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Constrained colouring

WANT

proper colouring of elements of a (multi)graph

SUBJECT TO

an adversarial constraint on colours used.

It could be, for example, that the adversary

• sets a (large enough) list of possible colours for each element OR

• properly precolours some (sparse enough) set of elements.
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Constrained colouring

Thomassen’s Theorem (1994)

Albertson’s Theorem (1998)
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newly created vertices of degree one. Color W by assigning to n
x

the unique
color from [1, 2, 3, 4, 5] that is not on the list attached to x. There exists
a 5-coloring of G extending the coloring of W if and only if M has a 4-list
coloring.

Theorem 3. Suppose G is any planar graph and W�V(G) such that the
distance between any two vertices in W is at least 3. Any 6-coloring of W can
be extended to a 6-coloring of G.

Proof. Fix a coloring of W that we are hoping to extend. Set
G$=G&W. Create a list for each vertex x in G$ consisting of some five
colors from [1, 2, 3, 4, 5, 6] not including any color used on a vertex from
W adjacent to x. Since each vertex in G$ can be adjacent to at most one
vertex in W, there are five colors available for x's list. Now since G$ is
planar, it can be 5-list colored [15]. This coloring of G$ can be combined
with the original coloring of W to be a 6-coloring of G. K

One might observe that the planarity hypothesis was used in the two
preceding proofs only to produce colorings of G. Thus the following are
immediate:

Theorem 4. Suppose /(G)=r and W�V(G) such that the distance
between any two vertices in W is at least 4. Any (r+1)-coloring of W can
be extended to an (r+1)-coloring of G.

Theorem 5. Suppose G is r-list colorable and W�V(G) such that the
distance between any two vertices in W is at least 3. Any (r+1)-coloring of
W can be extended to an (r+1)-coloring of G.

3. GENERALIZATIONS

The simple recoloring technique from the proof of Theorem 2 works by
insulating the color changes in W from the rest of the graph. There is an
analogous argument that works if W consists of cliques each pair of which
is sufficiently far apart.

Theorem 6. Suppose /(G)=r and W�V(G) such that W=W
1

_
W

2

_ } } } _W
m

, where each W
i

is a clique. If |W
i

|�k \i and dist(x, y)�
6k&2 whenever x # W

i

, y # W
j

and i{ j, then any (r+1)-coloring of W can
be extended to an (r+1)-coloring of G.

191BEST SOLUTION TO THOMASSEN'S PROBLEM
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The List Colouring Conjecture

χ′(G) is the chromatic index, the fewest colours in proper edge-colouring of G .

ch′(G) is the list chromatic index, the minimum k such that however adversary
assigns k-lists to edges, there is always proper edge-colouring of G from lists.

The List Colouring Conjecture (late 1970’s)

ch′(G) = χ′(G) for any multigraph G.

• Galvin (1995) proved it for bipartite multigraphs.

• Kahn (1996/2000) proved an asymptotic, approximate version.

• Other settled cases: odd complete graphs, planar graphs of large
maximum degree, graphs of large girth, . . .
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Precolouring extension for edge-colourings

What conditions guarantee a proper edge-colouring of a (multi)graph
subject to an adversarial proper edge-precolouring?

(Note: Marcotte and Seymour (1990).)

Conditions (today) can be on

• the set K (which we call the palette) of globally available colours —
usually we use K = [K ] = {1, . . . ,K} for some K — and

• the precoloured set M of edges — usually we demand M to be a matching,
in which case a proper precolouring of M is an arbitrary colouring from K.

So we can have K large or M sparse or combinations.
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Precolouring extension for edge-colourings

Conjecture (EHKS 2014+)

For G a multigraph with maximum degree ∆(G), maximum multiplicity µ(G),
using palette K = [∆(G) + µ(G)], any precoloured matching can be extended
to a proper edge-colouring of all of G.

An “adversarial” strengthening of Vizing–Gupta Theorem (1960’s).
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Tree examples

The conjecture is sharp with respect to K, even for trees:

1 1 1 1 1

χ′ = ∆ = 5, no extension with K = [5], matching is induced.
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Long bipartite examples

One might wonder if sparser M permits smaller K, but, alas, no:

1 1

χ′ = ∆ = 6, no extension with K = [6].
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Long bipartite examples

One might wonder if sparser M permits smaller K, but, alas, no:

1 · · · 1

χ′ = ∆ = 6, no extension with K = [6], the two edges have arbitrary distance.



Constrained colouring Our conjecture Examples Evidence

Relationship with earlier work

Theorem (Berge and Fournier 1991)

For G a multigraph with maximum degree ∆(G), maximum multiplicity µ(G),
using palette K = [∆(G) + µ(G)], any monochromatically precoloured
matching can be extended to a proper edge-colouring of all of G.

Proposition (Albertson 1998)

For G a multigraph with maximum degree ∆(G), maximum multiplicity µ(G),
using palette K = [∆(G) + µ(G)+1], any precoloured distance-3 matching can
be extended to a proper edge-colouring of all of G.
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Relationship with list edge-colouring

Proposition

For G a multigraph with list chromatic index ch′(G), using palette
K = [ch′(G)+2], any precoloured matching can be extended to a proper
edge-colouring of all of G.

Proof.

Each edge of G incident to ≤ 2 edges of M, so after forbidding colours of M
from incident uncoloured edges, each still has a list of ≥ ch′(G) colours.

Corollary (Kahn 1996/2000)

For any ε > 0, there exists a constant Cε such that the following holds. For
any multigraph G with χ′(G) ≥ Cε, using palette K = [(1 + ε)χ′(G)], any
precoloured matching can be extended to a proper edge-colouring of all of G.
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More supporting evidence for our conjecture

Conjecture (EHKS 2014+)

For G a multigraph with maximum degree ∆(G), maximum multiplicity µ(G),
using palette K = [∆(G) + µ(G)], any precoloured matching can be extended
to a proper edge-colouring of all of G.

More evidence (EHKS 2014+)

• conjecture is true for bipartite multigraphs (sharp);

• conjecture is true for subcubic multigraphs (NB: subcubic OPEN for LCC);

• conjecture is true for planar graphs of large maximum degree (sharp);

• for planar graphs G of large maximum degree, it suffices that K = [∆(G)]
and M be distance-3 (a sharp strengthening of a result of Vizing 1965);

• precolouring analogue of Shannon’s Theorem (1949), except for extra + 1
2
.

Next: even more evidence? . . . or counterexamples?
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Shameless announcement

Utrecht Combinatorics Day

Friday, 7 November 2014

Note: Pretty, historic city; close to Schiphol; convenient access to Belgian beer.

Organisers: Tobias Müller (UU) and me.
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Thank you!
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