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Introduction

The idea of topological invariants defined via path
integrals was introduced by A S Schwartz (1977) in a
special case and by E Witten (1988) in its full
power. To formalize this idea, Witten (1988)
introduced a notion of a topological quantum field
theory (TQFT). Such theories, independent of
Riemannian metrics, are rather rare in quantum
physics. On the other hand, they admit a simple
axiomatic description first suggested by M Atiyah
(1989). This description was inspired by G Segal’s
(1988) axioms for a two-dimensional conformal
field theory. The axiomatic formulation of TQFTs
makes them suitable for a purely mathematical
research combining methods of topology, algebra,
and mathematical physics. Several authors explored
axiomatic foundations of TQFTs (see Quinn (1995)
and Turaev (1994).
Axioms of a TQFT

An (nþ 1)-dimensional TQFT (V , �) over a scalar
field k assigns to every closed oriented n-dimen-
sional manifold X a finite-dimensional vector space
V(X) over k and assigns to every cobordism
(M, X, Y) a k-linear map

�ðMÞ ¼ �ðM;X;YÞ : VðXÞ!VðYÞ

Here a cobordism (M, X, Y) between X and Y is a
compact oriented (nþ 1)-dimensional manifold M
endowed with a diffeomorphism @M � Xq Y (the
overline indicates the orientation reversal). All
manifolds and cobordisms are supposed to be
smooth. A TQFT must satisfy the following axioms.

1. Naturality Any orientation-preserving diffeo-
morphism of closed oriented n-dimensional mani-
folds f : X!X0 induces an isomorphism f] : V
(X)!V(X0). For a diffeomorphism g between the
cobordisms (M, X, Y) and (M0, X0, Y 0), the follow-
ing diagram is commutative:

VðXÞ �!
ðgjXÞ]

VðX0Þ

�ðMÞ# #�ðM0Þ
VðYÞ �!

ðgjY Þ]
VðY 0Þ
2. Functoriality If a cobordism (W, X, Z) is
obtained by gluing two cobordisms (M, X, Y) and
(M0, Y 0, Z) along a diffeomorphism f : Y!Y 0, then
the following diagram is commutative:

VðXÞ �!
�ðWÞ

VðZÞ

�ðMÞ# #�ðM0Þ
VðYÞ �!

f]
VðY 0Þ

3. Normalization For any n-dimensional manifold
X, the linear map

�ð½0; 1� �XÞ : VðXÞ ! VðXÞ

is identity.
4. Multiplicativity There are functorial

isomorphisms

VðXq YÞ � VðXÞ � VðYÞ
Vð;Þ � k

such that the following diagrams are commutative:

VððX q YÞ q ZÞ � VðXÞ � VðYÞð Þ � VðZÞ
# #

VðX q ðY q ZÞÞ � VðXÞ � VðYÞ � VðZÞð Þ

VðX q ;Þ � VðXÞ � k
# #

VðXÞ ¼ VðXÞ

Here �=�k is the tensor product over k. The
vertical maps are respectively the ones induced
by the obvious diffeomorphisms, and the stan-
dard isomorphisms of vector spaces.

5. Symmetry The isomorphism

VðX q YÞ � VðY qXÞ

induced by the obvious diffeomorphism corre-
sponds to the standard isomorphism of vector
spaces

VðXÞ � VðYÞ � VðYÞ � VðXÞ

Given a TQFT (V , �), we obtain an action of the
group of diffeomorphisms of a closed oriented
n-dimensional manifold X on the vector space
V(X). This action can be used to study this group.

An important feature of a TQFT (V , �) is that it
provides numerical invariants of compact oriented
(nþ 1)-dimensional manifolds without boundary.
Indeed, such a manifold M can be considered as a
cobordism between two copies of ; so that �(M) 2
Homk(k, k) = k. Any compact oriented (nþ 1)-
dimensional manifold M can be considered as a
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cobordism between ; and @M; the TQFT assigns to
this cobordism a vector �(M) in Homk(k,
V(@M)) = V(@M) called the vacuum vector.

The manifold [0, 1]�X, considered as a cobord-
ism from XqX to ; induces a nonsingular pairing

VðXÞ � VðXÞ! k

We obtain a functorial isomorphism V(X) =
V(X)�= Homk(V(X), k).

We now outline definitions of several important
classes of TQFTs.

If the scalar field k has a conjugation and all the
vector spaces V(X) are equipped with natural
nondegenerate Hermitian forms, then the TQFT
(V , �) is Hermitian. If k = C is the field of complex
numbers and the Hermitian forms are positive
definite, then the TQFT is unitary.

A TQFT (V , �) is nondegenerate or cobordism
generated if for any closed oriented n-dimensional
manifold X, the vector space V(X) is generated by
the vacuum vectors derived as above from the
manifolds bounded by X.

Fix a Dedekind domain D � C. A TQFT (V , �)
over C is almost D-integral if it is nondegenerate and
there is d 2 C such that d�(M) 2 D for all M with
@M = ;. Given an almost integral TQFT (V , �) and a
closed oriented n-dimensional manifold X, we define
S(X) to be the D-submodule of V(X) generated by all
the vacuum vectors. This module is preserved under
the action of self-diffeomorphisms of X and yields a
finer ‘‘arithmetic’’ version of V(X).

The notion of an (nþ 1)-dimensional TQFT over
k can be reformulated in the categorical language as
a symmetric monoidal functor from the category of
n-manifolds and (nþ 1)-cobordisms to the category
of finite-dimensional vector spaces over k. The
source category is called the (nþ 1)-dimensional
cobordism category. Its objects are closed oriented
n-dimensional manifolds. Its morphisms are cobord-
isms considered up to the following equivalence:
cobordisms (M, X, Y) and (M0, X, Y) are equivalent
if there is a diffeomorphism M!M0 compatible
with the diffeomorphisms @M � X q Y � @M0.
TQFTs in Low Dimensions

TQFTs in dimension 0þ 1 = 1 are in one-to-one
correspondence with finite-dimensional vector
spaces. The correspondence goes by associating
with a one-dimensional TQFT (V , �) the vector
space V(pt) where pt is a point with positive
orientation.

Let (V , �) be a two-dimensional TQFT. The linear
map � associated with a pair of pants (a 2-disk with
two holes considered as a cobordism between two
circles S1 q S1 and one circle S1) defines a commu-
tative multiplication on the vector space A= V(S1).
The 2-disk, considered as a cobordism between S1

and ;, induces a nondegenerate trace on the algebra
A. This makes A into a commutative Frobenius
algebra (also called a symmetric algebra). This
algebra completely determines the TQFT (V , �).
Moreover, this construction defines a one-to-one
correspondence between equivalence classes of two-
dimensional TQFTs and isomorphism classes of
finite dimensional commutative Frobenius algebras
(Kock 2003).

The formalism of TQFTs was to a great extent
motivated by the three-dimensional case, specifi-
cally, Witten’s Chern–Simons TQFTs. A mathema-
tical definition of these TQFTs was first given
by Reshetikhin and Turaev using the theory of
quantum groups. The Witten–Reshetikhin–Turaev
three-dimensional TQFTs do not satisfy exactly the
definition above: the naturality and the functoriality
axioms only hold up to invertible scalar factors
called framing anomalies. Such TQFTs are said to
be projective. In order to get rid of the framing
anomalies, one has to add extra structures on the
three-dimensional cobordism category. Usually one
endows surfaces X with Lagrangians (maximal
isotropic subspaces in H1(X; R)). For 3-cobordisms,
several competing – but essentially equivalent –
additional structures are considered in the literature:
2-framings (Atiyah 1989), p1-structures (Blanchet
et al. 1995), numerical weights (K Walker, V Turaev).

Large families of three-dimensional TQFTs are
obtained from the so-called modular categories.
The latter are constructed from quantum groups at
roots of unity or from the skein theory of links.
See Quantum 3-Manifold Invariants.
Additional Structures

The axiomatic definition of a TQFT extends in
various directions. In dimension 2 it is interesting to
consider the so-called open–closed theories involving
1-manifolds formed by circles and intervals and
two-dimensional cobordisms with boundary
(G Moore, G Segal). In dimension 3 one often
considers cobordisms including framed links and
graphs whose components (resp. edges) are labeled
with objects of a certain fixed category C. In such a
theory, surfaces are endowed with finite sets of
points labeled with objects of C and enriched with
tangent directions. In all dimensions one can study
manifolds and cobordisms endowed with homotopy
classes of mappings to a fixed space (homotopy
quantum field theory, in the sense of Turaev).
Additional structures on the tangent bundles – spin
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structures, framings, etc. – may be also considered
provided the gluing is well defined.

See also: Braided and Modular Tensor Categories; Hopf
Algebras and q-Deformation Quantum Groups; Indefinite
Metric; Quantum 3-Manifold Invariants; Topological
Gravity, Two-Dimensional; Topological Quantum Field
Theory: Overview.
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Introduction

The term ‘‘axiomatic quantum field theory’’ sub-
sumes a collection of research branches of quantum
field theory analyzing the general principles of
relativistic quantum physics. The content of the
results typically is structural and retrospective rather
than quantitative and predictive.

The first axiomatic activities in quantum field theory
date back to the 1950s, when several groups started
investigating the notion of scattering and S-matrix in
detail (Lehmann, Symanzik, and Zimmermann 1955
(LSZ-approach), Bogoliubov and Parasiuk 1957, Hepp
and Zimmermann (BPHZ-approach), Haag 1957–59
and Ruelle 1962 (Haag–Ruelle theory) (see Scattering,
Asymptotic Completeness and Bound States and
Scattering in Relativistic Quantum Field Theory:
Fundamental Concepts and Tools).

Wightman (1956) analyzed the properties of the
vacuum expectation values used in these approaches
and formulated a system of axioms that the vacuum
expectation values ought to satisfy in general. Together
with Gårding (1965), he later formulated a system of
axioms in order to characterize general quantum fields
in terms of operator-valued functionals, and the two
systems have been found to be equivalent.

A couple of spectacular theorems such as the PCT
theorem and the spin–statistics theorem have been
obtained in this setting, but no interacting quantum
fields satisfying the axioms have been found so far
(in 1þ 3 spacetime dimensions). So, the develop-
ment of alternatives and modifications of the setting
got into the focus of the theory, and the axioms
themselves became the objects of research. Their
role as axioms – understood in the common sense –
turned into the role of mere properties of quantum
fields. Today, the term ‘‘axiomatic quantum field
theory’’ is widely avoided for this reason.

In a long list of publications spread over the
1960s, Araki, Borchers, Haag, Kastler, and others
worked out an algebraic approach to quantum field
theory in the spirit of Segal’s ‘‘postulates for general
quantum Mechanics’’ (1947) (see Algebraic Approach
to Quantum Field Theory).

The Wightman setting was the basis of a frame-
work into which the causal construction of the
S-matrix developed by Stückelberg (1951) and
Bogoliubov and Shirkov (1959) has been fitted by
Epstein and Glaser (1973). The causality principle
fixes the time-ordered products up to a finite
number of parameters at each order, which are to
be put in as the renormalization constants.

Already in 1949, Dyson had seen that problems in
the formulation of quantum electrodynamics (QED)
could be avoided by ‘‘just’’ multiplying the time
variable and, correspondingly, the energy variable by
the imaginary unit constant (‘‘Wick rotation’’). Schwin-
ger then investigated time-ordered Green functions of
QED in this Euclidean setting. This approach was
formulated in terms of axioms by Osterwalder and
Schrader (1973, 1975) (see Euclidean Field
Theory).

Other extensions of the aforementioned settings
are objects of current research (see Indefinite Metric,
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