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3.3. Compact Operators

Synopsis. Equivalent characterizations of compact operators. The spectral
theorem for normal, compact operators. Atkinson’s theorem. Fredholm
operators and index. Invariance properties of the index. Exercises.

3.3.1. An operator T on an infinite-dimensional Hilbert space $ has finite rank
if T(9) is a finite-dimensional subspace of $ (hence closed, cf. 2.1.9). The set
B/(9) of operators in B($) with finite rank is clearly a subspace, and it is
easily verified that B,(9) is not only a subalgebra, but even an ideal in B($)
(cf. 4.1.2).

If Te B/(9), we may use 3.2.5 to obtain an orthogonal decomposition
9 = T(H) @ ker T*, which shows that T*(H) = T*T(9), so that T* has finite
rank. Thus, B,(9) is a self-adjoint ideal in B(9) [i.e. (B(9))* = B,(9) as a set].

The class B,($) bears much the same relation to B(9) as the class C(X) in
relation to Cy(X) (when X is a locally compact Hausdorff space; see 1.7.6 and
2.1.14). These classes describe local phenomena on § and on X. Passing to a
limit in norm may destroy the exact “locality,” but enough structure is pre-
served to make these “quasilocal” operators and functions very attractive. We
shall study the closure of B/($) in this section as a noncommutative analogue
of Cp(X) in function theory.

3.3.2. Lemma. There is a net (P;);., of projections in B,(9) such that
|P;x — x|| = O for each x in 9.

ProoF. Take any orthonormal basis {¢;|j € J} for $ (cf. 3.1.12), and let A be
the net of finite subsets of J, ordered under inclusion. For each 4 in A let P,
denote the projection of § on the subspace span{e;| j € i}, so that (P;), 4 is
indeed a net in B(9). If x € H, we have x = ) a;e;, whence ||[P;x — x||? =
Y |o;|%, the summation being over all j ¢ 4; and this tends to zero by Parseval’s
identity (3.1.11). N

3.3.3. Theorem. Let B denote the closed unit ball in a Hilbert space $. Then the
following conditions on an operator T in B(9) are equivalent:

(i) Te(B(9H))".
(i) T|B is a weak—norm continuous function from B into 9.
(iif) T(B) is compact in H.
(iv) (T(B))" is compact in 9.
(v) Each net in B has a subnet whose image under T converges in §.

PROOF. (1) = (i1). Let (x;);. be a weakly convergent net in B with limit x.
Given ¢ > 0 there is by assumption an S in B,($) with ||S — T| < &/3, whence
| Tx, — Tx|| < 2||T — S|| + [|Sx; — Sx||

<2+ ||Sx; — Sx|.
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Since every operator in B($) is weak—-weak continuous (cf. 3.1.10), we have
Sx, — Sx, weakly. However, on the finite-dimensional subspace S($) all vector
space topologies coincide by 2.1.9, so that Sx; — Sx in norm. Eventually,
therefore, | Tx; — Tx|| < &. Since ¢ was arbitrary, T is weak—norm continuous
by 1.4.3.

(ii) = (iii) Since B is weakly compact (3.1.10), the image T(B) is norm(!)
compact by 1.6.7.

(iii) = (iv) is trivial, since T(B) is closed by 1.6.5.

(iv) = (v) Tt follows from 1.6.2(v) that if T(B) is relatively compact, then
every net has a convergent subnet.

(v) = (i) Take (P,); . s in 3.3.2. Then P, Te B,(9)for every 4, and we claim
that P, T — T. If not, there is an ¢ > 0 and (passing if necessary to a subnet of
A) for every 1 a unit vector x, with |(P,T — T)x,|| > & By assumption we
may assume that the net (Tx,),. 5 is norm(!) convergent in $ with a limit y.
But then by 3.3.2

e < (I — P)Tx, || < (I — P)(Tx;, — Yl + 1 — Pyl
< || Tx; — yll + I — Pyl =0,
a contradiction. Thus, |P,T — T| — 0, as desired. 0

3.3.4. The class of operators satisfying 3.3.3 is called the compact operators
[after condition (iii)] and is denoted by By($) to signify that these operators
“vanish at infinity.” Unfortunately, this notation is not standard, and the
reader will more often find the letters K or C [sometimes K($) or C(£)] used.
We see from condition (i) that B,(9) is a norm closed, self-adjoint ideal in
B($) (and actually the smallest such; for separable Hilbert spaces even the only
closed ideal). Note that I ¢ By($) when 9 is infinite-dimensional, but that
B,($) has an approximate unit consisting of projections of finite rank [cf. the
proof of the implication (v) = (1)].

3.3.5. Lemma. A diagonalizable operator T in B(9) is compact iff its eigenvalues
{4 j € J} corresponding to an orthonormal basis {e;| j € J} belongs to co(J).

PrOOF. We have Tx = ) A/(x|e;)e; for every x in 9, cf. (¥)in 3.2.14. If Te Bo(9H)
and ¢ > 0 is given, we let

Jo={jeJ|l}l = ¢

If J, is infinite, the net (e;); ., will converge weakly to zero for any well-ordering
of J,, because (¢, x) — 0 by Parseval’s identity 3.1.11. Since || Te;| = |4;| > e for
j in J,, this contradict condition (ii) in 3.3.3. Thus, J, is finite for each ¢ > 0,
which means that the 4;/s vanish at infinity.
Conversely, if J, is finite for each ¢ > 0, we let
1, = Z Ai(-1eye;.

jed,
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Then T, has finite rank and

2
T — T)xI* = || 3. Aixle)e;
i€
= Y |4*(xle)|* < e*llx]|%
irA
Thus | T — T,|| < &, whence Te By(9) by 3.3.3(i). ]

Lemma 3.3.6. If x is an eigenvector for a normal operator T in B(9), correspond-
ing to the eigenvalue A, then x is an eigenvector for T*, corresponding to the
eigenvalue A. Eigenvectors for T corresponding to different eigenvalues are
orthogonal.

Proor. The operator T — Al is normal and its adjoint is T* — AI. Con-
sequently, we have

I(T* = ADx]| = (T — ADx[| = 0;
cf. 3.2.7.If Ty = py with 1 # u, we may assume that 4 # 0, whence
(x[y) = A7 (Tx|y) = A7 (x| T*y) = A7 (x| py) = 27" u(xly),
so that (x|y) = 0. O

3.3.7. Lemma. Every normal, compact operator T on a complex Hilbert space
$ has an eigenvalue A with |1 = ||T|.

Proor. With B as the unit ball of $ we know from 3.3.3 that T: B —» $ is
weak—norm continuous. If therefore x; — x weakly in B, then
[(Txi %) — (Tx[x)| = [(T(x; — %)Ix:) + (Tx|x; — x)|
< T = )l + |(Txlx; — x)| > 0.
This shows that the function x — |(Tx|x)| is weakly continuous on B. Since

B is weakly compact, the function attains it maximum (1.6.7), and by 3.2.25
that maximum is || T||. Thus,

[(TxIx)| = I T
for some x in B. Now
ITH = [(Tx|x)| < I Tl < T,
so that, in fact, |(Tx|x)| = | Tx| ||x||. But as we saw in 3.1.3, equality holds in

the Cauchy-Schwarz inequality only when the vectors are proportional, and,
therefore, Tx = Ax for some 1. Evidently || = | T O

3.3.8. Theorem. Every normal, compact operator T on a complex Hilbert space
$ is diagonalizable and its eigenvalues (counted with multiplicity) vanish at
infinity. Conversely, each such operator is normal and compact.
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Proor. We need only show that every normal, compact operator T is
diagonalizable, since the rest of the statement in 3.3.8 is contained in 3.3.5.
Toward this end, consider the family of orthonormal systems in $ consisting
entirely of eigenvectors for T. Clearly this family is inductively ordered under
inclusion, so by Zorn’s lemma (1.1.3) it has a maximal element {¢;| j € J}. Let
{4;|j € J} denote the corresponding system of eigenvalues, and let P denote
the projection on the closed subspace spanned by the ¢;’s [so that these form
a basis for P($)]. For each x in §) we then have, by 3.3.6, that

TPx = TY (x|ej)e; = Y, (x|e;)Ase;
=Y (xl4e)e; = 3 (x| T*e)e
= Z (ijej)ej = PTx.

It follows that T and P commute, so that the operator(I — P)T is normal and
compact. If P # I, we either have (I — P)T = 0, and then every unit vector e,
in(I — P)$ is an eigenvector for T, orelse (I — P)T # 0, in which case by 3.3.7
thereis a unit vector ¢, in (I — P)$ with Te, = degand |A| = ||(I — P)T|. Both
cases contradict the maximality of the system {e;| j € J}, and therefore P = I.

O

3.3.9. It will be convenient, especially for the next section, to introduce the
notation x @ y for the rank one operator in B($) determined by the vectors
x and y in $) by the formula

(x © y)z = (z|y)x.

Note that the map x, y — x © y is a sesquilinear map of § x § into B(H). If
llel = 1, then ¢ ® e is the one-dimensional projection of  on Ce. Every
normal, compact operator on §) can now by 3.3.8 be written in the form

for a suitable orthonormal basis {e;|j € J}. The sum converges in norm,
because either the set J, = {j € J|4; # 0} is finite [so that Te B,(9)] or else

is countably infinite, in which case the sequence {4;|j € J,} converges to zero.
We say that the compact set

sp(T) = {4l j € Jo} v {0}

is the spectrum of T.
For every continuous function f on sp(T’) we define

[T =3 f(4)e; Qe

Then f(T) is compact iff f(0) =0, and the map f — f(T) is an isometric
x-preserving homomorphism of C(sp(7T)) into B($). Moreover, if f(z) =
Y a,,2z"Z™, a polynomial in the two commuting variables z and Z, then f(T) =
Y oty T"T*™ This result is the spectral (mapping) theorem for normal, compact
operators. In the next chapter we shall show a generalized version of the
spectral mapping theorem, valid for every normal operator.
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