6. Exercises 213

is a C*-norm and, therefore, it is dominated by the maximal C*-norm $\|.\|_{max}$. Hence, π' is norm-decreasing for $\|.\|_{max}$, so π' can be extended to a *-homomorphism from $A \otimes_{max} D$ to $B \otimes_* D$ which we shall also denote by π' .

Let Q be the quotient algebra of $A \otimes_{max} D$ by the closed ideal $\operatorname{im}(j')$, and let $\psi \colon A \otimes_{max} D \to Q$ be the quotient map. By a construction similar to that carried out in the proof of Theorem 6.5.2, there is a unique *-homomorphism $\theta \colon B \otimes_* D \to Q$ such that $\theta(\pi(a) \otimes d) = a \otimes d + \operatorname{im}(j')$ for all $a \in A$ and $d \in D$ (this uses nuclearity of B). We therefore get a commutative diagram:

Now suppose that $c \in \ker(\varphi)$. Then $0 = \bar{\pi}\varphi(c) = \pi'(c)$, so $0 = \theta\pi'(c) = \psi(c)$. Hence, $c = j'(c_0)$ for some element $c_0 \in J \otimes_* D$, and therefore $\bar{\jmath}(c_0) = \varphi j'(c_0) = \varphi(c) = 0$. Since $\bar{\jmath}$ is injective by Theorem 6.5.1, we have $c_0 = 0$ and therefore $c = j'(c_0) = 0$. Thus, φ is injective and the theorem is proved.

6.5.1. Example. Let A denote the Toeplitz algebra (the C*-algebra generated by all Toeplitz operators on the Hardy space H^2 having continuous symbol). This algebra was investigated in Section 3.5, where it was shown that its commutator ideal is $K(H^2)$ (Theorem 3.5.10). The algebras $K(H^2)$ and $A/K(H^2)$ are nuclear (by Example 6.3.2 and Theorem 6.4.15, respectively), so by Theorem 6.5.3, A is nuclear.

6. Exercises

1. Let $(A_n, \varphi_n)_{n=1}^{\infty}$ and $(B_n, \psi_n)_{n=1}^{\infty}$ be direct sequences of C*-algebras with direct limits A and B, respectively. Let $\varphi^n : A_n \to A$ and $\psi^n : B_n \to B$ be the natural maps. Suppose there are *-homomorphisms $\pi_n : A_n \to B_n$ such that for each n the following diagram commutes:

$$\begin{array}{ccc} A_n & \xrightarrow{\varphi_n} & A_{n+1} \\ \downarrow \pi_n & & \downarrow \pi_{n+1} \\ B_n & \xrightarrow{\psi_n} & B_{n+1}. \end{array}$$

Show that there exists a unique *-homomorphism $\pi: A \to B$ such that for each n the following diagram commutes:

$$A_n \xrightarrow{\varphi^n} A$$

$$\downarrow \pi_n \qquad \qquad \downarrow \pi$$

$$B_n \xrightarrow{\psi^n} B.$$

Show that if all the π_n are *-isomorphisms, then π is a *-isomorphism.

- 2. Show that every non-zero finite-dimensional C*-algebra admits a faithful tracial state. Give an example of a unital simple C*-algebra not having a tracial state.
- **3.** Let A be a C*-algebra. A trace on A is a function $\tau: A^+ \to [0, +\infty]$ such that

$$\tau(a+b) = \tau(a) + \tau(b)$$
$$\tau(ta) = t\tau(a)$$
$$\tau(c^*c) = \tau(cc^*)$$

for all $a, b \in A^+$, $c \in A$, and all $t \in \mathbb{R}^+$. We use the convention that $0.(+\infty) = 0$.

The motivating example is the usual trace function on B(H). Another example is got on $C_0(\mathbf{R})$ by setting $\tau(f) = \int f \, dm$ where $f \in C_0(\mathbf{R})^+$ and m is ordinary Lebesgue measure on \mathbf{R} .

Traces (and their generalisation, weights) play a fundamental role, especially in von Neumann algebra theory ([Ped], [Tak]).

Let

$$A_{\tau}^{2} = \{ a \in A \mid \tau(a^{*}a) < \infty \}.$$

Show that

$$(a+b)^*(a+b) \le 2a^*a + 2b^*b$$

and

$$(ab)^*ab \leq ||a||^2b^*b,$$

and deduce that A_{τ}^2 is a self-adjoint ideal of A.

Let A_{τ} be the linear span of all products ab, where $a, b \in A_{\tau}^2$. Show that A_{τ} is a self-adjoint ideal of A.

Show that for arbitrary $a, b \in A$,

$$a^*b = \frac{1}{4} \sum_{k=0}^{3} i^k (b + i^k a)^* (b + i^k a),$$