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The stability of random graphs

Notation:

I Gn,p — Erdős-Rényi random graph on n vertices, 0 < p < 1.
I A property holds asymptotically almost surely (a.a.s.) if it

holds with probability tending to one as n→ ∞.
I Denote b = 1

1−p . (Note logb→ p if p→ ∞.)

I χ(G) denotes chromatic number of G.
I α(G) denotes the stability of G.
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The stability of random graphs

Theorem (Bollobás and Erdős 1976, Matula 1976)
If

α0,p(n) = 2logb n−2logb logb(np)+2logb(
e
2 )+1,

then
bα0,p(n)−δc ≤ α(Gn,p)≤ bα0,p(n)+δc a.a.s.
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The chromatic number of random graphs

Theorem (Bollobás 1988, Matula and Kučera 1990)

χ(Gn,p) = (1+o(1))
n

2logb n
a.a.s.

Two-point concentration of χ(Gn,p): Łuczak 1991, Alon and
Krivelevich 1997, and Achlioptas and Naor 2004.
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Extensions to more general parameters

A graph property P is hereditary if it is closed under taking
induced subgraphs.
The P-stability αP(G) of G is the order of a largest vertex
subset of G that induces a subgraph which satisfies P.

The t-stability α t(G) of G is the order of a largest vertex subset
of G that induces a subgraph of maximum degree at most t .
The t-sparsity α̂ t(G) of G is the order of a largest vertex subset
of G that induces a subgraph of average degree at most t .
Note α0(G) = α̂0(G) = α(G).
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Extensions to more general parameters

Theorem (Bollobás and Thomason 2000)
For fixed 0 < p < 1 and non-trivial hereditary P, there exists
cp,P such that a.a.s.

(cp,P −δ ) logn ≤ αP(Gn,p)≤ (cp,P +δ ) logn.

Indeed, a.a.s.

χP(Gn,p) =
n

(cp,P +o(1)) logn
.
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Extensions to more general parameters

Theorem (K and McDiarmid 2010)
For fixed 0 < p < 1, there exists κp(τ), continuous, strictly
increasing for τ ∈ [0,∞), with κp(0) = 2

logb and κp(τ)∼ τ

p as
τ → ∞ such that a.a.s.

(κp(
t

logn )−δ ) logn ≤ αt(Gn,p)≤ α̂t(Gn,p)≤ (κp(
t

logn )+δ ) logn

if t(n) = o(n).

An analogous statement for χt(Gn,p) and χ̂t(Gn,p).
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The t-stability of random graphs

Theorem (Fountoulakis, K and McDiarmid 2010)
For fixed 0 < p < 1, δ > 0 and t ≥ 0, if

αt ,p(n) = 2logb n+(t−2) logb logb np+ logb(
t t

t!2 )

+ t logb(
2bp

e )+2logb(
e
2 )+1,

then
bαt ,p(n)−δc ≤ αt(Gn,p)≤ bαt ,p(n)+δc a.a.s.
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The t-sparsity of random graphs

Theorem
For fixed 0 < p < 1 and t ≥ 0, if δ = δ (n) = (log logn)2

logn and

α̂t ,p(n) = 2logb n+(t−2) logb logb np− t logb t
+ t logb(2bpe)+2logb(

e
2 )+1,

then
bα̂t ,p(n)−δc ≤ α̂t(Gn,p)≤ bα̂t ,p(n)+δc a.a.s.
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The difference

α̂t ,p(n)−αt ,p(n) = 2logb
t!

(t/e)t

∼ logb(2πt) as t → ∞.
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Concluding remarks

I Rather than analytic techniques, large deviations estimates
for both first and second moment are applied to obtain tight
bounds.

I These techniques extend modestly to the case where
p→ 0 as n→ ∞, though new ideas may be necessary for
very sparse random graphs.

I Some precise bounds for the analogous chromatic
numbers have been obtained.
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