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Abstract

This text is meant as a well-motivated introduction to differential forms, using the
classical integral theorems mentioned in the title as point of departure.

1 The Classical Theorems of Green, Gauss and

Stokes

We assume familiarity with (i) Riemann integration on R
n, (ii) surfaces in R

n, including
boundaries and orientations, and (iii) the classical integral theorems. See e.g. [3] and, for
a more rigorous treatment of (i) and (ii), [5].

We begin by recalling the following theorems (nicely treated in [3, Chapter 8]):

1. The Fundamental Theorem of Analysis. Let a, b ∈ R, a < b and f ∈
C1([a, b], R). Then ∫ b

a

f ′(x)dx = f(b) − f(a).

2. The Theorem of Green. Let A ⊂ R
2 be compact such that ∂A is a (piecewise)

C1 curve, and let f1, f2 ∈ C1(A, R). Then

∫

A

(
∂f2

∂x1
−

∂f1

∂x2

)
dx1dx2 =

∫

∂A

f1dx1 + f2dx2,

where ∂A has the boundary orientation induced by the standard orientation [(1, 0), (0, 1)]
of A ⊂ R

2.

3. The Theorem of Gauss. Let A ⊂ R
3 be compact such that ∂A is a (piecewise)

C1 surface (of dimension 2), and let f1, f2, f3 ∈ C1(A, R). Then

∫

A

(
∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3

)
dx1dx2dx3 =

∫

∂A

(f1, f2, f3)
t · ~dA,

where ~dA = ~ndA, ~n being the outward directed normal vector on ∂A and dA being
the surface element.

4. The Theorem of Stokes. Let A ⊂ R
3 be a compact (piecewise) C1 oriented 2-

dimensional surface. Let f1, f2, f3 ∈ C1(U, R), where U is some open neighborhood
of A. Then ∫

A

rot~f · ~dA =

∫

∂A

f1dx1 + f2dx2 + f3dx3,

1



where

rot~f =

(
∂f2

∂x3
−

∂f3

∂x2
,

∂f3

∂x1
−

∂f1

∂x3
,

∂f1

∂x2
−

∂f2

∂x1

)t

.

Again, the orientation on the curve ∂A is the one canonically induced by the one on
A.

What do these theorems have in common? Can we perhaps prove all of them in one
go? Are there higher dimensional versions? We begin with the following observations:

• We start from a compact surface A of dimension k in R
n and a C1 function f : A →

R
k. (In order to make sense of the differentiability assumption, in the case k = n we

will require that A is the closure of its interior. When k < n one usually assumes
that f is defined on some open neighborhood U ⊃ A.

• On the left hand side, one integrates over A and on the right hand side over the
boundary ∂A, which is a surface of dimension k − 1.

• On the left hand side, the integrand is a linear combination of first derivatives of f ,
on the right hand side f appears without differentiation.

• We also note that there is a difference between the Theorem of Stokes and the three
other results: In the former we have k = 2 < 3 = n, whereas in the others we
have k = n. The latter means that A has the same dimension as R

n, thus A is the
closure of some bounded open subset U ⊂ R

n. We will now try to find a common
formulation of the fundamental theorem of analysis and the theorems of Gauss and
Green that can be generalized.

• If we replace (f1, f2) in Green’s theorem by (−f2, f1), we obtain the equivalent
equation ∫

M

(
∂f1

∂x1
+

∂f2

∂x2

)
dx1dx2 =

∫

∂M

f1dx2 − f2dx1,

which is known as the ‘divergence version’ of Green’s theorem, cf. [3]. This equals

∫

∂M

(
f1

∂x2

∂t
− f2

∂x1

∂t

)
dt =

∫
det

(
f1

∂x1
∂t

f2
∂x2
∂t

)
dt.

(Since ∂M is a closed curve, we need at least two charts to parametrize it. Thus
we should really have a sum of terms, one for each chart (Ui, ϕi), where the Ui are
chosen such that the pairwise intersections of their closures have measure zero.)

• In Gauss’ theorem, the (normal vector valued) surface element ~dA = ~ndA of ∂M is
given by (

∂~x

∂t1
×

∂~x

∂t2

)
dt1dt2,

where t1, t2 are local parameters. (By definition of the boundary orientation on ∂M ,
the triple (~n, ∂~x

∂t1
, ∂~x

∂t2
) has the standard orientation of R

3 iff ~n points to the outside
of M , as in the statement of Gauss’ theorem.) Thus the right hand side of Gauss’
theorem equals

∫
~f ·

(
∂~x

∂t1
×

∂~x

∂t2

)
dt1dt2 =

∫
det




f1
∂x1
∂t1

∂x1
∂t2

f2
∂x2
∂t1

∂x2
∂t2

f3
∂x3
∂t1

∂x3
∂t2


 dt1dt2.

(Again, we really have a sum over charts.)
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2 The Generalized Gauss Theorem

In view of the preceding discussion, it is not too difficult to guess the right generalization
of the theorems of Gauss and Green:

Theorem 1 Let U ⊂ R
n bounded, open and connected such that ∂U is a (piecewise) C 1

surface (necessarily of dimension n− 1). Write M = U , let f1, . . . , fn ∈ C1(M, R) and ϕ
a parametrization of M . Then

∫

M

(
n∑

i=1

∂fi

∂xi
(x)

)
dx =

∫

∂M

det




f1
∂ϕ1

∂t1
. . . ∂ϕ1

∂tn−1

. . . . . . . . . . . .

fn
∂ϕn

∂t1
. . . ∂ϕn

∂tn−1


 dt1 · · · dtn−1, (1)

where the orientation of ∂M is induced from the standard orientation on M .

Remark 2 1. Since U is open, ∂U = U − U .
2.
∫
M

f(x)dx means the Riemann integral over M , defined as
∫
I
(χMf)(x)dx, where I

is an interval containing M . This integral exists since f is continuous, M is bounded and
∂M is a C1 surface, implying that ∂M is a measure zero subset of R

n.
3. On the r.h.s.,

∫
∂M

should be understood as

∑

i

∫
dt1 · · · dtn−1,

where the summation is over the (finitely many) non-overlapping charts (Ui, ϕi) of ∂M .
The integration variables t1, . . . , tn−1 are coordinates of the chart ϕ : In−1 7→ Ui under
consideration. They must be chosen consistently with the boundary orientation, cf. [5,
12.2]. Now, fi is understood as a function of the tj via fi(ϕ(t)).

4. If n = 1, then ∂M is zero dimensional, thus a (discrete) set. An orientation on a
point is a sign σ ∈ {+,−}, and the oriented boundary of M = ([a, b],→) (where a < b) is
∂M = {(a,−), (b,+)}. Since ‘integration’ of a function f over an oriented set S is defined
by
∫
S

f =
∑

(x,σ)∈S σf(x), we have
∫
∂M

f = f(b) − f(a). The generalized Gauss theorem
thus reduces to the fundamental theorem of analysis.

4. In order to include cases like M being an interval I =
∏n

i=1[ai, bi], we allow ∂M to
be only piecewise C1. This means that ∂M is the union of finitely many components Ni

such that each Ni is a C1 surface and Ni ∩ Nj, j 6= i has measure zero as a subset of Ni,
i.e. w.r.t. the coordinates t1, . . . , tn−1 of Ni.

Proof of Theorem 1. We first consider the case where M is an interval I =
∏n

i=1[ai, bi].
Then for the l.h.s. of (1) we have:

∫

M

(
n∑

i=1

∂fi

∂xi

)
dx =

n∑

i=1

∫ b1

a1

· · ·

∫ bn

an

∂fi

∂xi
dx1 · · · dxn

=

n∑

i=1

∫ b1

a1

· · ·

∫̂ bi

ai

· · ·

∫ bn

an

Fi(x1, . . . , xi−1, xi+1, . . . , xn)dx1 · · · d̂xi · · · dxn, (2)

where

Fi(x1, . . . , xi−1, xi+1, . . . , xn) = fi(x1, . . . , xi−1, bi, xi+1, . . . , xn)−fi(x1, . . . , xi−1, ai, xi+1, . . . , xn))
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and
∫̂ bi

ai
· · · d̂xi means that integration over xi is omitted. We have used Fubini’s theorem

(i.e., the integral can be computed one variable after the other, in arbitrary order) and
the fundamental theorem of analysis. With

Ai = {x ∈ I | xi = ai}, Bi = {x ∈ I | xi = bi}

the r.h.s. of (2) can be written as

n∑

i=1

(∫̃

Bi

fi(x)dx −

∫̃

Ai

fi(x)dx

)
, (3)

where the ˜means that we use the natural positive volume elements dx1 · · · d̂xi · · · dxn on
Ai and Bi. Note that ∂I = ∪n

i=1(Ai ∪ Bi).
On the other hand, developing the determinant on the right hand side of (1) along the

first column, we obtain ∫

∂M

n∑

i=1

(−1)i+1fi detDi,

where Di is the (n − 1) × (n − 1)-matrix ( ∂ϕr

∂ts
)1≤r≤n, 1≤s≤n−1, r 6=i. We coordinatize the

faces Ai and Bi of I by x1 = t1, . . . , xi−1 = ti−1, xi+1 = ti, . . . , xn = tn−1, together with
xi = ai or xi = bi, respectively. Now it is easy to see that Di is the unit matrix on Ai

and Bi, giving detDi = 1. For j 6= i, detDi is zero on Aj and Bj. Thus the r.h.s. of (1)
equals

n∑

i=1

(−1)i+1

(∫

Ai

fi(x) +

∫

Bi

fi(x)

)
, (4)

where Ai ⊂ ∂M and Bi ⊂ ∂M have the canonical boundary orientation. Now, the
standard orientation on R

n is [(e1, . . . , en)]. Bringing the vector ei, which is orthogonal
to Ai and Bi, to the first position requires i − 1 exchanges of vectors. Thus

[(ei, e1, . . . , êi, . . . , en)] = (−1)i−1[(e1, . . . , en)].

Now, ei points in the direction of increasing xi, thus outside of I on Bi and inside I on
Ai. Thus, positive orientation on Bi is defined by (−1)i−1[(e1, . . . , êi, . . . , en)] and on Ai

by (−1)i[(e1, . . . , êi, . . . , en)]. Thus

∫

Ai

· · · = (−1)i

∫̃

Ai

· · · ,

∫

Bi

· · · = (−1)i−1

∫̃

Bi

· · · ,

implying that (4) equals (3) and proving the theorem in the case M = I.
Turning to the general case, we chose an interval I =

∏n
i=1[ai, bi] containing M and

define
∫
M

· · · as
∫
I
χM · · · . This integral exists since

∑
i

∂fi

∂xi
is continuous and ∂M has

measure zero. Let P be a partition of I. (This means that we consider a partition Pi of
[ai, bi] for each i = 1, . . . , n and then let Ik run through the products of n intervals, one
from each Pi.) Then

∫

M

(
n∑

i=1

∂fi

∂xi
(x)

)
dx =

∫

I

χM (x)

(
n∑

i=1

∂fi

∂xi
(x)

)
dx =

∑

j

∫

Ij

χM (x)

(
n∑

i=1

∂fi

∂xi
(x)

)
dx.

Since ∂M has measure zero, the total volume of those intervals Ij that intersect ∂M tends
to zero as λ(P ) → 0. Together with the fact that the integrand is bounded, this implies
that the contribution of these intervals to the sum tends to zero:

∫

M

(
n∑

i=1

∂fi

∂xi
(x)

)
dx = lim

P={Ij}

λ(P )→0

∑

Ij⊂M

∫

Ij

(
n∑

i=1

∂fi

∂xi
(x)

)
dx.
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Since we now integrate over intervals Ij in the interior of M , the integrand is continuous
and we can apply the version of this theorem for intervals as proven above:

∫

M

(
n∑

i=1

∂fi

∂xi
(x)

)
dx = lim

P={Ij}

λ(P )→0

∑

Ij⊂M

∫

∂Ij

det




f1
∂x1
∂t1

. . . ∂x1
∂tn−1

. . . . . . . . . . . .

fn
∂xn

∂t1
. . . ∂xn

∂tn−1


 .

Now recall that the boundary of each Ij consists of 2n faces. Each of these faces belongs
to at most one other interval Ik, whose intersection with Ij then is exactly that face. The
following picture, in which only the intervals Ij ⊂ M are drawn, should illustrate this:

S

Now, a face that belongs to two adjacent intervals Ii and Ij contributes to
∫
∂Ii

and∫
∂Ij

with opposite signs, since it has opposite orientations in ∂Ii and ∂Ij. Thus only the

faces that appear only once contribute, and we denote their union by S(P ). In fact:

S(P ) = ∂


 ⋃

Ij⊂M

Ij


 .

S(P ) is a piecewise C1 (n − 1)-dimensional surface, and constitutes an approximation of
∂M , as is clear from the figure. We summarize:

∫

M

(
n∑

i=1

∂fi

∂xi
(x)

)
dx = lim

P={Ij}

λ(P )→0

∫

S(P )
det




f1
∂ϕ1

∂t1
. . . ∂ϕ1

∂tn−1

. . . . . . . . . . . .

fn
∂ϕn

∂t1
. . . ∂ϕn

∂tn−1


 . (5)

Thus, the proof of the theorem is complete if we can show that the r.h.s. of (5) equals the
r.h.s. of (1). This is certainly plausible, since by assumption ∂M is piecewise C 1, leading
us to expect that in some sense

“ lim
P={Ij}

λ(P )→0

S(P ) = ∂M”.

Unfortunately, turning this into a rigorous proof is somewhat tedious, and we will only
give a sketch. We begin by observing that the determinant in (5) can be written as a
scalar product ~f · ~nS =

∑N
i=1 fi n

S
i , where

nS
i = (−1)i−1 det Di, where Di =

(
∂ϕr

∂ts

)

1≤r≤n, 1≤s≤n−1, r 6=i

.

(We have met the (n − 1) × (n − 1)-matrices Di before.) We can thus write the r.h.s. of
(5) as

lim
P={Ij}

λ(P )→0

∫

S(P )

~f(ϕ(t)) · ~nS(t) dt1 . . . dtn−1,
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and similarly with the r.h.s. of (1). Now, the vectors ∂~x/∂ti, i = 1, . . . , n − 1 are a basis
of TxS(P ), thus the determinant in (5) is zero if ~f is in TxS(P ), implying that ~nS is
orthogonal to the surface S(P ). Furthermore, ‖~nS(t)‖dt1 · · · dtn−1 is the surface element.
Thus, ~nS(t) is constant on the faces of which S(P ) consists and jumps on the edges of
S(P ), and therefore it has more and more jump discontinuities as λ(P ) → 0. But if
x ∈ ∂M is a point where ∂M is C1, ∂M can be approximated by an (n − 1)-dimensional
plane near x, implying limλ(P )→0 d(x, S(P )) = 0. Then, as λ(P ) → 0, the average of ~nS(t)

over a part of S(P ) close to x will converge to ~n∂M (x) (which exists since ∂M is C1 at
x.) Together with the uniform continuity of ~f on compact sets, this implies

lim
P={Ij}

λ(P )→0

∫

S(P )

~f(ϕ(t)) · ~nS(t) dt1 . . . dtn−1 =

∫

∂M

~f(ϕ(t)) · ~n∂M(t)dt1 . . . dtn−1,

and therefore the theorem. (Note that the maps ϕ on the left and right hand sides are
not the same, since they parametrize (pieces of) S(P ) and ∂M , respectively.) �

Remark 3 1. In the course of the proof we have also seen that the r.h.s. of (1) is just
the flux

∫
∂M

~f(t) · d~n(t) of ~f through the surface ∂M . This makes the formal similarity
of Theorem 1 with Gauss’ theorem even more complete. Therefore we will call Theorem
1 the Generalized Gauss Theorem. As we have seen, it contains the classical theorems
of Gauss and Green as special cases. However, it does not contain the classical theorem
of Stokes, since there we have M ⊂ R

n with k = dimM = 2 < 3 = n. We will soon
discuss the Generalized Stokes Theorem, which contains both Theorem 1 and the classical
theorem of Stokes as special cases. We begin by using Theorem 1 to motivate the necessary
definitions.

2. Our proof of the general case of the theorem was less than elegant. As it turns
out, this was due to our insistence on using elementary methods (and in particular the
avoidance of partitions of unity). In fact, the generalized Stokes theorem below admits
very elegant proofs.
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