the Hausdorff property there are open U, V such that
x ∈ U, y ∈ V, U ∩ V = ∅. Now C = U satisfies C ∩ V = ∅ (since U ⊆ X\V and X\V is
closed) and is clopen by the extreme disconnectedness of X. Now we have x ∈ C, y ∈ X\C.
But this implies that no set Y ⊂ X containing {x, y} can be connected. Thus X is totally
disconnected. �

Not every Stone space is stonean.

3.4 Lemma If X is a topological space, let clop(X) = {Y ⊆ X | Y is clopen}. Then
(clop(X),∪,∩,¬, 0, 1), where ¬Y = X\Y , is a Boolean algebra.

Proof. Immediate. �

Every Boolean algebra has a partial order ≤ defined by Y ≤ Z ⇔ Y ∨ Z = Z. For a
Boolean algebra of subsets, ≤ just is inclusion ⊆.

3.5 Definition A Boolean algebra B is complete if any directed subset of B has a least
upper bound.

3.6 Theorem For a compact Hausdorff space X the following are equivalent:

(i) X is extremely disconnected (thus stonean).

(ii) X is a Stone space and the Boolean algebra clop(X) is complete.

(iii) The commutative C∗-algebra C(X,R) is monotone complete (thus also C(X,C)).

Note that we cannot omit ‘Stone’ in (ii)! If X is connected then clop(X) = {∅, X},
which is complete, but X certainly is not extremely disconnected.

Proof. Not terribly difficult, but since this is ‘just’ point set topology, we omit it. The
equivalence (i)⇔(ii) can be found in [1, Proposition 11.1.30]. I will add the remaining
implication once I have the time. For that, see [4, Proposition III.1.7] or [3, Theorem
2.3.7]. �

As we have seen in the preceding section, a monotone complete C∗-algebra is isomor-
phic to a von Neumann algebra if and only if it has enough normal states. In the abelian
case, this becomes an additional requirement on the stonean space X:

3.7 Definition A positive Borel measure µ on X is called normal if limι

∫
fι dµ =∫

sup{fι}dµ for every increasing bounded net of positive continuous functions on X.
A stonean space X is called hyperstonean if it admits sufficiently many normal positive

Borel measures, thus for every non-zero positive f ∈ C(X) there is a normal positive Borel
measure µ such that

∫
f dµ > 0.

Now one has:

3.8 Theorem Let X be a compact Hausdorff space. Then C(X,C) is isomorphic to a
von Neumann algebra (i.e. is a W ∗-algebra) if and only if X is hyperstonean.

Proof. We know from Theorem 3.6 that C(X) is monotone complete if and only if X is
stonean. Thus by Theorem 2.6, C(X) is isomorphic to a von Neumann algebra if and
only if X is stonean and C(X) admits sufficiently many normal positive functionals. Since
positive functionals on C(X) come from positive Borel measures by Riesz’ representation
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theorem, there are enough positive normal functionals on C(X) if and only if there are
enough positive normal measures on X. See also [4, Theorem III.1.18]. �
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