Acyclic and frugal colourings of graphs

Ross Kang (joint work with Tobias Müller (Tel Aviv))

School of Computer Science, McGill University

Tuesday, 2 June 2009 Cologne-Twente Workshop (Paris)

Acyclic and frugal colouring

Ross Kang (McGill)

(日)

Introduction

Given graph G = (V, E), a *colouring* of G is a mapping

 $f:V\to\{1,\ldots,x\}$

for some integer *x*. Graph colouring can model interference in a network and we want colourings which map to *few* colours.

Typically, graph theorists are concerned with colourings which are *proper*, but we won't presume this here.

Introduction

We consider graphs with bounded maximum degree $\Delta(G) = d$ and the asymptotic behaviour as $d \to \infty$.

Lovász Local Lemma

Let $\mathscr E$ be a set of (typically bad) events such that for each $A \in \mathscr E$

1. $Pr(A) \le p < 1$, and

2. A is mutually independent of all but at most δ other events. If $ep(\delta + 1) < 1$, then with positive probability none of the events in \mathscr{E} occur.

Frugal colouring

Given G = (V, E) and $t \ge 1$, a colouring of *G* is *t*-frugal if no colour appears more than *t* times in any neighbourhood. Notation:

> *t*-frugal chromatic number $\longrightarrow \varphi^t$ proper *t*-frugal chromatic number $\longrightarrow \chi_{\varphi}^t$

Frugal colouring

Given G = (V, E) and $t \ge 1$, a colouring of G is *t*-frugal if no colour appears more than t times in any neighbourhood. Notation:

> *t*-frugal chromatic number $\longrightarrow \varphi^t$ proper *t*-frugal chromatic number $\longrightarrow \chi^t_{\varphi}$

Note: φ^1 also known as *injective chromatic number* (HKSS '02) and $\chi^1_{\varphi}(G)$ is the same as $\chi(G^2)$.

$$\varphi^t(d) := \sup\left\{\varphi^t(G) \mid \Delta(G) = d\right\}.$$

We may allow t = t(d) to vary/grow as a function of d.

Acyclic and frugal colouring

Ross Kang (McGill)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Frugal colouring

Example: t = 1, point-line incidence graph of Fano plane.

$$\implies \varphi^1(3) = 7.$$

Acyclic and frugal colouring

Ross Kang (McGill)

・ロト ・聞 ト ・ ヨト ・ ヨト

Frugal colouring lower bounds

Observation: $\varphi^t(d) \ge d/t$ since $\varphi^t(G) \ge \Delta(G)/t$.

・ロト・1日・1日・1日・1日・2000

Acyclic and frugal colouring

Ross Kang (McGill)

Frugal colouring lower bounds

Observation: $\varphi^{t}(d) \ge d/t$ since $\varphi^{t}(G) \ge \Delta(G)/t$. Proposition (Alon, cf. HMR '97) For any $t \ge 1$ and any prime power n,

$$\varphi^t(n^t+\cdots+1)\geq (n^{t+1}+\cdots+1)/t.$$

Corollary

Suppose that $t = t(d) \ge 2$ and $t = o(\ln d / \ln \ln d)$. Then, $\varphi^t(d) = \Omega(d^{1+1/t}/t)$.

Acyclic and frugal colouring

Proper frugal colouring

Theorem (MoRe '09) For sufficiently large d, $\chi_{\varphi}^{50 \ln d / \ln \ln d}(d) \le d + 1$.

Theorem (HMR '97)

For any $t \ge 1$ and sufficiently large d,

$$\chi_{\varphi}^{t}(d) \leq \max\left\{(t+1)d, \left\lceil e^{3}d^{1+1/t}/t \right\rceil
ight\}$$

Acyclic and frugal colouring

Ross Kang (McGill)

・ロット (雪) (日) (日) (日)

Proper frugal colouring

Theorem (MoRe '09) For sufficiently large d, $\chi_{\varphi}^{50 \ln d / \ln \ln d}(d) \le d + 1$.

Theorem (HMR '97)

For any $t \ge 1$ and sufficiently large d,

$$\chi_{\varphi}^{t}(d) \leq \max\left\{(t+1)d, \left\lceil e^{3}d^{1+1/t}/t \right\rceil
ight\}.$$

$$\begin{split} t &\geq 50 \ln d / \ln \ln d \implies \chi_{\varphi}^t(d) = \Theta(d), \\ t &= o(\ln d / \ln \ln d) \implies \chi_{\varphi}^t(d) = \Theta(d^{1+1/t}/t), \\ t &= o(\ln d / \ln \ln d) \implies \varphi^t(d) = \Theta(d^{1+1/t}/t). \end{split}$$

Acyclic and frugal colouring

Ross Kang (McGill)

Frugal colouring, *t* large

Theorem Suppose $t = \omega(\ln d)$. Then, $\forall \varepsilon > 0$,

 $\varphi^t(d) \leq \lceil (1+\varepsilon)d/t \rceil$

for sufficiently large d.

A D > A P > A D > A D >

Frugal colouring, *t* large

Theorem Suppose $t = \omega(\ln d)$. Then, $\forall \varepsilon > 0$,

$$arphi^t(d) \leq \lceil (1 + arepsilon) d / t
ceil$$

for sufficiently large d.

Proof.

Assume G = (V, E) is *d*-regular. Let $f : V \to \{1, ..., x\}$ be a random colouring where $x = \lceil (1 + \varepsilon)d/t \rceil$. Let $A_{v,i}$ be event that v has > t neighbours coloured *i*. Each event independent of all but at most $d^2x \ll d^3$ other events and $\Pr(A_{v,i}) = \exp(-\Omega(t))$ using Chernoff. By LLL, none of the events hold and *f* is *t*-frugal with positive probability.

Acyclic and frugal colouring

Frugal colouring summary

Ross Kang (McGill)

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Acyclic colouring

Given G = (V, E), a colouring of G is *acyclic* if the bipartite subgraph induced by the edges between any two colours is acyclic. (Any graph has an acyclic 1-colouring!)

Notation:

acyclic *t*-frugal chromatic number $\longrightarrow \varphi_a^t$ acyclic proper *t*-frugal chromatic number $\longrightarrow \chi_{\varphi,a}^t$ (acyclic proper chromatic number $\longrightarrow \chi_a$)

Note: $\chi^2_{\varphi,a}$ also known as *linear chromatic number* (Yuster '98) and $\chi^1_{\varphi,a}(G)$ is the same as $\chi(G^2)$.

$$\varphi_a^t(d) := \sup\left\{ \varphi_a^t(G) \mid \Delta(G) = d
ight\}.$$

Acyclic (proper) colouring

Notes:

- Acyclic proper colouring has been studied extensively ...
- Any planar graph is acyclically properly 5-colourable (Borodin '79).

•
$$\chi_a(d) \leq \lceil 50d^{4/3} \rceil$$
 (AMR '91).

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Theorem (AMR '91)
$$\chi_a(d) \leq \lceil 50d^{4/3} \rceil$$
. $\chi_a(d) = \Omega(d^{4/3}/(\ln d)^{1/3})$.

$$\chi^{1}_{\varphi,a}(d) = d^{2} + 1.$$
 $\chi^{2}_{\varphi,a}(d) \leq \lceil 50d^{3/2} \rceil$ (Yuster '98).

Acyclic and frugal colouring

ि≣। े ≣ ∽ि २० Ross Kang (McGill)

ヘロト 人間 とくほ とくほ とう

Theorem $\chi^3_{\varphi,a}(d) \leq \lceil 50d^{4/3} \rceil.$

Acyclic and frugal colouring

Ross Kang (McGill)

Theorem $\chi^3_{\varphi,a}(d) \leq \lceil 50d^{4/3} \rceil.$

Proof outline.

We extend the theorem of AMR '91 by adding a fifth event to ensure that the random colouring f is 3-frugal:

V For vertices *v*, *v*₁, *v*₂, *v*₃, *v*₄ with {*v*₁, *v*₂, *v*₃, *v*₄} ⊆ *N*(*v*), let $E_{\{v_1,...,v_4\}}$ be the event that $f(v_1) = f(v_2) = f(v_3) = f(v_4)$.

Theorem $\chi^3_{\varphi,a}(d) \leq \lceil 50d^{4/3} \rceil.$

Proof outline.

We extend the theorem of AMR '91 by adding a fifth event to ensure that the random colouring f is 3-frugal:

V For vertices *v*, *v*₁, *v*₂, *v*₃, *v*₄ with {*v*₁, *v*₂, *v*₃, *v*₄} ⊆ *N*(*v*), let $E_{\{v_1,...,v_4\}}$ be the event that $f(v_1) = f(v_2) = f(v_3) = f(v_4)$.

$$\begin{array}{l} \implies \chi^{1}_{\varphi,a}(d) = \Theta(d^{2}), \ \chi^{2}_{\varphi,a}(d) = \Theta(d^{3/2}), \ \chi^{3}_{\varphi,a}(d) = \Theta(d^{4/3}) \\ \text{and, for any } t \geq 4, \ \chi^{t}_{\varphi,a}(d) = \Omega(d^{4/3}/(\ln d)^{1/3}), \\ \chi^{t}_{\varphi,a}(d) = O(d^{4/3}) \ . \end{array}$$

Ross Kang (McGill)

Acyclic frugal colouring lower bounds

Clearly, $\varphi_a^1(d) = \Theta(d^2)$, $\varphi_a^2(d) = \Theta(d^{3/2})$, $\varphi_a^3(d) = \Theta(d^{4/3})$. For larger *t*, we have the upper bound $\varphi_a^t(d) = O(d^{4/3})$, but can no longer borrow the lower bound on $\chi_a(d)$.

We use bounds on the acyclic t-improper chromatic number χ_a^t .

Acyclic frugal colouring lower bounds

Clearly, $\varphi_a^1(d) = \Theta(d^2)$, $\varphi_a^2(d) = \Theta(d^{3/2})$, $\varphi_a^3(d) = \Theta(d^{4/3})$. For larger *t*, we have the upper bound $\varphi_a^t(d) = O(d^{4/3})$, but can no longer borrow the lower bound on $\chi_a(d)$.

We use bounds on the acyclic *t*-improper chromatic number χ_a^t .

Given G = (V, E) and $t \ge 0$, a colouring of *G* is *t-improper* if no vertex has more than *t* neighbours of its same colour. Any *t*-frugal colouring is *t*-improper.

Acyclic improper colouring

Theorem (AEKMP '09+) For any $t = t(d) \le d - 10\sqrt{d \ln d}$ and sufficiently large *d*,

$$\chi_a^t(d) \ge rac{(d-t)^{4/3}}{2^{14}(\ln d)^{1/3}}$$

Theorem (AKM '09+) $\chi_a^{d-1}(d) \ge d/8.$

The same lower bounds hold for $\varphi_a^t(d)$.

Acyclic and frugal colouring

Ross Kang (McGill)

Acyclic frugal colouring, t large

Theorem For any $t = t(d) \ge 1$ and sufficiently large d,

$$\varphi_a^t(d) \le d \cdot \max\{3(d-t), 31 \ln d\} + 2.$$

 $\implies \varphi_a^{d-1}(d) = O(d \ln d).$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Acyclic frugal colouring, *t* large

Given *d*-regular G = (V, E) and $k \in \{1, \dots, d\}$, let

$$\psi(G,k) = \inf\{k' \mid \exists S : \forall v \in V, k \leq |N(v) \cap S| \leq k'\}.$$

Lemma

For any $1 \le k \le d$ and sufficiently large d, if G is d-regular, then

 $\psi(G,k) \leq \max\{3k,31 \ln d\}.$

Acyclic and frugal colouring

Ross Kang (McGill)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Acyclic frugal colouring, *t* large

Theorem

For any $t = t(d) \ge 1$ and sufficiently large d,

$$\varphi_a^t(d) \leq d \cdot \max\{3(d-t), 31 \ln d\} + 2.$$

Proof.

Assume G = (V, E) is *d*-regular with *d* large enough for Lemma. Let *S* be such that $d - t \le |N(v) \cap S| \le x$ for all $v \in V$ where $x = \max\{3(d - t), 31 \ln d\}$. Colour $G \setminus S$ with colour 1 and colour $G^2[S]$ greedily using at most dx + 1 other colours. What results is an acyclic and *t*-frugal colouring of *G*.

Acyclic and frugal colouring

Ross Kang (McGill)

Acyclic frugal colouring summary

	$arphi_{m{a}}^t(m{d})$	
d-t	lower	upper
<i>d</i> – 1	$\Omega\left(\mathbf{d}^{2}\right)$	$O\left(d^2 ight)$
d-2	$\Omega\left(d^{3/2} ight)$	$O\left(d^{3/2} ight)$
d-3	$\Omega\left(d^{4/3} ight)$	
$\omega(d^{3/4}(\ln d)^{1/4})$	$\Omega\left(\frac{(d-t)^{4/3}}{(\ln d)^{1/3}}\right)$	
$\omega(d^{2/3}(\ln d)^{1/3})$		$O(d^{4/3})$
$O(d^{1/2})$	O(d)	
$O(d^{1/3})$	Ω(d)	O((d-t)d)
O(In d)		$O(d \ln d)$
0	1	1

Acyclic and frugal colouring

Ross Kang (McGill)

(日)