Largest sparse subgraphs of random graphs

Ross J. Kang

(joint with N. Fountoulakis and C. McDiarmid)

29 August 2011 EuroComb 2011, Budapest

Largest sparse subgraphs of random graphs

R. J. Kang

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The stability of random graphs

Notation:

- $G_{n,p}$ Erdős-Rényi random graph on *n* vertices, 0 .
- A property holds asymptotically almost surely (a.a.s.) if it holds with probability tending to one as n→∞.
- ▶ Denote $b = \frac{1}{1-p}$. (Note log $b \to p$ if $p \to \infty$.)
- $\chi(G)$ denotes chromatic number of G.
- $\alpha(G)$ denotes the stability of *G*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The stability of random graphs

Theorem (Bollobás and Erdős 1976, Matula 1976) If $\alpha_{0,p}(n) = 2\log_b n - 2\log_b \log_b(np) + 2\log_b(\frac{e}{2}) + 1,$ then $|\alpha_{0,p}(n) - \delta| \le \alpha(G_{n,p}) \le |\alpha_{0,p}(n) + \delta|$ a.a.s.

Largest sparse subgraphs of random graphs

R. J. Kang

The chromatic number of random graphs

Theorem (Bollobás 1988, Matula and Kučera 1990)

$$\chi(G_{n,p}) = (1 + o(1)) \frac{n}{2 \log_b n} a.a.s.$$

Two-point concentration of $\chi(G_{n,p})$: Łuczak 1991, Alon and Krivelevich 1997, and Achlioptas and Naor 2004.

Largest sparse subgraphs of random graphs

イロン 不得 とくほ とくほ とうほ

A graph property \mathscr{P} is *hereditary* if it is closed under taking induced subgraphs.

The \mathscr{P} -stability $\alpha_{\mathscr{P}}(G)$ of G is the order of a largest vertex subset of G that induces a subgraph which satisfies \mathscr{P} .

The *t*-stability $\alpha^t(G)$ of *G* is the order of a largest vertex subset of *G* that induces a subgraph of maximum degree at most *t*. The *t*-sparsity $\hat{\alpha}^t(G)$ of *G* is the order of a largest vertex subset of *G* that induces a subgraph of average degree at most *t*. Note $\alpha^0(G) = \hat{\alpha}^0(G) = \alpha(G)$.

(日) (同) (日) (日) (日)

Theorem (Bollobás and Thomason 2000) For fixed $0 and non-trivial hereditary <math>\mathcal{P}$, there exists $c_{p,\mathcal{P}}$ such that a.a.s.

$$(c_{p,\mathscr{P}}-\delta)\log n \leq lpha_{\mathscr{P}}(G_{n,p}) \leq (c_{p,\mathscr{P}}+\delta)\log n.$$

<ロ> (四) (四) (三) (三) (三)

Theorem (Bollobás and Thomason 2000) For fixed $0 and non-trivial hereditary <math>\mathcal{P}$, there exists $c_{p,\mathcal{P}}$ such that a.a.s.

$$(c_{p,\mathscr{P}}-\delta)\log n \leq \alpha_{\mathscr{P}}(G_{n,p}) \leq (c_{p,\mathscr{P}}+\delta)\log n.$$

Indeed, a.a.s.

$$\chi_{\mathscr{P}}(G_{n,p}) = \frac{n}{(c_{p,\mathscr{P}} + o(1))\log n}$$

Largest sparse subgraphs of random graphs

R. J. Kang

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (K and McDiarmid 2010)

For fixed $0 , there exists <math>\kappa_p(\tau)$, continuous, strictly increasing for $\tau \in [0,\infty)$, with $\kappa_p(0) = \frac{2}{\log b}$ and $\kappa_p(\tau) \sim \frac{\tau}{p}$ as $\tau \to \infty$ such that a.a.s.

 $(\kappa_{p}(\frac{t}{\log n}) - \delta) \log n \le \alpha_{t}(G_{n,p}) \le \hat{\alpha}_{t}(G_{n,p}) \le (\kappa_{p}(\frac{t}{\log n}) + \delta) \log n$ if t(n) = o(n).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem (K and McDiarmid 2010)

For fixed $0 , there exists <math>\kappa_p(\tau)$, continuous, strictly increasing for $\tau \in [0,\infty)$, with $\kappa_p(0) = \frac{2}{\log b}$ and $\kappa_p(\tau) \sim \frac{\tau}{p}$ as $\tau \to \infty$ such that a.a.s.

$$(\kappa_{\rho}(\frac{t}{\log n}) - \delta) \log n \le \alpha_t(G_{n,p}) \le \hat{\alpha}_t(G_{n,p}) \le (\kappa_{\rho}(\frac{t}{\log n}) + \delta) \log n$$

if t(n) = o(n).

An analogous statement for $\chi_t(G_{n,p})$ and $\hat{\chi}_t(G_{n,p})$.

Largest sparse subgraphs of random graphs

イロン 不得 とくほ とくほ とうほ

The *t*-stability of random graphs

Theorem (Fountoulakis, K and McDiarmid 2010) For fixed $0 , <math>\delta > 0$ and $t \ge 0$, if

$$\begin{aligned} \alpha_{t,p}(n) &= 2\log_b n + (t-2)\log_b \log_b np + \log_b(\frac{t^t}{t!^2}) \\ &+ t\log_b(\frac{2bp}{e}) + 2\log_b(\frac{e}{2}) + 1, \end{aligned}$$

then

$$\lfloor \alpha_{t,p}(n) - \delta \rfloor \leq \alpha_t(G_{n,p}) \leq \lfloor \alpha_{t,p}(n) + \delta \rfloor \text{ a.a.s.}$$

Largest sparse subgraphs of random graphs

<ロ> (四) (四) (三) (三) (三) (三)

The *t*-sparsity of random graphs

Theorem For fixed $0 and <math>t \ge 0$, if $\delta = \delta(n) = \frac{(\log \log n)^2}{\log n}$ and

$$\begin{aligned} \hat{\alpha}_{t,p}(n) &= 2\log_b n + (t-2)\log_b \log_b np - t\log_b t \\ &+ t\log_b(2bpe) + 2\log_b(\frac{e}{2}) + 1, \end{aligned}$$

then

$$\lfloor \hat{\alpha}_{t,p}(n) - \delta \rfloor \leq \hat{\alpha}_t(G_{n,p}) \leq \lfloor \hat{\alpha}_{t,p}(n) + \delta \rfloor \text{ a.a.s.}$$

Largest sparse subgraphs of random graphs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Introduction and background

 $\hat{\alpha}_t(G_{n,p}) \text{ and } \alpha_t(G_{n,p})$

Conclusion

The difference

$$\hat{lpha}_{t,
ho}(n) - lpha_{t,
ho}(n) = 2\log_brac{t!}{(t/e)^t} \ \sim \log_b(2\pi t) ext{ as } t o \infty.$$

Largest sparse subgraphs of random graphs

R. J. Kang

3

・ロト ・回 ト ・ヨト ・ヨト

Concluding remarks

- Rather than analytic techniques, large deviations estimates for both first and second moment are applied to obtain tight bounds.
- These techniques extend modestly to the case where p → 0 as n → ∞, though new ideas may be necessary for very sparse random graphs.
- Some precise bounds for the analogous chromatic numbers have been obtained.

イロン 不良 とくほう 不良 とうせい