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Introduction

Given graph G = (V ,E), a colouring of G is a mapping

f : V →{1, . . . ,x}

for some integer x . Graph colouring can model interference in a
network and we want colourings which map to few colours.

Typically, graph theorists are concerned with colourings which
are proper, but we won’t presume this here.
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Introduction

We consider graphs with bounded maximum degree ∆(G) = d
and the asymptotic behaviour as d → ∞.

Lovász Local Lemma
Let E be a set of (typically bad) events such that for each A ∈ E

1. Pr(A) ≤ p < 1, and

2. A is mutually independent of all but at most δ other events.

If ep(δ +1) < 1, then with positive probability none of the
events in E occur.
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Frugal colouring

Given G = (V ,E) and t ≥ 1, a colouring of G is t-frugal if no
colour appears more than t times in any neighbourhood.

Notation:

t-frugal chromatic number −→ ϕ t

proper t-frugal chromatic number −→ χ t
ϕ
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Frugal colouring

Given G = (V ,E) and t ≥ 1, a colouring of G is t-frugal if no
colour appears more than t times in any neighbourhood.

Notation:

t-frugal chromatic number −→ ϕ t

proper t-frugal chromatic number −→ χ t
ϕ

Note: ϕ1 also known as injective chromatic number (HKSS ‘02)
and χ1

ϕ(G) is the same as χ(G2).

ϕ t(d) := sup
{

ϕ t(G) | ∆(G) = d
}

.

We may allow t = t(d) to vary/grow as a function of d .
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Frugal colouring

Example: t = 1, point-line incidence graph of Fano plane.

=⇒ ϕ1(3) = 7.
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Frugal colouring lower bounds

Observation: ϕ t(d) ≥ d/t since ϕ t(G) ≥ ∆(G)/t .
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Frugal colouring lower bounds

Observation: ϕ t(d) ≥ d/t since ϕ t(G) ≥ ∆(G)/t .

Proposition (Alon, cf. HMR ‘97)
For any t ≥ 1 and any prime power n,

ϕ t(nt + · · ·+1)≥ (nt+1 + · · ·+1)/t .

Corollary
Suppose that t = t(d) ≥ 2 and t = o(lnd/ ln lnd). Then,
ϕ t(d) = Ω(d1+1/t/t).
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Proper frugal colouring

Theorem (MoRe ‘09)
For sufficiently large d, χ50lnd/ ln lnd

ϕ (d) ≤ d +1.

Theorem (HMR ‘97)
For any t ≥ 1 and sufficiently large d,

χ t
ϕ(d) ≤ max

{

(t +1)d ,
⌈

e3d1+1/t/t
⌉}

.
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Proper frugal colouring

Theorem (MoRe ‘09)
For sufficiently large d, χ50lnd/ ln lnd

ϕ (d) ≤ d +1.

Theorem (HMR ‘97)
For any t ≥ 1 and sufficiently large d,

χ t
ϕ(d) ≤ max

{

(t +1)d ,
⌈

e3d1+1/t/t
⌉}

.

t ≥ 50lnd/ ln lnd =⇒ χ t
ϕ(d) = Θ(d),

t = o(lnd/ ln lnd) =⇒ χ t
ϕ(d) = Θ(d1+1/t/t),

t = o(lnd/ ln lnd) =⇒ ϕ t(d) = Θ(d1+1/t/t).
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Frugal colouring, t large

Theorem
Suppose t = ω(lnd). Then, ∀ε > 0,

ϕ t(d) ≤ ⌈(1+ ε)d/t⌉

for sufficiently large d.
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Frugal colouring, t large

Theorem
Suppose t = ω(lnd). Then, ∀ε > 0,

ϕ t(d) ≤ ⌈(1+ ε)d/t⌉

for sufficiently large d.

Proof.
Assume G = (V ,E) is d -regular. Let f : V →{1, . . . ,x} be a
random colouring where x = ⌈(1+ ε)d/t⌉. Let Av ,i be event that
v has > t neighbours coloured i . Each event independent of all
but at most d2x ≪ d3 other events and Pr(Av ,i) = exp(−Ω(t))
using Chernoff. By LLL, none of the events hold and f is
t-frugal with positive probability.
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Frugal colouring summary

ϕ t(d) χ t
ϕ(d)

t lower upper lower upper

O
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)

Ω
(

d1+1/t

t

)

O
(

d1+1/t

t

)
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t

)

O
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t

)

O (lnd)
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d
t

⌉

⌈
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⌉
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t

⌉
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Acyclic colouring

Given G = (V ,E), a colouring of G is acyclic if the bipartite
subgraph induced by the edges between any two colours is
acyclic. (Any graph has an acyclic 1-colouring!)

Notation:

acyclic t-frugal chromatic number−→ ϕ t
a

acyclic proper t-frugal chromatic number−→ χ t
ϕ ,a

(

acyclic proper chromatic number−→ χa
)

Note: χ2
ϕ ,a also known as linear chromatic number (Yuster ‘98)

and χ1
ϕ ,a(G) is the same as χ(G2).

ϕ t
a(d) := sup

{

ϕ t
a(G) | ∆(G) = d

}

.
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Acyclic (proper) colouring

Notes:
◮ Acyclic proper colouring has been studied extensively . . .
◮ Any planar graph is acyclically properly 5-colourable

(Borodin ‘79).
◮ χa(d) ≤ ⌈50d4/3⌉ (AMR ‘91).
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Acyclic proper frugal colouring

Theorem (AMR ‘91)
χa(d) ≤ ⌈50d4/3⌉. χa(d) = Ω(d4/3/(lnd)1/3).

◮ χ1
ϕ ,a(d) = d2 +1.

◮ χ2
ϕ ,a(d) ≤ ⌈50d3/2⌉ (Yuster ‘98).
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Acyclic proper frugal colouring

Theorem
χ3

ϕ ,a(d) ≤ ⌈50d4/3⌉.
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Acyclic proper frugal colouring

Theorem
χ3

ϕ ,a(d) ≤ ⌈50d4/3⌉.

Proof outline.
We extend the theorem of AMR ‘91 by adding a fifth event to
ensure that the random colouring f is 3-frugal:

V For vertices v ,v1,v2,v3,v4 with {v1,v2,v3,v4} ⊆ N(v), let
E{v1,...,v4} be the event that f (v1) = f (v2) = f (v3) = f (v4).
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Acyclic proper frugal colouring

Theorem
χ3

ϕ ,a(d) ≤ ⌈50d4/3⌉.

Proof outline.
We extend the theorem of AMR ‘91 by adding a fifth event to
ensure that the random colouring f is 3-frugal:

V For vertices v ,v1,v2,v3,v4 with {v1,v2,v3,v4} ⊆ N(v), let
E{v1,...,v4} be the event that f (v1) = f (v2) = f (v3) = f (v4).

=⇒ χ1
ϕ ,a(d) = Θ(d2), χ2

ϕ ,a(d) = Θ(d3/2), χ3
ϕ ,a(d) = Θ(d4/3)

and, for any t ≥ 4, χ t
ϕ ,a(d) = Ω(d4/3/(lnd)1/3),

χ t
ϕ ,a(d) = O(d4/3) .
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Acyclic frugal colouring lower bounds

Clearly, ϕ1
a (d) = Θ(d2), ϕ2

a (d) = Θ(d3/2), ϕ3
a (d) = Θ(d4/3). For

larger t , we have the upper bound ϕ t
a(d) = O(d4/3), but can no

longer borrow the lower bound on χa(d).

We use bounds on the acyclic t-improper chromatic number χ t
a.
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Acyclic frugal colouring lower bounds

Clearly, ϕ1
a (d) = Θ(d2), ϕ2

a (d) = Θ(d3/2), ϕ3
a (d) = Θ(d4/3). For

larger t , we have the upper bound ϕ t
a(d) = O(d4/3), but can no

longer borrow the lower bound on χa(d).

We use bounds on the acyclic t-improper chromatic number χ t
a.

Given G = (V ,E) and t ≥ 0, a colouring of G is t-improper if no
vertex has more than t neighbours of its same colour.
Any t-frugal colouring is t-improper.
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Acyclic improper colouring

Theorem (AEKMP ‘09+)
For any t = t(d) ≤ d −10

√
d lnd and sufficiently large d,

χ t
a(d) ≥ (d − t)4/3

214(lnd)1/3
.

Theorem (AKM ‘09+)
χd−1

a (d) ≥ d/8.

The same lower bounds hold for ϕ t
a(d).

Acyclic and frugal colouring Ross Kang (McGill)



Introduction Frugal Acyclic

Acyclic frugal colouring, t large

Theorem
For any t = t(d) ≥ 1 and sufficiently large d,

ϕ t
a(d) ≤ d ·max{3(d − t),31lnd}+2.

=⇒ ϕd−1
a (d) = O(d lnd).
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Acyclic frugal colouring, t large

Given d -regular G = (V ,E) and k ∈ {1, . . . ,d}, let

ψ(G,k) = inf{k ′ | ∃S : ∀v ∈ V , k ≤ |N(v)∩S| ≤ k ′}.

Lemma
For any 1 ≤ k ≤ d and sufficiently large d, if G is d-regular, then

ψ(G,k) ≤ max{3k ,31lnd}.
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Acyclic frugal colouring, t large

Theorem
For any t = t(d) ≥ 1 and sufficiently large d,

ϕ t
a(d) ≤ d ·max{3(d − t),31lnd}+2.

Proof.
Assume G = (V ,E) is d -regular with d large enough for
Lemma. Let S be such that d − t ≤ |N(v)∩S| ≤ x for all v ∈ V
where x = max{3(d − t),31lnd}. Colour G \S with colour 1
and colour G2[S] greedily using at most dx +1 other colours.
What results is an acyclic and t-frugal colouring of G.
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Acyclic frugal colouring summary

ϕ t
a(d)

d − t lower upper

d −1 Ω
(

d2
)

O
(

d2
)

d −2 Ω
(

d3/2
)

O
(

d3/2
)

d −3 Ω
(

d4/3
)

O(d4/3)

ω(d3/4(lnd)1/4) Ω
(

(d−t)4/3

(lnd)1/3

)

ω(d2/3(lnd)1/3)

Ω(d)
O(d1/2)

O(d1/3) O((d − t)d)

O(lnd) O(d lnd)

0 1 1
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