3. Exercises 107

is an isometric unital *-homomorphism such that $\varphi_{\lambda}(u) = v_{\lambda}$.

Let (H, φ) be the direct sum of the family of representations $(H_{\lambda}, \varphi_{\lambda})_{\lambda}$ of **A**. Then $\varphi \colon \mathbf{A} \to B(H)$ is a unital *-homomorphism such that $\varphi(u) = \bigoplus_{\lambda} v_{\lambda} = v$. Moreover, since $\varphi(u) \in B$ and u generates **A**, therefore $\varphi(\mathbf{A})$ is contained in B.

Now suppose that $vv^* \neq 1$. Then some v_{λ_0} is a unilateral shift. Hence, the representation $(H_{\lambda_0}, \varphi_{\lambda_0})$ is faithful, so (H, φ) is faithful. Therefore, φ is isometric.

3. Exercises

In Exercises 1 to 7, A denotes an arbitrary C*-algebra.

1. Let a, b be normal elements of a C*-algebra A, and c an element of A such that ac = cb. Show that $a^*c = cb^*$, using Fuglede's theorem (Exercise 2.8) and the fact that the element

$$d = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

is normal in $M_2(A)$ and commutes with

$$d' = \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix}.$$

This more general result is called the Putnam-Fuglede theorem.

- 2. Let τ be a positive linear functional on A.
- (a) If I is a closed ideal in A, show that $I \subseteq \ker(\tau)$ if and only if $I \subseteq \ker(\varphi_{\tau})$.
- (b) We say τ is faithful if $\tau(a) = 0 \Rightarrow a = 0$ for all $a \in A^+$. Show that if τ is faithful, then the GNS representation (H_τ, φ_τ) is faithful.
- (c) Suppose that α is an automorphism of A such that $\tau(\alpha(a)) = \tau(a)$ for all $a \in A$. Define a unitary on H_{τ} by setting $u(a + N_{\tau}) = \alpha(a) + N_{\tau}$ $(a \in A)$. Show that $\varphi_{\tau}(\alpha(a)) = u\varphi(a)u^*$ $(a \in A)$.
- 3. If $\varphi: A \to B$ is a positive linear map between C*-algebras, show that φ is necessarily bounded.
- 4. Suppose that A is unital. Let α be an automorphism of A such that $\alpha^2 = \mathrm{id}_A$. Define B to be the set of all matrices

$$c = \begin{pmatrix} a & b \\ \alpha(b) & \alpha(a) \end{pmatrix},$$

where $a, b \in A$. Show that B is a C*-subalgebra of $M_2(A)$. Define a map $\varphi: A \to B$ by setting

$$\varphi(a) = \begin{pmatrix} a & 0 \\ 0 & \alpha(a) \end{pmatrix}.$$

Show that φ is an injective *-homomorphism. We can thus identify A as a C*-subalgebra of B. If we set $u=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then u is a self-adjoint unitary and B=A+Au. If C is any unital C*-algebra with a self-adjoint unitary element v, and $\psi\colon A\to C$ is a *-homomorphism such that

$$\psi(\alpha(a)) = v\psi(a)v^* \qquad (a \in A),$$

show that there is a unique *-homomorphism $\psi': B \to C$ extending ψ (that is, $\psi' \circ \varphi = \psi$) such that $\psi'(u) = v$.

(This establishes that B is a (very easy) example of a crossed product, namely $B = A \times_{\alpha} \mathbf{Z}_2$, the crossed product of A by the two-element group \mathbf{Z}_2 under the action α . The theory of crossed products is a vast area of the modern theory of C*-algebras. One of its primary uses is to generate new examples of simple C*-algebras. For an account of this theory, see [Ped].)

- **5.** An element a of A^+ is strictly positive if the hereditary C*-subalgebra of A generated by a is A itself, that is, if $(aAa)^- = A$.
- (a) Show that if A is unital, then $a \in A^+$ is strictly positive if and only if a is invertible.
- (b) If H is a Hilbert space, show that a positive compact operator on H is strictly positive in K(H) if and only if it has dense range.
- (c) Show that if a is strictly positive in A, then $\tau(a) > 0$ for all non-zero positive linear functionals τ on A.
- 6. We say that A is σ -unital if it admits a sequence $(u_n)_{n=1}^{\infty}$ which is an approximate unit for A. It follows from Remark 3.1.1 that every separable C*-algebra is σ -unital.
- (a) Let a be a strictly positive element of A, and set $u_n = a(a+1/n)^{-1}$ for each positive integer n. Show that (u_n) is an approximate unit for A. (Hint: Define $g_n: \sigma(a) \to \mathbf{R}$ by $g_n(t) = t^2/(t+1/n)$. Show that the sequence (g_n) is pointwise-increasing and pointwise-convergent to the inclusion $z: \sigma(a) \to \mathbf{R}$, and use Dini's theorem to deduce that (g_n) converges uniformly to z. Hence, $a = \lim_{n \to \infty} au_n$.)
- (b) If $(u_n)_{n=1}^{\infty}$ is an approximate unit for A, show that $a = \sum_{n=1}^{\infty} u_n/2^n$ is a strictly positive element of A.

Thus, A is σ -unital if and only if it admits a strictly positive element.