2. Exercises 73

2.5.7. Theorem. Let u be a normal operator on a Hilbert space H, and suppose that $g: \mathbb{C} \to \mathbb{C}$ is a continuous function. Then $(g \circ f)(u) = g(f(u))$ for all $f \in B_{\infty}(\sigma(u))$.

Proof. The result is easily seen by first showing it for g a polynomial in z and \bar{z} , and then observing that an arbitrary continuous function $g: \mathbb{C} \to \mathbb{C}$ is a uniform limit of such polynomials on the compact disc $\Delta = \{\lambda \in \mathbb{C} \mid |\lambda| \leq ||f||_{\infty}\}$, using the Stone-Weierstrass theorem applied to $C(\Delta)$.

We give an application of this to writing a unitary as an exponential.

2.5.8. Theorem. Let u be a unitary operator in B(H), where H is a Hilbert space. Then there exists a hermitian operator v in B(H) such that $u = e^{iv}$ and $||v|| \le 2\pi$.

Proof. The function

$$f:[0,2\pi)\to\mathbf{T},\ t\mapsto e^{it},$$

is a continuous bijection with Borel measurable inverse g. Since $\sigma(u) \subseteq \mathbf{T}$, we can set v = g(u). The operator v is self-adjoint because g is real-valued. Moreover, $\|v\| \le \|g\|_{\infty} \le 2\pi$. By Theorem 2.5.7, $(f \circ g)(u) = f(g(u)) = f(v) = e^{iv}$. But $(f \circ g)(\lambda) = \lambda$ for all $\lambda \in \mathbf{T}$, so $(f \circ g)(u) = u$. Therefore, $u = e^{iv}$.

2. Exercises

1. Let A be a Banach algebra such that for all $a \in A$ the implication

$$Aa = 0$$
 or $aA = 0 \Rightarrow a = 0$

holds. Let L, R be linear mappings from A to itself such that for all $a, b \in A$,

$$L(ab) = L(a)b$$
, $R(ab) = aR(b)$, and $R(a)b = aL(b)$.

Show that L and R are necessarily continuous.

- 2. Let A be a unital C*-algebra.
- (a) If a, b are positive elements of A, show that $\sigma(ab) \subseteq \mathbb{R}^+$.
- (b) If a is an invertible element of A, show that a = u|a| for a unique unitary u of A. Give an example of an element of B(H) for some Hilbert space H that cannot be written as a product of a unitary times a positive operator.
- (c) Show that if $a \in Inv(A)$, then $||a|| = ||a^{-1}|| = 1$ if and only if a is a unitary.

- 3. Let Ω be a locally compact Hausdorff space, and suppose that the C*-algebra $C_0(\Omega)$ is generated by a sequence of projections $(p_n)_{n=1}^{\infty}$. Show that the hermitian element $h = \sum_{n=1}^{\infty} p_n/3^n$ generates $C_0(\Omega)$.
- 4. We shall see in the next chapter that all closed ideals in C^* -algebras are necessarily self-adjoint. Give an example of an ideal in the C^* -algebra $C(\mathbf{D})$ that is not self-adjoint.
- 5. Let $\varphi: A \to B$ be an isometric linear map between unital C*-algebras A and B such that $\varphi(a^*) = \varphi(a)^*$ $(a \in A)$ and $\varphi(1) = 1$. Show that $\varphi(A^+) \subseteq B^+$.
- **6.** Let A be a unital C^* -algebra.
- (a) If r(a) < 1 and $b = (\sum_{n=0}^{\infty} a^{*n} a^n)^{1/2}$, show that $b \ge 1$ and $||bab^{-1}|| < 1$.
- (b) For all $a \in A$, show that

$$r(a) = \inf_{b \in Inv(A)} ||bab^{-1}|| = \inf_{b \in A_{aa}} ||e^b a e^{-b}||.$$

- 7. Let A be a unital C^* -algebra.
- (a) If $a, b \in A$, show that the map

$$f: \mathbf{C} \to A, \quad \lambda \mapsto e^{i\lambda b} a e^{-i\lambda b},$$

is differentible and that f'(0) = i(ba - ab).

- (b) Let X be a closed vector subspace of A which is unitarily invariant in the sense that $uXu^* \subseteq X$ for all unitaries u of A. Show that $ba-ab \in X$ if $a \in X$ and $b \in A$.
- (c) Deduce that the closed linear span X of the projections in A has the property that $a \in X$ and $b \in A$ implies that $ba ab \in X$.
- 8. Let a be a normal element of a C*-algebra A, and b an element commuting with a. Show that b^* also commutes with a (Fuglede's theorem). (Hint: Define $f(\lambda) = e^{i\lambda a^*}be^{-i\lambda a^*}$ in \tilde{A} and deduce from Exercise 2.7 that this map is differentiable and $f'(0) = i(a^*b ba^*)$. Since $e^{i\tilde{\lambda}a}$ and b commute, $f(\lambda) = e^{2ic(\lambda)}be^{-2ic(\lambda)}$, where $c(\lambda) = Re(\lambda a^*)$. Hence, $||f(\lambda)|| = ||b||$, so by Liouville's theorem, $f(\lambda)$ is constant.)

In the following exercises H is a Hilbert space:

9. If I is an ideal of B(H), show that it is self-adjoint.