3.4. The Trace 115

and conclude that the matrix for T_f , cf. E 3.2.16, is constant on diagonals. Insert $f = e_k$, $k \in \mathbb{Z}$, and check that the corresponding Toeplitz operators are kth powers of the unilateral shift (3.2.16) or its adjoint.

- **E 3.3.15.** Take f in $L^{\infty}(\mathbb{T})$, and let T_f be the corresponding Toeplitz operator; cf. E 3.3.14. Show that T_f is a compact operator on H^2 only if f = 0. Hint: If $T_f \in \mathbf{B}_0(H^2)$, then, since $e_n \to 0$ weakly (cf. E 3.1.10). $||T_f e_n|| \to 0$. In particular, $(T_f e_n | e_{n+k}) \to 0$ for each k in \mathbb{Z} . Now apply E 3.3.14 to show that $\hat{f} = 0$, whence f = 0.
- **E 3.3.16.** Take f and g in $L^{\infty}(\mathbb{T})$, and let T_f and T_g denote the corresponding Toeplitz operators; cf. E 3.3.14. Show that $T_f T_g T_g T_f$ and $T_f T_g T_{fg}$ are both compact operators on H^2 if either f or g is continuous. Hint: Show that the two operators have finite rank if $f = e_k$ for some k in \mathbb{Z} . If $f \in C(\mathbb{T})$, use the fact that f can be uniformly approximated by trigonometric polynomials, and apply 3.3.3. (P.S. Don't miss E 4.3.11 later on.)
- **E 3.3.17.** If $f \in C(\mathbb{T})$, show that the Toeplitz operator T_f , cf. E 3.3.14, is a Fredholm operator if f is invertible in $C(\mathbb{T})$. Show in this case that index $T_f = \operatorname{index} T_u$, where $u = f|f|^{-1}$.

Hint: Use first E 3.3.16. Then use that a self-adjoint Fredholm operator has zero index, so that 3.3.19 applies.

E 3.3.18. Show that functions f and g in $C(\mathbb{T}, \mathbb{T})$ that are homotopic (E 1.4.19) inside $C(\mathbb{T}, \mathbb{T})$ give Toeplitz operators of Fredholm type with index $T_f = \operatorname{index} T_g$.

Hint: If $f_t: \mathbb{T} \to \mathbb{T}$ is a continuous path in $C(\mathbb{T}, \mathbb{T})$ with $f_0 = f$ and $f_1 = g$, then index $T_{f_s} = \text{index } T_{f_t}$ when |s - t| is small enough by 3.3.18.

E 3.3.19. Take f invertible in $C(\mathbb{T})$ and consider the Toeplitz operator T_f ; cf. E 3.3.14. Show that the winding number of f around 0 equals —index T_f . Compare with E 4.1.19.

Hint: Use E 3.3.17 and E 3.3.18 plus the fact (to be proved or taken at face value) that the homotopy classes in $C(\mathbb{T}, \mathbb{T})$ are labeled by the winding number. Check the formula with $f = e_k$, where $k \in \mathbb{Z}$; cf. E 3.3.14.

3.4. The Trace

Synopsis. Definition and invariance properties of the trace. The trace class operators and the Hilbert-Schmidt operators. The dualities among $\mathbf{B}_0(\mathfrak{H})$, $\mathbf{B}^1(\mathfrak{H})$, and $\mathbf{B}(\mathfrak{H})$. Hilbert-Schmidt operators as integral operators. The Fredholm equation. The Sturm-Liouville problem. Exercises.

- **3.4.1.** In search for analogies between the theory of functions and the theory of operators on a complex(!) Hilbert space \mathfrak{H} , we have already (in 3.3.1 and 3.3.4) mentioned that $\mathbf{B}_f(\mathfrak{H})$ corresponds to the continuous functions with compact supports and $\mathbf{B}_0(\mathfrak{H})$ corresponds to the continuous functions vanishing at infinity. The class $\mathbf{B}(\mathfrak{H})$ plays a double role: sometimes it mimics the set of all bounded continuous functions and sometimes it behaves like an L^{∞} -space. The latter behavior assumes the existence of an analogue on \mathfrak{H} to Lebesgue measure, an analogue we will now exhibit.
- **3.4.2.** Choose an orthonormal basis $\{e_j | j \in J\}$ for the Hilbert space \mathfrak{H} (cf. 3.1.12), and for every positive operator T in $\mathbf{B}(\mathfrak{H})$ define the *trace* of T by

$$\operatorname{tr}(T) = \sum_{i} (Te_{i}|e_{i}),$$

with values in $[0, \infty]$.

3.4.3. Proposition. For every T in $\mathbf{B}(\mathfrak{H})$ we have

$$tr(T^*T) = tr(TT^*).$$

PROOF. For each i and j we have

$$(Te_i|e_i)(e_i|Te_i) = (T^*e_i|e_i)(e_i|T^*e_i) \ge 0.$$

Summing the first expression over j we get

$$\sum_{j} ((Te_{i}|e_{j})e_{j}|Te_{i}) = (Te_{i}|Te_{i}) = (T^{*}Te_{i}|e_{i}).$$

Summing the second expression over i we similarly have

$$\sum_{i} ((T^*e_j|e_i)e_i|T^*e_j) = (T^*e_j|T^*e_j) = (TT^*e_j|e_j).$$

Since the elements in the series are positive, the sum over both i and j does not depend on the order of the summation, whence

$$\operatorname{tr}(T^*T) = \sum_{i} (T^*Te_i|e_i) = \sum_{i} (TT^*e_i|e_i) = \operatorname{tr}(TT^*).$$

3.4.4. Corollary. If U is unitary and $T \ge 0$, then

$$tr(UTU^*) = tr(T).$$

In particular, the definition of tr is independent of the choice of basis, and, therefore, $||T|| \le \operatorname{tr} T$.

PROOF. Since $T = (T^{1/2})^2$ by 3.2.11, we may replace T by $UT^{1/2}$ in 3.4.3. The last assertions follow from 3.1.14 and 3.2.25 (or E 3.2.1).

3.4.5. Lemma. If $T \in \mathbf{B}(\mathfrak{H})$ such that $\operatorname{tr}(|T|^p) < \infty$ for some p > 0, then T is compact.

3.4. The Trace 117

PROOF. Given an orthonormal basis $\{e_j|j\in J\}$ and $\varepsilon>0$ there is a finite subset λ of J such that $\sum_{j\notin\lambda}(|T|^pe_j|e_j)<\varepsilon$. If P_λ denotes the projection of $\mathfrak S$ onto the span of $\{e_i|j\in\lambda\}$, then by (**) in 3.2.3 and 3.4.4

$$\begin{split} \||T|^{p/2}(I-P_{\lambda})\|^2 &= \|(I-P_{\lambda})|T|^p(I-P_{\lambda})\| \\ &\leq \operatorname{tr}((I-P_{\lambda})|T|^p(I-P_{\lambda})) < \varepsilon. \end{split}$$

Since ε is arbitrary, we conclude from 3.3.3(i) that $|T|^{p/2} \in \mathbf{B}_0(\mathfrak{H})$. Thus, for a suitable orthonormal basis (which we still denote by $\{e_j | j \in J\}$) we have

$$|T|^{p/2} = \sum \lambda_j e_j \odot e_j$$

by 3.3.8 (cf. 3.3.9) and the λ_j 's vanish at infinity. For integer values of p it is clear that

$$|T| = \sum \lambda_j^{2/p} e_j \odot e_j. \tag{*}$$

To establish the validity of the formula (*) in general one will have to define the symbol $|T|^p$ for all real p > 0; and we must postpone this task until we have the spectral theorem (4.4.1) at hand. Assuming (*) it is clear that $|T| \in \mathbf{B}_0(\mathfrak{H})$, and from the polar decomposition T = U|T|, cf. 3.2.17, it follows that T belongs to the ideal $\mathbf{B}_0(\mathfrak{H})$.

3.4.6. We define the sets of *trace class* operators and *Hilbert–Schmidt* operators as

$$\begin{split} \mathbf{B}^{1}(\mathfrak{H}) &= \operatorname{span} \{ T \in \mathbf{B}_{0}(\mathfrak{H}) | T \geq 0, \operatorname{tr}(T) < \infty \}, \\ \mathbf{B}^{2}(\mathfrak{H}) &= \{ T \in \mathbf{B}_{0}(\mathfrak{H}) | \operatorname{tr}(T^{*}T) < \infty \}. \end{split}$$

Since, evidently, $\operatorname{tr}(T_1+T_2)=\operatorname{tr}(T_1)+\operatorname{tr}(T_2)$ and $\operatorname{tr}(\alpha T_1)=\alpha\operatorname{Tr}(T_1)$ for all positive operators T_1 and T_2 and each $\alpha\geq 0$; and since $T=\sum_{k=0}^3 i^k T_k$, with $T_k\geq 0$, for every T in $\mathbf{B}^1(\mathfrak{H})$, it follows that the definition $\operatorname{tr}(T)=\sum_i i^k\operatorname{tr}(T_k)$ extends tr to a linear functional on $\mathbf{B}^1(\mathfrak{H})$. From now on we may therefore apply the function tr to any operator in the set $\mathbf{B}(\mathfrak{H})_++\mathbf{B}^1(\mathfrak{H})$ (with the convention that $\alpha+\infty=\infty$ for every α in \mathbb{C}).

3.4.7. Just as for vectors in \mathfrak{H} , there is a parallellogram law for operators in $\mathbf{B}(\mathfrak{H})$, viz.,

$$(S+T)^*(S+T) + (S-T)^*(S-T) = 2(S^*S+T^*T), \tag{*}$$

easily verified by computation. From this one derives the useful estimate

$$(S+T)^*(S+T) \le 2(S^*S+T^*T).$$
 (**)

By direct computation we also verify the following *polarization identity* for operators on a complex Hilbert space:

$$4T^*S = \sum_{k=0}^{3} i^k (S + i^k T)^* (S + i^k T). \tag{***}$$

3.4.8. Proposition. The classes $B^1(\mathfrak{H})$ and $B^2(\mathfrak{H})$ are self-adjoint ideals in $B(\mathfrak{H})$ and

$$\mathbf{B}_f(\mathfrak{H}) \subset \mathbf{B}^1(\mathfrak{H}) \subset \mathbf{B}^2(\mathfrak{H}) \subset \mathbf{B}_0(\mathfrak{H}).$$

PROOF. If $T \ge 0$ with $tr(T) < \infty$, and $S \in \mathbf{B}(\mathfrak{H})$, then by (***) in 3.4.7

$$4TS = 4T^{1/2}T^{1/2}S = \sum_{i} i^{k}(S + i^{k}I) * T(S + i^{k}I).$$

By 3.4.3 and 3.2.11 we further have

$$tr(V^*TV) = tr(V^*T^{1/2}T^{1/2}V)$$
$$= tr(T^{1/2}VV^*T^{1/2}) \le ||VV^*|| tr(T);$$

and applied with $V = S + i^k I$ it shows that $TS \in \mathbf{B}^1(\mathfrak{H})$. Thus, $\mathbf{B}^1(\mathfrak{H})$ is a self-adjoint right ideal and therefore a two sided ideal (4.1.2).

We claim that

$$\mathbf{B}^{1}(\mathfrak{H}) = \{ T \in \mathbf{B}(\mathfrak{H}) | \operatorname{tr}(|T|) < \infty \}. \tag{*}$$

If $|T| \in \mathbf{B}^1(\mathfrak{H})$, then from the polar decomposition T = U|T| (3.2.17) we see from the first part of the proof that $T \in \mathbf{B}^1(\mathfrak{H})$. Conversely, $|T| = U^*T$, so if $T \in \mathbf{B}^1(\mathfrak{H})$, then $|T| \in \mathbf{B}^1(\mathfrak{H})$.

It follows from (**) in 3.4.7 that $B^2(\mathfrak{H})$ is a linear subspace of $B_0(\mathfrak{H})$, and 3.4.3 shows that this subspace is self-adjoint. Since $B^1(\mathfrak{H})$ is an ideal in $B(\mathfrak{H})$, it follows from the definition of $B^2(\mathfrak{H})$ that this set is also an ideal.

If $T \in \mathbf{B}_f(\mathfrak{H})$, then |T| is a diagonalizable operator of finite rank, whence |T| (and T) belongs to $\mathbf{B}^1(\mathfrak{H})$. If $T \in \mathbf{B}^1(\mathfrak{H})$, then by 3.2.11

$$T * T = |T|^2 = |T|^{1/2} |T| |T|^{1/2} \le ||T|| |T|,$$

which shows that $tr(T^*T) < \infty$, i.e. $T \in \mathbf{B}^2(\mathfrak{H})$. The last assertion (used freely throughout the proof) is contained in 3.4.5.

3.4.9. Theorem. The ideal $\mathbf{B}^2(\mathfrak{H})$ of Hilbert–Schmidt operators form a Hilbert space under the inner product

$$(S|T)_{tr} = tr(T^*S), \quad S, T \in \mathbf{B}^2(\mathfrak{H}).$$

PROOF. That $T^*S \in \mathbf{B}^1(\mathfrak{H})$ follows from (***) in 3.4.7. Thus the sesquilinear form $(\cdot|\cdot)_{tr}$ is well-defined, self-adjoint, and positive. Moreover, it gives an inner product on $\mathbf{B}^2(\mathfrak{H})$ because the associated 2-norm satisfies

$$||T||_2^2 = \operatorname{tr}(T^*T) \ge ||T^*T|| = ||T||_2^2,$$

by 3.4.4. This inequality also implies that every Cauchy sequence (T_n) in $\mathbf{B}^2(\mathfrak{H})$ for the 2-norm will converge in norm to an element T in $\mathbf{B}_0(\mathfrak{H})$. For every projection P on a finite-dimensional subspace of \mathfrak{H} we estimate

$$||P(T - T_n)||_2^2 = \operatorname{tr}((T - T_n)^* P(T - T_n)) = \operatorname{tr}(P(T - T_n)(T - T_n)^* P)$$

$$= \lim_{n \to \infty} \operatorname{tr}(P(T_m - T_n)(T_m - T_n)^* P)$$

П

$$= \lim_{m} \operatorname{tr}((T_{m} - T_{n})^{*} P(T_{m} - T_{n}))$$

$$\leq \lim_{m} \operatorname{sup} \operatorname{tr}((T_{m} - T_{n})^{*} (T_{m} - T_{n})) = \lim_{m} \operatorname{sup} ||T_{m} - T_{n}||_{2}^{2},$$

and, since P is arbitrary, we conclude that

$$||T - T_n||_2 \le \lim_m \sup_m ||T_m - T_n||_2;$$

which implies that $T \in \mathbf{B}^2(\mathfrak{H})$ and that $T_n \to T$ in 2-norm.

3.4.10. Lemma. If $T \in \mathbf{B}^1(\mathfrak{H})$ and $S \in \mathbf{B}(\mathfrak{H})$, then

$$|\operatorname{tr}(ST)| \le ||S|| \operatorname{tr}(|T|).$$

PROOF. Let T = U|T| be the polar decomposition of T (3.2.17). Then $(SU|T|^{1/2})^* \in \mathbf{B}^2(\mathfrak{H})$ [because $|T|^{1/2} \in \mathbf{B}^2(\mathfrak{H})$], so by the Cauchy-Schwarz inequality (for the trace) we have

$$\begin{split} |\operatorname{tr}(ST)|^2 &= |\operatorname{tr}(SU|T|^{1/2}|T|^{1/2})|^2 = |(|T|^{1/2}|(SU|T|^{1/2})^*)_{\operatorname{tr}}|^2 \\ &\leq ||T|^{1/2}||_2^2 ||(SU|T|^{1/2})^*||_2^2 = \operatorname{tr}(|T|)\operatorname{tr}(|T|^{1/2}U^*S^*SU|T|^{1/2}) \\ &\leq \operatorname{tr}(|T|)\operatorname{tr}(||U^*S^*SU||T|) \leq ||S||^2(\operatorname{tr}(|T|))^2; \end{split}$$

using 3.4.3 and 3.2.9 on the way.

3.4.11. Lemma. If S and T belong to $B^2(\mathfrak{H})$, then

$$tr(ST) = tr(TS).$$

The same formula holds when $S \in \mathbf{B}(\mathfrak{H})$ and $T \in \mathbf{B}^1(\mathfrak{H})$.

PROOF. The polarization identity [(***) in 3.4.7] in conjunction with 3.4.3 gives

$$4 \operatorname{tr}(T^*S) = \sum i^k \operatorname{tr}((S + i^k T)^*(S + i^k T))$$

$$= \sum i^k \operatorname{tr}((S^* + i^{-k} T^*)^*(S^* + i^{-k} T^*))$$

$$= \sum i^k \operatorname{tr}((T^* + i^k S^*)^*(T^* + i^k S^*)) = 4 \operatorname{tr}(ST^*),$$

which proves the first assertion. For the second, we may assume that $T \ge 0$ (the equation is linear in T), and then from the first result we have

$$tr(ST) = tr((ST^{1/2})T^{1/2}) = tr(T^{1/2}(ST^{1/2}))$$
$$= tr((T^{1/2}S)T^{1/2}) = tr(T^{1/2}(T^{1/2}S)) = tr(TS).$$

3.4.12. Theorem. The ideal $B^1(\mathfrak{H})$ of trace class operators form a Banach algebra under the norm

$$||T||_1 = \operatorname{tr}(|T|), \quad T \in \mathbf{B}^1(\mathfrak{H}).$$

120 3. Hilbert Spaces

PROOF. Clearly $\|\cdot\|_1$ is a homogeneous function on $\mathbf{B}^1(\mathfrak{H})$, which is faithful because $\|\cdot\|_1 \ge \|\cdot\|_1$; cf. 3.4.4. To prove subadditivity take S and T in $\mathbf{B}^1(\mathfrak{H})$ with polar decomposition S + T = W|S + T|. Then by 3.4.10

$$||S + T||_1 = \operatorname{tr}(W^*(S + T)) \le |\operatorname{tr}(W^*S)| + |\operatorname{tr}(W^*T)|$$

$$\le ||W^*||(\operatorname{tr}(|S|) + \operatorname{tr}(|T|)) \le ||S||_1 + ||T||_1.$$

The corresponding inequality for the product is obtained from the polar decomposition ST = V|ST|, which gives

$$||ST||_1 = \operatorname{tr}(V^*ST) \le ||V^*S|| \operatorname{tr}(|T|)$$

$$\le ||S|| \operatorname{tr}(|T|) \le \operatorname{tr}(|S|) \operatorname{tr}(|T|) = ||S||_1 ||T||_1.$$

If (T_n) is a Cauchy sequence in $\mathbf{B}^1(\mathfrak{H})$ for the 1-norm it must converge in norm to an element T in $\mathbf{B}_0(\mathfrak{H})$. With polar decomposition $T - T_n = U|T - T_n|$ we have, for each finite-dimensional projection P on \mathfrak{H} , that

$$tr(P|T - T_n|) = tr(PU^*(T - T_n))$$

$$= \lim_{m} tr(PU^*(T_m - T_n)) \le \lim_{m} \sup_{m} ||T_m - T_n||_1,$$

by 3.4.10, since $||PU^*|| \le 1$. Since P is arbitrary, we conclude that

$$||T - T_n||_1 \le \lim_m \sup ||T_m - T_n||_1,$$

which shows that $T \in \mathbf{B}^1(\mathfrak{H})$ and that $T_n \to T$ in 1-norm.

3.4.13. Theorem. The bilinear form

$$\langle S, T \rangle = \operatorname{tr}(ST)$$

implements the dualities between the pair of Banach spaces $B_0(\mathfrak{H})$ and $B^1(\mathfrak{H})$ and the pair $B^1(\mathfrak{H})$ and $B(\mathfrak{H})$. Thus, (with * as in 2.3.1)

$$(B_0(\mathfrak{H}))^*=B^1(\mathfrak{H})\quad \text{and}\quad (B^1(\mathfrak{H}))^*=B(\mathfrak{H}).$$

PROOF. Clearly every T in $\mathbf{B}^1(\mathfrak{H})$ gives rise to a bounded functional $\varphi_T = \langle \cdot, T \rangle$ on $\mathbf{B}_0(\mathfrak{H})$, and $\|\varphi_T\| \leq \|T\|_1$ by 3.4.10. Conversely, if $\varphi \in (\mathbf{B}_0(\mathfrak{H}))^*$, we take S in $\mathbf{B}^2(\mathfrak{H})$ and estimate

$$|\varphi(S)| \le ||\varphi|| ||S|| \le ||\varphi|| ||S||_2.$$

Since $\mathbf{B}^2(\mathfrak{H})$ is a Hilbert space (3.4.9), there is by 3.1.9 a unique element T^* in $\mathbf{B}^2(\mathfrak{H})$ such that $\varphi(S) = \operatorname{tr}(TS) = \operatorname{tr}(ST)$ for all S in $\mathbf{B}^2(\mathfrak{H})$. However, for each projection P on \mathfrak{H} of finite rank we have (with T = U|T|) that

$$|\operatorname{tr}(P|T|)| = |\operatorname{tr}(PU^*T)| = |\varphi(PU^*)| \le ||\varphi||.$$

Since P is arbitrary, this implies that $T \in \mathbf{B}^1(\mathfrak{H})$ with $||T||_1 \leq ||\varphi||$. Evidently, the correspondence $\varphi \leftrightarrow T$ is a bijective isometry, whence $(\mathbf{B}_0(\mathfrak{H}))^* = \mathbf{B}^1(\mathfrak{H})$. Clearly every S in $\mathbf{B}(\mathfrak{H})$ determines a bounded functional $\psi_S = \langle S, \cdot \rangle$ on

3.4. The Trace 121

 $\mathbf{B}^1(\mathfrak{H})$, and $\|\psi_S\| \leq \|S\|$ by 3.4.10. Conversely, if $\psi \in (\mathbf{B}^1(\mathfrak{H}))^*$, we define a sesquilinear form B on \mathfrak{H} by

$$B(x, y) = \psi(x \odot y), \quad x, y \in \mathfrak{H},$$

with $x \odot y$ as the rank one operator defined in 3.3.9. Straightforward computations show that

$$|x \odot y| = ((x \odot y)^*(x \odot y))^{1/2} = ((y \odot x)(x \odot y))^{1/2}$$

= $(\|x\|^2 y \odot y)^{1/2} = \|x\| \|y\| (\|y\|^{-1} y \odot \|y\|^{-1} y);$

and, therefore, the form B is bounded, as

$$|B(x,y)| \le \|\psi\| \|x \odot y\|_1 = \|\psi\| \operatorname{tr}(|x \odot y|) = \|\psi\| \|x\| \|y\|.$$

By 3.2.2 there is then a unique operator S in $\mathbf{B}(\mathfrak{H})$ such that $||S|| \leq ||\psi||$ and

$$\psi(x\odot y)=B(x,y)=(Sx|y).$$

Every self-adjoint T in $\mathbf{B}^1(\mathfrak{H})$ has a diagonal form $T = \sum \lambda_j e_j \odot e_j$ for some orthonormal basis $\{e_j | j \in J\}$ and real eigenvalues λ_j with $\sum |\lambda_j| = ||T||_1$. Thus,

$$\psi(T) = \sum \lambda_j \psi(e_j \odot e_j) = \sum \lambda_j (Se_j | e_j)$$
$$= \sum (STe_j | e_j) = \operatorname{tr}(ST).$$

Since $\mathbf{B}^1(\mathfrak{H})$ is self-adjoint, the formula $\psi(T) = \operatorname{tr}(ST)$ holds for all T; and again we have constructed a bijective isometry $\psi \leftrightarrow S$, so that $(\mathbf{B}^1(\mathfrak{H}))^* = \mathbf{B}(\mathfrak{H})$.

3.4.14. Proposition. For every orthonormal basis $\{e_j | j \in J\}$ in \mathfrak{H} , the set

$$\{e_i \odot e_j | (i,j) \in J^2\}$$

of rank one operators form an orthonormal basis for $B^2(\mathfrak{H})$.

PROOF. Since $(e_i \odot e_j)^* = e_j \odot e_i$ and $(e_i \odot e_j)(e_k \odot e_l) = \delta_{jk}e_i \odot e_l$, it is clear that the operators $e_i \odot e_j$ form an orthonormal set in $\mathbf{B}^2(\mathfrak{H})$. However, if $T \in \mathbf{B}^2(\mathfrak{H})$, then

$$(T|e_i \odot e_j)_{tr} = \operatorname{tr}((e_j \odot e_i)T) = \operatorname{tr}(e_j \odot T^*e_i)$$
$$= \sum_i (e_i|T^*e_i)(e_j|e_i) = (Te_j|e_i).$$

This shows that the orthogonal complement to the span of the $e_i \odot e_j$'s is $\{0\}$ which means that they form a basis.

3.4.15. The result above gives a particularly concrete realization of the Hilbert –Schmidt operators in the case where the underlying Hilbert space has the form $L^2(X)$ with respect to some Radon integral \int on a locally compact Hausdorff space X; see 6.1. If namely $\int \otimes \int$ denotes the product integral on X^2 (6.6.3), we consider the Hilbert space $L^2(X^2)$. If $\{e_j|j\in J\}$ is an orthonormal