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Introduction

The idea to derive topological invariants of smooth
manifolds from partition functions of certain action
functionals was suggested by A Schwarz (1978) and
highlighted by E Witten (1988). Witten interpreted
the Jones polynomial of links in the 3-sphere S3 as a
partition function of the Chern–Simons field theory.
Witten conjectured the existence of mathematically
defined topological invariants of 3-manifolds, gen-
eralizing the Jones polynomial (or rather its values
in complex roots of unity) to links in arbitrary
closed oriented 3-manifolds. A rigorous construction
of such invariants was given by N Reshetikhin and
V Turaev (1989) using the theory of quantum
groups. The Witten–Reshetikhin–Turaev invariants
of 3-manifolds, also called the ‘‘quantum invar-
iants,’’ extend to a topological quantum field theory
(TQFT) in dimension 3.
Ribbon and Modular Categories

The Reshetikhin–Turaev approach begins with fixing
suitable algebraic data, which are best described in terms
of monoidal categories. Let C be a monoidal category
(i.e., a category with an associative tensor product and
unit object 1). A ‘‘braiding’’ in C assigns to any objects
V, W 2 C an invertible morphism cV, W : V �W !
W � V such that, for any U, V, W 2 C,

cU;V�W ¼ ðidV � cU;WÞðcU;V � idWÞ
cU�V;W ¼ ðcU;W � idVÞðidU � cV;WÞ

A ‘‘twist’’ in C assigns to any object V 2 C an
invertible morphism �V : V ! V such that, for any
V, W 2 C,

�V�W ¼ cW;V cV;Wð�V � �WÞ

A ‘‘duality’’ in C assigns to any object V 2 C a ‘‘dual’’
object V� 2 C, and evaluation and co-evaluation
morphisms dV : V� � V ! 1, bV : 1! V � V� such
that

ðidV � dVÞðbV � idVÞ ¼ idV

ðdV � idV� ÞðidV� � bVÞ ¼ idV�
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Ω Ω

Figure 1 Sliding property.
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The category C with duality, braiding, and twist is
ribbon, if for any V 2 C,

ð�V � idV� ÞbV ¼ ðidV � �V� ÞbV

For an endomorphism f : V ! V of an object V 2 C,
its trace ‘‘tr(f ) 2 EndC(1)’’ is defined as

trðf Þ ¼ dVcV;V� ðð�Vf Þ � idV� ÞbV : 1! 1

This trace shares a number of properties of the
standard trace of matrices, in particular,
tr(fg) = tr(gf ) and tr(f � g) = tr(f )tr(g). For an object
V 2 C, set

dimðVÞ ¼ trðidVÞ ¼ dVcV;V� ð�V � idV� ÞbV

Ribbon categories nicely fit the theory of knots
and links in S3. A link L � S3 is a closed one-
dimensional submanifold of S3. (A manifold is
closed if it is compact and has no boundary.) A
link is oriented (resp. framed) if all its components
are oriented (resp. provided with a homotopy class
of nonsingular normal vector fields). Given a framed
oriented link L � S3 whose components are labeled
with objects of a ribbon category C, one defines a
tensor hLi 2 EndC(1). To compute hLi, present L by
a plane diagram with only double transversal cross-
ings such that the framing of L is orthogonal to the
plane. Each double point of the diagram is an
intersection of two branches of L, going over and
under, respectively. Associate with such a crossing
the tensor (cV, W)�1 where V, W 2 C are the labels of
these two branches and �1 is the sign of the crossing
determined by the orientation of L. We also
associate certain tensors with the points of the
diagram where the tangent line is parallel to a fixed
axis on the plane. These tensors are derived from the
evaluation and co-evaluation morphisms and the
twists. Finally, all these tensors are contracted into a
single element hLi 2 EndC(1). It does not depend on
the intermediate choices and is preserved under
isotopy of L in S3. For the trivial knot O(V) with
framing 0 and label V 2 C, we have hO(V)i=
dim (V).

Further constructions need the notion of a tangle.
An (oriented) tangle is a compact (oriented) one-
dimensional submanifold of R2 � [0, 1] with end-
points on R� 0� {0, 1}. Near each of its endpoints,
an oriented tangle T is directed either down or up,
and thus acquires a sign �1. One can view T as a
morphism from the sequence of �1’s associated
with its bottom ends to the sequence of �1’s
associated with its top ends. Tangles can be
composed by putting one on top of the other.
This defines a category of tangles T whose objects
are finite sequences of �1’s and whose morphisms
are isotopy classes of framed oriented tangles.
Given a ribbon category C, we can consider C-
labeled tangles, that is, (framed oriented) tangles
whose components are labeled with objects of C.
They form a category T C. Links appear here as
tangles without endpoints, that is, as morphisms
; ! ;. The link invariant hLi generalizes to a
functor h � i : T C ! C.

To define 3-manifold invariants, we need modular
categories (Turaev 1994). Let k be a field. A
monoidal category C is k-additive if its Hom sets
are k-vector spaces, the composition and tensor
product of the morphisms are bilinear, and
EndC(1) = k. An object V 2 C is simple if
EndC(V) = k. A modular category is a k-additive
ribbon category C with a finite family of simple
objects {V�}� such that (1) for any object V 2 C
there is a finite expansion idV =

P
i figi for

certain morphisms gi : V ! V�i , fi : V�i ! V and
(2) the S-matrix (S�,�) is invertible over k where
S�,� = tr(cV�, V�

cV�, V�
). Note that S�,� = hH(�,�)i

where H(�,�) is the oriented Hopf link with framing 0,
linking numberþ1, and labels V�, V�.

Axiom (1) implies that every simple object in C is
isomorphic to exactly one of V�. In most interesting
cases (when there is a well-defined direct summa-
tion in C), this axiom may be rephrased by saying
that C is finite semisimple, that is, C has a finite set
of isomorphism classes of simple objects and all
objects of C are direct sums of simple objects. A
weaker version of the axiom (2) yields premodular
categories.

The invariant h � i of links and tangles extends by
linearity to the case where labels are finite linear
combinations of objects of C with coefficients in k.
Such a linear combination � =

P
� dim (V�)V� is

called the Kirby color. It has the following sliding
property: for any object V 2 C, the two tangles in
Figure 1 yield the same morphism V ! V. Here, the
dashed line represents an arc on the closed compo-
nent labeled by �. This arc can be knotted or linked
with other components of the tangle (not shown in
the figure).
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Invariants of Closed 3-Manifolds

Given an embedded solid torus g : S1 �D2 ,! S3,
where D2 is a 2-disk and S1 = @D2, a 3-manifold can
be built as follows. Remove from S3 the interior of
g(S1 �D2) and glue back the solid torus D2 � S1

along gjS1�S1 . This process is known as ‘‘surgery.’’
The resulting 3-manifold depends only on the
isotopy class of the framed knot represented by g.
More generally, a surgery on a framed link
L = [m

i = 1 Li in S3 with m components yields a
closed oriented 3-manifold ML. A theorem of
W Lickorish and A Wallace asserts that any closed
connected oriented 3-manifold is homeomorphic to
ML for some L. R Kirby proved that two framed
links give rise to homeomorphic 3-manifolds if and
only if these links are related by isotopy and a finite
sequence of geometric transformations called Kirby
moves. There are two Kirby moves: adjoining a
distant unknot O" with framing "=�1, and sliding
a link component over another one as in Figure 1.

Let L = [m
i = 1 Li � S3 be a framed link and let

(bi, j)i, j = 1,..., m be its linking matrix: for i 6¼ j, bi, j is
the linking number of Li, Lj, and bi, i is the framing
number of Li. Denote by eþ (resp. e�) the number of
positive (resp. negative) eigenvalues of this matrix.
The sliding property of modular categories implies
the following theorem. In its statement, a knot K
with label � is denoted by K(�).

Theorem 1 Let C be a modular category with
Kirby color �. Then hO1(�)i 6¼ 0, hO�1(�)i 6¼ 0 and
the expression

�CðMLÞ¼hO1ð�Þi�eþhO�1ð�Þi�e�hL1ð�Þ; . . . ;Lmð�Þi

is invariant under the Kirby moves on L. This
expression yields, therefore, a well-defined topological
invariant �C of closed connected oriented 3-manifolds.

Several competing normalizations of �C exist in
the literature. Here, the normalization used is such
that �C(S

3) = 1 and �C(S
1 � S2) =

P
� (dim (V�))

2.
The invariant �C extends to 3-manifolds with a
framed oriented C-labeled link K inside by

�CðML; KÞ
¼ hO1ð�Þi�eþhO�1ð�Þi�e�hL1ð�Þ; . . . ;Lmð�Þ; Ki
Three-Dimensional TQFTs

A three-dimensional TQFT V assigns to every closed
oriented surface X a finite-dimensional vector space
V(X) over a field k and assigns to every cobordism
(M, X, Y) a linear map V(M) = V(M, X, Y) : V(X)!
V(Y). Here, a ‘‘cobordism’’ (M, X, Y) between
surfaces X and Y is a compact oriented 3-manifold
M with @M = (�X)q Y (the minus sign indicates the
orientation reversal). A TQFT has to satisfy axioms
which can be expressed by saying that V is a
monoidal functor from the category of surfaces and
cobordisms to the category of vector spaces over k.
Homeomorphisms of surfaces should induce iso-
morphisms of the corresponding vector spaces
compatible with the action of cobordisms. From
the definition, V(;) = k. Every compact oriented
3-manifold M is a cobordism between ; and @M
so that V yields a ‘‘vacuum’’ vector V(M) 2 Hom(V(;),
V(@M)) = V(@M). If @M = ;, then this gives a
numerical invariant V(M) 2 V(;) = k.

Interestingly, TQFTs are often defined for
surfaces and 3-cobordisms with additional struc-
ture. The surfaces X are normally endowed with
Lagrangians, that is, with maximal isotropic
subspaces in H1(X; R). For 3-cobordisms, several
additional structures are considered in the litera-
ture: for example, 2-framings, p1-structures, and
numerical weights. All these choices are equiva-
lent. The TQFTs requiring such additional struc-
tures are said to be ‘‘projective’’ since they provide
projective linear representations of the mapping
class groups of surfaces.

Every modular category C with ground field k
and simple objects {V�}� gives rise to a projective
three-dimensional TQFT VC. It depends on the
choice of a square root D of

P
� (dim (V�))

2 2 k.
For a connected surface X of genus g,

VCðXÞ ¼ HomC 1;
M
�1;...;�g

Og

r¼1

ðV�r
� V��r

Þ

0
@

1
A

The dimension of this vector space enters the
Verlinde formula

dimkðVCðXÞÞ � 1k ¼ D2g�2
X
�

ðdimðV�ÞÞ2�2g

where 1k 2 k is the unit of the field k. If char(k) = 0,
then this formula computes dimk (VC(X)). For a
closed connected oriented 3-manifold M with
numerical weight zero, VC(M) =D�b1(M)�1�C(M),
where b1(M) is the first Betti number of M.

The TQFT VC extends to a vaster class of surfaces
and cobordisms. Surfaces may be enriched with a
finite set of marked points, each labeled with an
object of C and endowed with a tangent direction.
Cobordisms may be enriched with ribbon (or fat)
graphs whose edges are labeled with objects of C and
whose vertices are labeled with appropriate inter-
twiners. The resulting TQFT, also denoted VC, is
nondegenerate in the sense that, for any surface X,
the vacuum vectors in V(X) determined by all M



a 

–1 = (s – s 
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with @M = X span V(X). A detailed construction
of VC is given in Turaev (1994).

The two-dimensional part of VC determines a
‘‘modular functor’’ in the sense of G Segal,
G Moore, and N Seiberg.
Figure 2 The Homfly relation.
Constructions of Modular Categories

The universal enveloping algebra Ug of a (finite-
dimensional complex) simple Lie algebra g admits
a deformation Uqg, which is a quasitriangular Hopf
algebra. The representation category Rep(Uqg) is
C-linear and ribbon. For generic q 2 C, this category is
semisimple. (The irreducible representations of g can
be deformed to irreducible representations of Uqg.)
For q, an appropriate root of unity, a certain
subquotient of Rep(Uqg) is a modular category
with ground field k = C. For g = sl2(C), it was
pointed out by Reshetikhin and Turaev; the general
case involves the theory of tilting modules. The
corresponding 3-manifold invariant � is denoted
�g

q . For example, if g = sl2(C) and M is the Poincaré
homology sphere (obtained by surgery on a left-
hand trefoil with framing �1), then (Le 2003)

�g
q ðMÞ ¼ ð1� qÞ�1

X
n	0

qnð1� qnþ1Þ

� ð1� qnþ2Þ � � � ð1� q2nþ1Þ

The sum here is finite since q is a root of unity.
There is another construction (Le 2003) of a

modular category associated with a simple Lie
algebra g and certain roots of unity q. The
corresponding quantum invariant of 3-manifolds is
denoted �Pg

q . (Here, it is normalized so that
�Pg

q (S3) = 1.) Under mild assumptions on the order
of q, we have �g

q (M) = �g
q (M)� 0(M) for all M, where

� 0(M) is a certain Gauss sum determined by g, the
homology group H = H1(M) and the linking form
Tors H � Tors H ! Q=Z.

A different construction derives modular categories
from the category of framed oriented tangles T . Given
a ring K, a bigger category K[T ] can be considered
whose morphisms are linear combinations of tangles
with coefficients in K. Both T and K[T ] have a
natural structure of a ribbon monoidal category.

The skein method builds ribbon categories by
quotienting K[T ] using local ‘‘skein’’ relations,
which appear in the theory of knot polynomials
(the Alexander–Conway polynomial, the Homfly
polynomial, and the Kauffman polynomial). In
order to obtain a semisimple category, one com-
pletes the quotient category with idempotents as
objects (the Karoubi completion). Choosing appro-
priate skein relations, one can recover the modular
categories derived from quantum groups of series
A, B, C, D. In particular, the categories determined
by the series A arise from the Homfly skein relation
shown in Figure 2 where a, s 2 K. The categories
determined by the series B, C, D arise from the
Kauffman skein relation.

The quantum invariants of 3-manifolds and the
TQFTs associated with slN can be directly described
in terms of the Homfly skein theory, avoiding the
language of ribbon categories (W Lickorish,
C Blanchet, N Habegger, G Masbaum, P Vogel for
sl2 and Y Yokota for all slN).
Unitarity

From both physical and topological viewpoints,
one is mainly interested in Hermitian and unitary
TQFTs (over k = C). A TQFT V is Hermitian if the
vector space V(X) is endowed with a nondegene-
rate Hermitian form h. , .iX : V(X)�C V(X)! C
such that:

1. the form h. , .iX is natural with respect to homeo-
morphisms and multiplicative with respect to
disjoint union and

2. for any cobordism (M, X, Y) and any
x 2 V(X), y 2 V(Y),

hVðM;X;YÞðxÞ; yiY ¼ hx;Vð�M;Y;XÞðyÞiX
If h. , .iX is positive definite for every X, then the
Hermitian TQFT is ‘‘unitary.’’ Note two features of
Hermitian TQFTs. If @M = ;, then V(�M) = V(M).
The group of self-homeomorphisms of any X
acts in V(X) preserving the form h. , .iX. For a
unitary TQFT, this gives an action by unitary matrices.

The three-dimensional TQFT derived from a mod-
ular category V is Hermitian (resp. unitary) under
additional assumptions on V which are discussed
briefly. A ‘‘conjugation’’ in V assigns to each morph-
ism f : V !W in V a morphism �f : W ! V so that

f ¼ f ; f þ g ¼ �f þ �g for any f ; g : V !W

f � g ¼ �f � �g for any morphisms f ; g in C
f 
 g ¼ �g 
 �f for any morphisms

f : V !W; g : W ! V
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One calls V Hermitian if it is endowed with
conjugation such that

�V ¼ ð�VÞ�1; cV;W ¼ ðcV;WÞ�1

bV ¼ dVcV;V� ð�V � 1V� Þ
dV ¼ ð1V� � ��1

V Þc�1
V�;VbV

for any objects V, W of V. A Hermitian modular
category V is unitary if tr(f�f ) 	 0 for any morphism
f in V. The three-dimensional TQFT, derived from a
Hermitian (resp. unitary) modular category, has a
natural structure of a Hermitian (resp. unitary)
TQFT.

The modular category derived from a simple Lie
algebra g and a root of unity q is always Hermitian.
It may be unitary for some q. For simply laced g,
there are always such roots of unity q of any given
sufficiently big order. For non-simply-laced g, this
holds under certain divisibility conditions on the
order of q.
i
k

l
m

n

j

Figure 3 Labeled tetrahedron.
Integral Structures in TQFTs

The quantum invariants of 3-manifolds have one
fundamental property: up to an appropriate res-
caling, they are algebraic integers. This was
first observed by H Murakami, who proved that
� sl2

q (M) is an algebraic integer, provided the order of
q is an odd prime and M is a homology sphere. This
extends to an arbitrary closed connected oriented 3-
manifold M and an arbitrary simple Lie algebra g as
follows (Le 2003): for any sufficiently big prime
integer r and any primitive rth root of unity q,

�Pg
q ðMÞ 2 Z½q� ¼ Z½expð2�i=rÞ� ½1�

This inclusion allows one to expand �Pg
q (M) as

a polynomial in q. A study of its coefficients leads
to the Ohtsuki invariants of rational homology
spheres and further to perturbative invariants of
3-manifolds due to T Le, J Murakami, and
T Ohtsuki (see Ohtsuki (2002)). Conjecturally, the
inclusion [1] holds for nonprime (sufficiently big) r
as well. Connections with the algebraic number
theory (specifically modular forms) were studied by
D Zagier and R Lawrence.

It is important to obtain similar integrality results
for TQFTs. Following P Gilmer, fix a Dedekind
domain D � C and call a TQFT V almost D-integral
if it is nondegenerate and there is d 2 C such
that dV(M) 2 D for all M with @M = ;. Given
an almost-integral TQFT V and a surface X, we
define S(X̂) to be the D-submodule of V(X), generated
by all vacuum vectors for X. This module is preserved
under the action of self-homeomorphisms of X.
It turns out that S(X) is a finitely generated
projective D-module and V(X) = S(X)�D C.
A cobordism (M, X, Y) is targeted if all its connected
components meet Y along a nonempty set. In
this case, V(M)(S(X)) � S(Y). Thus, applying S to
surfaces and restricting � to targetet cobordisms, we
obtain an ‘‘integral version’’ of V. In many interest-
ing cases, the D-module S(X) is free and its basis
may be described explicitly. A simple Lie algebra g
and a primitive rth (in some cases 4rth) root of unity
q with sufficiently big prime r give rise to an almost
D-integral TQFT for D = Z[q].
State-Sum Invariants

Another approach to three-dimensional TQFTs is
based on the theory of 6j-symbols and state sums on
triangulations of 3-manifolds. This approach intro-
duced by V Turaev and O Viro is a quantum
deformation of the Ponzano–Regge model for the
three-dimensional lattice gravity. The quantum 6j-
symbols derived from representations of Uq(sl2C) are
C-valued rational functions of the variable q0 = q1=2

i j k
l m n

����
���� ½2�

numerated by 6-tuples of non-negative integers i, j,
k, l, m, n. One can think of these integers as labels
sitting on the edges of a tetrahedron (see Figure 3).
The 6j-symbol admits various equivalent normal-
izations and we choose the one which has full
tetrahedral symmetry. Now, let q0 2 C be a
primitive 2rth root of unity with r 	 2. Set
I = {0, 1, . . . , r� 2}. Given a labeled tetrahedron T
as in Figure 3 with i, j, k, l, m, n 2 I, the 6j-symbol
[2] can be evaluated at q0 and we can obtain a
complex number denoted jTj. Consider a closed
three-dimensional manifold M with triangulation t.
(Note that all 3-manifolds can be triangulated.) A
coloring of M is a mapping ’ from the set Edg(t)
of the edges of t to I. Set

jMj ¼ ð
ffiffiffiffiffi
2r
p

=ðq0 � q�1
0 ÞÞ

�2a
X
’

Y
e2EdgðtÞ

h’ðeÞi
Y
T

jT’j
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where a is the number of vertices of t, hni= (�1)n

(qn
0 � q�n

0 )
�

(q0 � q�1
0 ) for any integer n, T runs over

all tetrahedra of t, and T’ is T with the labeling
induced by ’. It is important to note that jMj does
not depend on the choice of t and thus yields a
topological invariant of M.

The invariant jMj is closely related to the
quantum invariant �g

q (M) for g = sl2(C). Namely,
jMj is the square of the absolute value of �g

q (M), that
is, jMj= j�g

q (M)j2. This computes j�g
q (M)j inside M

without appeal to surgery. No such computation of
the phase of �g

q (M) is known.
These constructions generalize in two directions.

First, they extend to manifolds with boundary. Second,
instead of the representation category of Uq(sl2C), one
can use an arbitrary modular category C. This yields a
three-dimensional TQFT, which associates to a surface
X a vector space jXjC, and to a 3-cobordism (M, X, Y)
a homomorphism jMjC : jXjC ! jYjC, (see Turaev
(1994)). When X = Y = ;, this homomorphism is
multiplication C! C by a topological invariant
jMjC 2 C. The latter is computed as a state sum on a
triangulation of M involving the 6j-symbols associated
with C. In general, these 6j-symbols are not numbers
but tensors so that, instead of their product, one
should use an appropriate contraction of tensors. The
vectors in V(X) are geometrically represented by
trivalent graphs on X such that every edge is labeled
with a simple object of C and every vertex is labeled
with an intertwiner between the three objects labeling
the incident edges. The TQFT j � jC is related to the
TQFT V = VC by jMjC = jV(M)j2. Moreover, for any
closed oriented surface X,

jXjC ¼EndðVðXÞÞ ¼ VðXÞ � ðVðXÞÞ�

¼VðXÞ � Vð�XÞ

and for any three-dimensional cobordism (M, X, Y),

jMjC ¼ VðMÞ � Vð�MÞ : VðXÞ � Vð�XÞ
! VðYÞ � Vð�YÞ

J Barrett and B Westbury introduced a general-
ization of jMjC derived from the so-called spherical
monoidal categories (which are assumed to be
semisimple with a finite set of isomorphism classes
of simple objects). This class includes modular
categories and a most interesting family of (unitary
monoidal) categories arising in the theory of sub-
factors (see Evans and Kawahigashi (1998) and
Kodiyalam and Sunder (2001)). Every spherical
category C gives rise to a topological invariant jMjC
of a closed oriented 3-manifold M. (It seems that this
approach has not yet been extended to cobordisms.)

Every monoidal category C gives rise to a double (or
a center) Z(C), which is a braided monoidal category
(see Majid (1995)). If C is spherical, then Z(C) is
modular. Conjecturally, jMjC = �Z(C)(M). In the case
where C arises from a subfactor, this has been recently
proved by Y Kawahigashi, N Sato, and M Wakui.

The state sum invariants above are closely related
to spin networks, spin foam models, and other
models of quantum gravity in dimension 2þ 1 (see
Baez (2000) and Carlip (1998)).

See also: Axiomatic Approach to Topological Quantum
Field Theory; Braided and Modular Tensor Categories;
Chern–Simons Models: Rigorous Results; Finite-type
Invariants of 3-Manifolds; Large-N and Topological
Strings; Schwarz-Type Topological Quantum Field
Theory; Topological Quantum Field Theory: Overview;
von Neumann Algebras: Subfactor Theory.
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