A family $\{A_s\}_{s\in S}$ of subsets of a set X is called a cover of X if $\bigcup_{s\in S}A_s=X$. If X is a topological space and all the sets A_s are open (closed), we say that the cover $\{A_s\}_{s\in S}$ is open (closed). A family $\{A_s\}_{s\in S}$ of subsets of a set X is called point-finite (point-countable) if for every $x\in X$ the set $\{s\in S: x\in A_s\}$ is finite (countable). Clearly every locally finite cover is point-finite. On the other hand, the open cover of the interval I consisting of I itself and of all intervals (1/(i+1), 1/i), where $i=1,2,\ldots$, is point-finite and not locally finite.

1.5.18. THEOREM. For every point-finite open cover $\{U_s\}_{s\in S}$ of a normal space X there exists an open cover $\{V_s\}_{s\in S}$ of X such that $\overline{V}_s\subset U_s$ for every $s\in S$.

PROOF. Let \mathcal{G} be the family of all functions G from the set S to the topology \mathcal{O} of the space X subject to the conditions:

(7)
$$G(s) = U_s \quad \text{or} \quad \overline{G(s)} \subset U_s,$$

and

(8)
$$\bigcup_{s\in S}G(s)=X.$$

Let us order the family \mathcal{G} by defining that $G_1 \leq G_2$ whenever $G_2(s) = G_1(s)$ for every $s \in S$ such that $G_1(s) \neq U_s$. We shall show that for each linearly ordered subfamily $\mathcal{G}_0 \subset \mathcal{G}$ the formula $G_0(s) = \bigcap_{G \in \mathcal{G}_0} G(s)$ for $s \in S$ defines a member of \mathcal{G} . Condition (7) is clearly

satisfied for $G=G_0$; we shall verify condition (8). Take a point $x\in X$; as $\{U_s\}_{s\in S}$ is point-finite, there exists a finite set $S_0=\{s_1,s_2,\ldots,s_k\}\subset S$ such that $x\in U_{s_i}$ for $i=1,2,\ldots,k$ and $x\not\in U_s$ for $s\in S\setminus S_0$. If $G_0(s_i)=U_{s_i}$ for some $s_i\in S_0$, then $x\in G_0(s_i)\subset \bigcup_{s\in S}G_0(s)$. Assume now that for $i=1,2,\ldots,k$ there exists a $G_i\in \mathcal{G}_0$ such that $G_i(s_i)\neq U_{s_i}$. Since the family \mathcal{G}_0 is linearly ordered, there exists a $j\leq k$ such that $G_i\leq G_j$ for $i=1,2,\ldots,k$. Applying (8) to G_j we find an $i_0\leq k$ such that $x\in G_j(s_{i_0})=G_0(s_{i_0})$, so that also in this case $x\in \bigcup_{s\in S}G_0(s)$. One easily sees that $G\leq G_0$ for every $G\in \mathcal{G}_0$.

From the Kuratowski-Zorn lemma it follows that there exists a maximal element G in \mathcal{G} ; to complete the proof it suffices to show that $\overline{G(s)} \subset U_s$ for every $s \in S$.

Let us suppose that $\overline{G(s_0)} \cap (X \setminus U_{s_0}) \neq \emptyset$. The set $A = X \setminus \bigcup \{G(s) : s \in S \setminus \{s_0\}\} \subset G(s_0)$ is closed. By the normality of X there exists an open set U such that $A \subset U \subset \overline{U} \subset G(s_0)$. Since from (7) it follows that $G(s_0) = U_{s_0}$, the formula

$$G_0(s) = \left\{ egin{aligned} U & ext{for } s = s_0, \ G(s) & ext{for } s
eq s_0, \end{aligned}
ight.$$

defines a function $G_0 \in \mathcal{G}$ such that $G \leq G_0$ and $G \neq G_0$. This contradiction to maximality of G shows that $\overline{G(s)} \subset U_s$ for every $s \in S$.