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Constrained colouring

WANT
proper colouring of elements of a (multi)graph
SUBJECT TO

an adversarial constraint on colours used.

Evidence
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Constrained colouring

WANT

proper colouring of elements of a (multi)graph
SUBJECT TO

an adversarial constraint on colours used.
It could be, for example, that the adversary

e sets a (large enough) list of possible colours for each element OR

e properly precolours some (sparse enough) set of elements.
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Constrained colouring

Thomassen’s Theorem (1994)

THEOREM. Let G be a near-triangulation; i.e., G is a planar graph which
has no loops or multiple edges and which consists of a cycle C:v,v,---v,vy,
and vertices and edges inside C such that each bounded face is bounded by
a triangle. Assume that v, and v, are colored 1 _and 2, respectively, and that
L(v) is a list of at least three colors if ve C — {v,, v,} and at least five colors

if ve G— C. Then_the coloring of v, and v, can be extended to a list coloring
of G.

Albertson’s Theorem (1998)
THEOREM 4. Suppose y(G)=r and W< V(G) such that the distance

between any two vertices in W is at least 4. Any (r + 1)-coloring of W can
be extended to an (r + 1)-coloring of G.
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The List Colouring Conjecture

X'(G) is the chromatic index, the fewest colours in proper edge-colouring of G.

ch’(G) is the list chromatic index, the minimum k such that however adversary
assigns k-lists to edges, there is always proper edge-colouring of G from lists.

The List Colouring Conjecture (late 1970's)

ch’(G) = x'(G) for any multigraph G.
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The List Colouring Conjecture

X'(G) is the chromatic index, the fewest colours in proper edge-colouring of G.

ch’(G) is the list chromatic index, the minimum k such that however adversary
assigns k-lists to edges, there is always proper edge-colouring of G from lists.

The List Colouring Conjecture (late 1970's)

ch'(G) = x'(G) for any multigraph G.

e Galvin (1995) proved it for bipartite multigraphs.
e Kahn (1996/2000) proved an asymptotic, approximate version.

o Other settled cases: odd complete graphs, planar graphs of large
maximum degree, graphs of large girth, ...
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Precolouring extension for edge-colourings

What conditions guarantee a proper edge-colouring of a (multi)graph
subject to an adversarial proper edge-precolouring?
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Precolouring extension for edge-colourings

What conditions guarantee a proper edge-colouring of a (multi)graph
subject to an adversarial proper edge-precolouring?
(Note: Marcotte and Seymour (1990).)

Conditions (today) can be on

o the set K (which we call the palette) of globally available colours —
usually we use X = [K] = {1, ..., K} for some K — and

o the precoloured set M of edges — usually we demand M to be a matching,
in which case a proper precolouring of M is an arbitrary colouring from X.

So we can have X large or M sparse or combinations.

Evidence
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Precolouring extension for edge-colourings

Conjecture (EHKS 2014+)

For G a multigraph with maximum degree A(G), maximum multiplicity u(G),
using palette X = [A(G) + u(G)], any precoloured matching can be extended
to a proper edge-colouring of all of G.

An “adversarial” strengthening of Vizing—Gupta Theorem (1960’s).
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Tree examples

The conjecture is sharp with respect to X, even for trees:

1: 1: 1: 1i 1:
3 ¢ ) 3 3

X' = A =5, no extension with X = [5], matching is induced.
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Long bipartite examples

One might wonder if sparser M permits smaller X, but, alas, no:

NN

AR 1

N4

1

X' = A =6, no extension with X = [6].
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Long bipartite examples

One might wonder if sparser M permits smaller X, but, alas, no:

\'IAW
\/

\'I; *W

1
NS
\/

X' = A =6, no extension with X = [6], the two edges have arbitrary distance.

ence
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Relationship with earlier work

Theorem (Berge and Fournier 1991)

For G a multigraph with maximum degree A(G), maximum multiplicity u(G),
using palette X = [A(G) + u(G)], any monochromatically precoloured
matching can be extended to a proper edge-colouring of all of G.
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Relationship with earlier work

Theorem (Berge and Fournier 1991)

For G a multigraph with maximum degree A(G), maximum multiplicity u(G),
using palette X = [A(G) + u(G)], any monochromatically precoloured
matching can be extended to a proper edge-colouring of all of G.

Proposition (Albertson 1998)

For G a multigraph with maximum degree A(G), maximum multiplicity u(G),
using palette X = [A(G) + pu(G)+1], any precoloured distance-3 matching can
be extended to a proper edge-colouring of all of G.
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Relationship with list edge-colouring

Proposition

For G a multigraph with list chromatic index ch’(G), using palette
XK = [ch’(G)+2], any precoloured matching can be extended to a proper
edge-colouring of all of G.
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Relationship with list edge-colouring

Proposition

For G a multigraph with list chromatic index ch’(G), using palette

XK = [ch’(G)+2], any precoloured matching can be extended to a proper
edge-colouring of all of G.

Proof.

Each edge of G incident to < 2 edges of M, so after forbidding colours of M
from incident uncoloured edges, each still has a list of > ch’(G) colours. O
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Relationship with list edge-colouring

Proposition

For G a multigraph with list chromatic index ch’(G), using palette
XK = [ch’(G)+2], any precoloured matching can be extended to a proper
edge-colouring of all of G.

Proof.

Each edge of G incident to < 2 edges of M, so after forbidding colours of M
from incident uncoloured edges, each still has a list of > ch’(G) colours. O

Corollary (Kahn 1996/2000)

For any € > 0, there exists a constant C. such that the following holds. For
any multigraph G with x'(G) > C., using palette X = [(1 + €)x'(G)], any
precoloured matching can be extended to a proper edge-colouring of all of G.
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More supporting evidence for our conjecture

Conjecture (EHKS 2014+)

For G a multigraph with maximum degree A(G), maximum multiplicity u(G),
using palette X = [A(G) + u(G)], any precoloured matching can be extended
to a proper edge-colouring of all of G.
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More supporting evidence for our conjecture

Conjecture (EHKS 2014+)

For G a multigraph with maximum degree A(G), maximum multiplicity u(G),
using palette X = [A(G) + u(G)], any precoloured matching can be extended
to a proper edge-colouring of all of G.

More evidence (EHKS 2014+)

e conjecture is true for bipartite multigraphs (sharp);
e conjecture is true for subcubic multigraphs (NB: subcubic OPEN for LCC);
e conjecture is true for planar graphs of large maximum degree (sharp);

o for planar graphs G of large maximum degree, it suffices that X = [A(G)]
and M be distance-3 (a sharp strengthening of a result of Vizing 1965);

e precolouring analogue of Shannon’s Theorem (1949), except for extra +%.
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More supporting evidence for our conjecture

Conjecture (EHKS 2014+)

For G a multigraph with maximum degree A(G), maximum multiplicity u(G),
using palette X = [A(G) + u(G)], any precoloured matching can be extended
to a proper edge-colouring of all of G.

More evidence (EHKS 2014+)

conjecture is true for bipartite multigraphs (sharp);
conjecture is true for subcubic multigraphs (NB: subcubic OPEN for LCC);
conjecture is true for planar graphs of large maximum degree (sharp);

for planar graphs G of large maximum degree, it suffices that X = [A(G)]
and M be distance-3 (a sharp strengthening of a result of Vizing 1965);

precolouring analogue of Shannon’s Theorem (1949), except for extra +%.

Next: even more evidence? ...or counterexamples?
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Shameless announcement

Utrecht Combinatorics Day
Friday, 7 November 2014

Note: Pretty, historic city; close to Schiphol; convenient access to Belgian beer.

Organisers: Tobias Miiller (UU) and me.



Thank you!
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