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Abstract

Combining Kulpa’s proof of the cubical Sperner lemma and a dimension theoretic idea of
van Mill we give a very short proof of the invariance of dimension, i.e. the statement that cubes
[0, 1]n and [0, 1]m are homeomorphic if and only if n = m.

1 Introduction

In introductory courses to (general) topology, as also this author has given them many times, it
is standard to show that the connected subsets of R are precisely the convex ones (‘intervals’)
and to exhibit the intermediate value theorem from calculus as an easy consequence. Brouwer’s
fixed-point theorem for I = [0, 1] follows easily. Connectedness arguments also readily prove
that R 6∼= Rn, I 6∼= In if n ≥ 2, where ∼= means homeomorphism, i.e. isomorphism in the category
of topological spaces. If the course covers the fundamental group, the non-vanishing of the
latter for the circle S1 is used to prove the fixed-point theorem for the 2-disk and to distinguish
R2 from Rn for n ≥ 3. But the generalization of these results to higher dimensions is usually
omitted, referring to courses in algebraic topology. Typical representatives of this approach are
[14, 15].

There are certainly proofs of the fixed-point theorem that do not (explicitly) invoke algebraic
topology. On the one hand, there is a long tradition of proofs that use a combination of calculus
and linear algebra, the nicest perhaps being the one of Lax [11]. However, these proofs seem
vaguely inappropriate considering that basic topology should be a more elementary subject
than calculus. (At this stage, the student would not be helped by the information that behind
such proofs there is de Rham cohomology.) On the other hand, there is the combinatorial
approach via Sperner’s lemma [16, 7]. (Cf. [3, pp. 411-417] for a nice presentation.) But also
the combinatorial approach is not entirely satisfactory since it requires introducing simplicial
language and is complicated due to its use of barycentric subdivision. Neither of these complaints
applies to the beautiful and elementary proof of the fixed-point theorem published by Kulpa in
1997, cf. [9]. But one still would like to have an accessible proof of the invariance of dimension.

It is well known that the invariance of dimension can be deduced from Brouwer’s fixed-point
theorem in at least two different ways. On the one hand, one can use Borsuk’s theory of maps
into spheres (cohomotopy) to prove the ‘invariance of domain’, another result of Brouwer, from
which invariance of dimension readily follows. This approach is followed, e.g., in Eilenberg’s
and Steenrod’s Foundations of algebraic topology, in the topology books of Kuratowski and of
Dugundji, and in Engelking’s and Siekluchi’s Topology. A geometric approach. A drawback
of this approach is that it invariably requires some use of simplicial techniques beyond those
typically employed in the proof of the fixed-point theorem. In [10], Kulpa simplified these
methods somewhat and obtained a proof of the invariance of dimension in about seven pages.
However, this is still more involved than one might wish.
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The second way to deduce the invariance of dimension from the fixed-point theorem relies
on dimension theory. Dimension theory (cf. [4] for the most up-to-date account) associates
to a space X an element dim(X) ∈ {−1, 0, 1, . . . ,∞} in a homeomorphism-invariant manner.
(There are actually several competing definitions of dimension.) Invariance of the dimension
results as soon as one proves dim(In) = n. The proof of dim(In) ≤ n is easy, but the opposite
inequality requires a certain non-separation result, cf. Corollary 4.2 below. The latter result can
be deduced from Brouwer’s fixed-point theorem, and this is done in virtually all expositions of
dimension theory. However, setting up enough of dimension theory (for any one of the existing
definitions) to prove dim(In) = n again requires several pages. In [12], van Mill exhibits a very
elegant and efficient alternative approach. He uses yet another notion of dimension, for which
proving the upper bound is very easy, and which has the virtue that Corollary 4.2 immediately
gives the lower bound. We call this notion the ‘separation-dimension’, cf. Definition 4.4. (For a
brief history of the latter, cf. Remark 4.8.)

The purpose and only original contribution of this otherwise expository note is the obser-
vation that what Kulpa ‘really’ proves in [9] is Theorem 3.1 below, from which Corollary 4.2
follows as immediately as does the Poincaré-Miranda theorem. This allows to cut out any refer-
ence to the latter (and to Brouwer’s theorem) and to give a proof of dimension invariance that
easily fits into four pages and can be explained in one lecture of 90 minutes. This makes it even
shorter than Brouwer’s first proof [1], which was neither self-contained nor easy to read. It also
bears emphasizing that deducing both the fixed-point theorem and the invariance of dimension
from the higher-dimensional connectedness of the cube asserted by Theorem 3.1 makes these
deductions entirely analogous to the elementary ones in dimension one. The price to pay for
this efficient approach is that it does not provide a proof of the invariance of domain.

The heart of this note is Section 4, but for the reader’s convenience, we include an appendix
with Kulpa’s deduction of the theorems of Poincaré-Miranda and Brouwer and some corollaries.

Acknowledgments. The author would like to thank Arnoud van Rooij for suggesting a simplifi-
cation of the proof of Proposition 4.3.

2 The cubical Sperner lemma

In the entire section n ∈ N is fixed and I = [0, 1]. The faces of the n-cube In are given by

I−i = {x ∈ In | xi = 0}, I+i = {x ∈ In | xi = 1}.

We need some more notations:

• For k ∈ N, we put Z/k = k−1Z = {n/k | n ∈ Z}. Clearly Zn
/k ⊂ Rn.

• ei ∈ Zn
/k is the vector whose coordinates are all zero, except the i-th, which is 1/k.

• C(k) = In ∩ Zn
/k =

{

0, 1
k , . . . ,

k−1
k , 1

}n
. (The combinatorial n-cube.)

• C±
i (k) = I±i ∩ Zn

/k. (The faces of the combinatorial n-cube C(k).)

• ∂C(k) =
⋃

i(C
+
i (k) ∪C−

i (k)). (The boundary of the combinatorial n-cube C(k).)

• A subcube of C(k) is a set C = {z0 +
∑n

i=1 aiei | a ∈ {0, 1}n} ⊂ C(k), where z0 ∈ C(k).

Sperner’s lemma in its original form [16, 7] concerns simplices. The cubical version stated
below was first proven in [8] and differently in [18, Lemma 1]. The following proof is the one
given in [9].

Proposition 2.1 Let ϕ : C(k) → {0, . . . , n} be a map such that (i) x ∈ C−
i (k) ⇒ ϕ(x) < i and

(ii) x ∈ C+
i (k) ⇒ ϕ(x) 6= i−1. Then there is a subcube C ⊂ C(k) such that ϕ(C) = {0, . . . , n}.
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Definition 2.2 An n-simplex in Zn
/k is an (n+ 1)-tuple S = (z0, . . . , zn) ⊂ Zn

/k such that

z1 = z0 + eα(1), z2 = z1 + eα(2), . . . , zn = zn−1 + eα(n),

where α is a permutation of {1, . . . , n}. The subset Fi(S) = (z0, . . . , zi−1, zi+1, . . . , zn) ⊂ S,
where i ∈ {0, . . . , n}, is called the i-th face of the n-simplex S.

A finite ordered set F ⊂ Zn
/k is called a face if it is a face of some simplex.

Note that the faces Fi(S) are (n − 1)-simplices in the above sense only if i = 0 or i = n.

Figure 1: The neighbors of a simplex in Z2
/4. From [9] in Amer. Math. Monthly.

Lemma 2.3 (i) Let S = (z0, . . . , zn) ⊂ Zn
/k be an n-simplex. Then for every i ∈ {0, . . . , n}

there is a unique n-simplex S[i], the i-th neighbor of S, such that S ∩ S[i] = Fi(S).

(ii) If S ⊂ C(k) and i ∈ {0, . . . , n} then S[i] ⊂ C(k) holds if and only if Fi(S) 6⊂ ∂C(k).

Proof. (i) Existence: We define the i-th neighbor S[i] as follows:

(a) S[0] = (z1, . . . , zn, x0), where x0 = zn + (z1 − z0).

(b) 0 < i < n: Take S[i] = (z0, . . . , zi−1, xi, zi+1, . . . , zn), where xi = zi−1 + (zi+1 − zi).

(c) S[n] = (xn, z0, . . . , zn−1), where xn = z0 − (zn − zn−1).

It is obvious that #(S ∩ S[i]) = n in all three cases. In the three cases, the distances between
consecutive points of S[i] are given by (a) eα(2), . . . , eα(n), eα(1), (c) eα(n), eα(1), . . . , eα(n−1), and
(b) eα(1), . . . , eα(i−1), eα(i+1), eα(i), eα(i+2), . . . , eα(n). (Figure 1 should make this quite clear.)
Thus S[i] is a legal n-simplex for each i ∈ {0, . . . , n}. Uniqueness: It remains to show that
these are the only ways of defining S[i] consistently with S ∩ S[i] = {z0, . . . , zi−1, zi+1, . . . , zn}.
In the cases i = 0 or i = n, the latter condition implies that S[i] has a string of n consecutive
zi’s in common with S, and therefore also their differences given by n − 1 mutually different
vectors ej . This means that only one such vector is left, and the only way to use it so that S[i]
is an n-simplex different from S is to use it at the other end of the string of z’s. This shows
the uniqueness of the above definitions in cases (a) and (c). In the case 0 < i < n, S and S[i]
have two corresponding substrings of z’s. A little thought shows that the order of these two
substrings must be the same in S[i] as in S, so that all we can do is exchange two adjacent
difference vectors eα(i), eα(i+1), as done in the definition of S[i] in case (b).

(ii) We must check whether S[i] ⊂ C(k), which amounts to checking whether the new point
xi is in In. In case (a), we have S = (z1−eα(1), z1, z2, . . . , zn) and S(0) = (z1, . . . , zn, zn+eα(1)).
If F0(s) = (z1, . . . , zn) ⊂ Cε

j (k) then z1, . . . , zn all have the same j-coordinate c, thus we must
have α(1) = j and c = 1 (since S ⊂ In). But then S[0] 6⊂ In. Conversely, if both S and S[0]
are in In, then z1 must have α(1)-th coordinate > 0 and zn must have α(1)-th coordinate < 1.
All other coordinates of z1, . . . , zn are non-constant since the vectors eα(2), . . . , eα(n) appear as
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differences. Thus F0(S) is not contained in any face Iεi . The cases (b) and (c) are checked
similarly. �

Proof of Proposition 2.1. For later use, we note the following fact (*): If S ⊂ In satisfies
ϕ(S ∩ Iεi ) = {0, . . . , n− 1} then i = n and ε = −. [The statement ϕ(S ∩ Iεi ) = {0, . . . , n− 1} is
contradicted by assumption (ii) if ε = + and by (i) if ε = − and i < n.]

We call a subset S ⊂ C(k) with l + 1 elements full if ϕ(S) = {0, . . . , l}. By (vi), a full
n-simplex S meets all H±

i . We will prove that the number Nk of full n-simplices in C(k) is odd,
thus non-zero, for all k. The proof of Nk ≡ 1 (mod 2) proceeds by induction over the dimension
n of C(k) (for fixed k). For n = 0 we have C(k) = {0}, and there is exactly one full n-simplex,
namely S = (z0 = 0). Thus N0 = 1.

For an n-simplex S ⊂ C(k), let N(S) denote the number of full (n − 1)-faces of S. If S
is full then N(S) = 1. [Since ϕ(S) = {0, . . . , n} and the only full (n − 1)-face is obtained
by omitting the unique zi for which ϕ(zi) = n.] If S is not full then N(S) = 0 in the case
{0, . . . , n− 1} 6⊂ ϕ(S) [since omitting a zi cannot give a full (n-1)-face] or N(S) = 2 in the case
ϕ(S) = {0, . . . , n − 1} [since there are i 6= i′ such that zi = zi′ , so that S becomes full upon
omission of either zi or zi′ ]. Thus

Nk ≡
∑

S

N(S) (mod 2), (2.1)

where the summation extends over all n-simplices in C(k).
Now by the Lemma, an (n − 1)-face F ⊂ C(k) belongs to one or two n-simplices in C(k),

depending on whether F ⊂ ∂C(k) or not. Thus only the full faces F ⊂ ∂C(k) contribute to
(2.1):

Nk ≡ #{F ⊂ ∂C(k) full (n− 1)−face} (mod 2).

If F ⊂ ∂C(k) is a full (n − 1)-face then (*) implies F ⊂ C−
n (k). We can identify C−

n (k) =
C(k)∩ I−n with Cn−1(k), and under this identification F is a full (n− 1)-simplex in Zn−1

/k . Thus

Nk ≡ Nk−1 (mod 2). By the induction hypothesis, Nk−1 is odd, thus Nk is odd.
Thus there is a full n-simplex S = (z0, . . . , zn), and if C = {z0 +

∑n
i=1 aiei | a ∈ {0, 1}n} we

have S ⊂ C so that ϕ(C) = {0, . . . , n}. �

Remark 2.4 Combinatorial proofs of Sperner’s lemma, whether simplicial or cubical, may
appear mysterious. Homological proofs tend to be more transparent, cf. e.g. [6] in the simplicial
case, but here the point of course is to avoid the heavy machinery of homology. ✷

3 Higher connectedness of the cube

Now we are in a position to prove, still following [9], this beautiful theorem, which for n = 1 is
just the connectedness of [0, 1]:

Theorem 3.1 For i = 1, . . . , n, let H+
i ,H−

i ⊂ In be closed sets such that for all i one has
I±i ⊂ H±

i and H−
i ∪H+

i = In. Then
⋂

i(H
−
i ∩H+

i ) 6= ∅.

Proof. We define F0 = In and Fi = H+
i \I−i for all i ∈ {1, . . . , n}. Now define a map ϕ : In →

{0, . . . , n} by

ϕ(x) = max

{

j : x ∈
j
⋂

k=0

Fk

}

.

Since I−i ∩Fi = ∅, we have x ∈ I−i ⇒ ϕ(x) < i. On the other hand, if x ∈ I+i then ϕ(x) 6= i−1.

Namely, ϕ(x) = i − 1 would mean that x ∈ ⋂i−1
k=0 Fk and x 6∈ Fi. But this is impossible since

x ∈ I+i ⊂ H+
i and I+i ∩ I−i = ∅, thus x ∈ Fi.
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By the above, the restriction of ϕ to C(k) ⊂ In satisfies the assumptions of Proposition 2.1.
Thus for every k ∈ N there is a subcubeCk ⊂ C(k) such that ϕ(Ck) = {0, . . . , n}. Now, if ϕ(y) =
i ∈ {1, . . . , n} then y ∈ Fi = H+

i \I−i ⊂ H+
i . On the other hand, if ϕ(x) = i− 1 ∈ {0, . . . , n− 1}

then x 6∈ Fi = H+
i \I−i , which is equivalent to x 6∈ H+

i ∨ x ∈ I−i . The first alternative implies
x ∈ H−

i (since H+
i ∪H−

i = In), as does the second (since I−i ⊂ H−
i ). In either case, x ∈ H−

i .
Combining these facts, we find that ϕ(Ck) = {0, . . . , n} implies Ck ∩H+

i 6= ∅ 6= Ck ∩H−
i for all

i, thus the subcube Ck meets all the H±
i . We clearly have diam(Ck) =

√
n/k, and since k was

arbitrary, applying the following lemma to X = In, {K1, . . . ,K2n} = {H±
i } and Sk = Ck gives

⋂

i(H
−
i ∩H+

i ) 6= ∅. �

Lemma 3.2 Let (X, d) be a metric space and K1, . . . ,Km compact subsets. Let {Sk ⊂ X}k∈N
satisfy diam(Sk)

k→∞−→ 0 and Sk ∩Ki 6= ∅ for all k ∈ N, i = 1, . . . ,m. Then
⋂

iKi 6= ∅.

Proof. Consider K =
∏

iKi equipped with the metric dK(x, y) =
∑

i d(xi, yi). For every k ∈ N

and i ∈ {1, . . . ,m}, choose an xk,i ∈ Sk ∩ Ki and define xk = (xk,1, . . . , xk,m) ∈ K. By
compactness of K there exists a point z = (z1, . . . , zm) ∈ K every neighborhood of which
contains xk for infinitely many k. Now, d(zi, zj) ≤ d(zi, xk,i) + d(xk,i, xk,j) + d(xk,j , zj) ≤
2dK(z, xk) + diam(Sk). Since by construction every neighborhood of z contains points xk with
arbitrarily large k, we can make both terms on the r.h.s. arbitrarily small and conclude that
z = (x, . . . , x) for some x ∈ X. Since zi ∈ Ki for all i, we have x ∈ ⋂

iKi, and are done. �

4 The dimension of In

Definition 4.1 If A,B,C ⊂ X are closed sets such that X\C = U ∪V , where U, V are disjoint
open sets such that A ⊂ U and B ⊂ V , we say that C separates A and B.

The following result plays an essential rôle in virtually all accounts of dimension theory.
While it is usually derived from Brouwer’s fixed-point theorem, we obtain it more directly as
an obvious corollary of Theorem 3.1.

Corollary 4.2 Whenever C1, . . . , Cn ⊂ In are closed sets such that Ci separates I
−
i and I+i for

each i, then
⋂

i Ci 6= ∅.

Proof. In view of Definition 4.1, we have open sets U±
i such that I±i ⊂ U±

i , U+
i ∩ U−

i = ∅ and
U+
i ∪ U−

i = X\Ci for all i. Define H±
i = U±

i ∪ Ci. Then X\H±
i = U∓

i , thus H±
i is closed. By

construction, I±i ⊂ H±
i and H+

i ∪H−
i = In, H+

i ∩H−
i = Ci, for all i. Now Theorem 3.1 gives

⋂

iCi =
⋂

i(H
−
i ∩H+

i ) 6= ∅. �

The preceding result will provide a lower bound on the dimension of In. The next result,
taken from [12], will provide the upper bound:

Proposition 4.3 Let A1, B1, . . . , An+1, Bn+1 ⊂ In be closed sets such that Ai ∩ Bi = ∅ for all
i. Then for all i there exist closed sets Ci separating Ai and Bi and satisfying

⋂

iCi = ∅.

Proof. Pick real numbers r1, r2, . . . such that ri−rj 6∈ Q for i 6= j. (It suffices to take rk = k
√
2.)

Then the sets Ei = ri +Q are mutually disjoint dense subsets of R.
Let A,B ⊂ In be disjoint closed sets and E ⊂ R dense. Then for every x ∈ A we can find an

open neighborhood Ux = In∩∏n
i=1(ai, bi) with ai, bi ∈ E such that Ux is disjoint from B. Since

A ⊂ In is closed, thus compact, there are x1, . . . , xk ∈ A such that U = Ux1
∪ · · · ∪ Uxk

⊃ A.
Now C = ∂U ⊂ In is closed and X\C = U ∪ V , where V = In\U . Now U, V are open and
disjoint such that A ⊂ U,B ⊂ V , thus C separates A and B. If x ∈ ∂(In ∩ ∏

i(ai, bi)) then
at least one of the coordinates xi of x equals ai or bi, and thus is in E. Now, C = ∂U ⊂
∂Ux1

∪ · · · ∪ ∂Uxk
⊂ {x ∈ In | ∃j ∈ {1, . . . , n} : xj ∈ E}.
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We can thus find, for each pair (Ai, Bi) a closed set Ci ⊂ {x ∈ In | ∃j : xj ∈ Ei} that
separates Ai and Bi. Let now x ∈ ⋂

iCi. Then for every i ∈ {1, . . . , n + 1} there is a ji ∈
{1, . . . , n} such that xji ∈ Ei. By the ‘pigeonhole principle’ (a map A → B with |A| > |B|
cannot be injective), there are i, i′ ∈ {1, . . . , n + 1} such that i 6= i′ and ji = ji′ = j. But this
means that xj ∈ Ei ∩Ei′ ∈ ∅, which is absurd. Thus

⋂

iCi = ∅. �

Proposition 4.3 should be compared with Corollary 4.2. In order to do this systematically,
the following is convenient:

Definition 4.4 Let X be a topological space. We define the separation-dimension s-dim(X) ∈
{−1, 0, 1, . . . ,∞} as follows:

• We put s-dim(X) = −1 if and only if X = ∅.
• If X 6= ∅ and n ∈ N0, we say that s-dim(X) ≤ n if, given closed sets A1, B1, . . . , An+1, Bn+1

such that Ai ∩ Bi = ∅ for all i, there exist closed Ci separating Ai and Bi and satisfying
⋂

iCi = ∅. (This is consistent: If s-dim(X) ≤ n and n < m then s-dim(X) ≤ m.)

• If s-dim(X) ≤ n holds, but s-dim(X) ≤ n− 1 does not, we say s-dim(X) = n.

• If there is no n ∈ N such that s-dim(X) ≤ n then s-dim(X) = ∞.

Remark 4.5 It is obvious that a homeomorphism X ∼= Y implies s-dim(X) = s-dim(Y ). ✷

Theorem 4.6 We have s-dim(In) = n.

Proof. Proposition 4.3 implies s-dim(In) ≤ n. On the other hand, it is clear that s-dim(In) ≥ n
holds if and only if there are closed sets A1, B1, . . . , An, Bn ⊂ X satisfying Ai ∩ Bi = ∅ for all
i such that any closed sets Ci separating Ai and Bi satisfy

⋂

iCi 6= ∅. This is exactly what is
asserted by Corollary 4.2. �

Corollary 4.7 We have In ∼= Im if and only if n = m.

Remark 4.8 1. A family {(A1, B1), . . . , (An+1, Bn+1)} as above is called ‘essential’. There-
fore one could also speak of the ‘essential family dimension’, but this does not seem to be in
widespread use.

2. In 1938, Eilenberg and Otto [2] proved that the separation dimension coincides with the
covering dimension in the case of separable metrizable spaces. This was generalized to normal
spaces by Hemmingsen (1946). For a modern proof and more history see [4], in particular
Theorem 3.2.6.

3. It is immediate from the definition that s-dim(Y ) ≤ s-dim(X) for closed Y ⊂ X, implying
s-dim(Rn) ≥ n and s-dim(Sn) ≥ n. In order to prove the converse inequalities, and thereby
the invariance of dimension for spheres and Euclidean spaces, one needs a ‘sum theorem’ for
the separation dimension. This is the statement that if X =

⋃

i∈N Yi with Yi ⊂ X closed and
s-dim(Yi) ≤ d then s-dim(X) ≤ d. Such a result follows from the combination of the first
half of this remark and the known sum theorem for the covering dimension, cf. [4, Theorem
3.1.8]. (This is “just” point set topology, with no simplicial or combinatorial methods involved.)
However, from an aesthetic perspective it would be desirable to give a direct proof of the sum
theorem for s-dim. ✷

A The theorems of Poincaré-Miranda and Brouwer

In order to further illustrate the power of Theorem 3.1, and for the benefit of the reader,
we include deductions of many important classical results about continuous functions on In,
following [9]. But we emphasize that none of this is needed for the proof of the invariance of
dimension given in Section 4.
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Corollary A.1 (Poincaré-Miranda theorem) Let f = (f1, . . . , fn) ∈ C(In,Rn). If fi(I
−
i ) ⊂

(−∞, 0], fi(I
+
i ) ⊂ [0,∞) for all i, then there is x ∈ In such that f(x) = 0.

Proof. Put H−
i = f−1

i ((−∞, 0]),H+
i = f−1

i ([0,∞)). Then clearly I±i ⊂ H±
i and H−

i ∪H+
i = In,

for all i. By Theorem 3.1, there exists x ∈ ⋂

i(H
−
i ∩H+

i ), and it is clear that f(x) = 0. �

Corollary A.2 (Brouwer’s fixed-point theorem) Let g ∈ C(In, In). Then there exists x ∈
In such that g(x) = x. (I.e., In has the fixed-point property.)

Proof. Put f(x) = x− g(x). Then the assumptions of Corollary A.1 are satisfied, so that there
is x ∈ In for which f(x) = 0. Thus g(x) = x. �

Corollary A.3 Let g ∈ C(In, In) satisfy g(I±i ) ⊂ I±i for all i. (E.g. g ↾ ∂In = id.) Then
g(In) = In.

Proof. Let p ∈ In, and put f(x) = g(x)− p. Then f satisfies the assumptions of Corollary A.1,
thus there is x ∈ In with f(x) = 0. This means g(x) = p, so that g is surjective. �

Remark A.4 1. The history of the above results is quite convoluted and interesting. See the
introduction of [9] for a glimpse.

2. Since compact convex subsets of Rn are homeomorphic to Im for some m ≤ n, they also
have the fixpoint property. The convexity assumption cannot be omitted as is shown by a non-
trivial rotation of S1 ⊂ R2. On the other hand, Corollary A.3 and the resulting non-existence
of retractions to the boundary extend to arbitrary compact subsets of Rn, cf. [9].

3. The Poincaré-Miranda theorem seems to be much more popular with analysts than with
topologists. One may indeed argue that Brouwer’s theorem is more fundamental, asserting the
fixed-point property of any n-cell irrespective of its shape (e.g. disk, cube or simplex). But
apart from being a particularly natural higher dimensional generalization of the intermediate
value theorem, the Poincaré-Miranda theorem often is the more convenient point of departure
for other proofs. (The Poincaré-Miranda theorem can be deduced from Brouwer’s theorem, cf.
[13], but the argument is more involved. Cf. also [5, p. 118].)

4. It is also true that the Poincaré-Miranda theorem implies Theorem 3.1: Given H±
i

as in the latter, the functions fi(x) = dist(x,H−
i ) − dist(x,H+

i ) are continuous and satisfy
fi(I

−
i ) ⊂ [−1, 0], fi(I

+
i ) ⊂ [0, 1]. Now the Poincaré-Miranda theorem gives an x ∈ In such that

f(x) = 0. The assumption H−
i ∪H+

i = In implies that dist(x,H−
i ),dist(x,H+

i ) cannot both be
non-zero. Thus fi(x) = 0 is equivalent to x ∈ H−

i ∩H+
i . Thus x ∈ ⋂

i(H
−
i ∩H+

i ).
5. Combining the above facts and some other well-known implications, we see that the

following statements are ‘equivalent’ (in the sense of being easily deducible from each other):

(i) the non-existence of a retraction r : Dn → ∂Dn,

(ii) the non-contractibility of ∂Dn = Sn−1,

(iii) πn−1(S
n−1) 6= 0,

(iv) the fixed point property of Dn,

(v) the statement f : Dn → Dn, f ↾∂Dn = id ⇒ f(Dn) = Dn,

(vi) the Poincaré-Miranda theorem,

(vii) Theorem 3.1.

(A similar statement appears in [17, Theorem 6.6.1], where however Corollary 4.2 is listed
instead of the more convenient Theorem 3.1 and correspondingly, the Poincaré-Miranda type
theorem given there makes the stronger assumptions fi(I

−
i ) ⊂ (−∞, 0), fi(I

+
i ) ⊂ (0,∞) ∀i.)

We observe that (i)-(vi) all involve continuous maps, whereas (vii) only involves the faces and
the topology of the cube In. The latter therefore seems closest in spirit to point set topology,
as is also supported by its interpretation as higher-dimensional connectedness and its rôle in
the above proof of dimension invariance. ✷
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