Guarantees of sparse or dense subgraphs

Ross J. Kang*

Radboud University Nijmegen

Randomness and Graphs: Processes and Structures
TU Eindhoven 9/2017

*The talk covers joint works with Eoin Long, Janos Pach, Viresh Patel and Guus Regts.
A clique has all possible edges and a stable set has none.

The \textit{clique number} \(\omega \) is the size of a largest clique.

The \textit{stability number} \(\alpha \) is the size of a largest stable set.
\(\alpha_c \) and \(\omega_c \)

Consider sets “close” to cliques or stable sets, tuned by a parameter\(^\dagger \) \(c \in [0, 1] \).

\(^{\dagger}\) Note (or foreshadowing): for now consider \(c \) as fixed.
Consider sets “close” to cliques or stable sets, tuned by a parameter $c \in [0, 1]$.

A vertex subset with ℓ vertices
- of minimum degree $\geq c(\ell - 1)$ is called a c-clique;
- of maximum degree $\leq (1 - c)(\ell - 1)$ is called a c-stable set.

α_c is size of a largest c-stable set.

ω_c is size of a largest c-clique.

†Note (or foreshadowing): for now consider c as fixed.
Consider sets “close” to cliques or stable sets, tuned by a parameter \(c \in [0, 1] \).

A vertex subset with \(\ell \) vertices

- of minimum degree \(\geq c(\ell - 1) \)
- of maximum degree \(\leq (1 - c)(\ell - 1) \)

is called a \(c \)-clique;

is called a \(c \)-stable set.

\(\omega_c \) is size of a largest \(c \)-clique.

\(\alpha_c \) is size of a largest \(c \)-stable set.

How does the behaviour change as we tune \(c \) between 0 and 1?

†Note (or foreshadowing): for now consider \(c \) as fixed.
Ramsey numbers‡

Ramsey (1930) proved the existence of

\[R(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha(G), \omega(G) \} = k \}. \]

‡Picture borrowed from the cover of Soifer (2009).
Ramsey (1930) proved the existence of

\[R(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha(G), \omega(G) \} = k \}. \]

Theorem (Erdős 1947, Erdős and Szekeres 1935)

\[\sqrt{2^{k + o(k)}} \leq R(k) \leq 4^{k - o(k)} \] as \(k \to \infty. \)

†Picture borrowed from the cover of Soifer (2009).
Ramsey (1930) proved the existence of

\[R(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha(G), \omega(G)\} = k \}. \]

Theorem (Spencer 1977, Conlon 2009)

\[\sqrt{2^{-k+o(k)}} \leq R(k) \leq 4^{k-o(k)} \text{ as } k \to \infty. \]
Quasi-Ramsey numbers

Ramsey (1930) still implies, for any $c \in [0, 1]$, the existence of

$$R^*_c(k) = \min \{n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} = k\}$$ and

$$R_c(k) = \min \{n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} \geq k\}.$$
Ramsey (1930) still implies, for any $c \in [0, 1]$, the existence of

$$R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} = k \}$$

and

$$R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} \geq k \}.$$

Note that $R^*_c(k) \geq R_c(k)$ always, and both parameters are monotone in c.

Moreover, $R_0(k) = R^*_0(k) = k$ and $R_1(k) = R^*_1(k) = R(k) = \exp(\Theta(k))$.

As we tune c between 0 and 1, how does $R^*_c(k)$ or $R_c(k)$ change? From when is it superlinear in k? ... superpolynomial? ... exponential?
Quasi-Ramsey numbers

Ramsey (1930) still implies, for any $c \in [0, 1]$, the existence of

$$R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} = k \} \quad \text{and}$$

$$R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} \geq k \}.$$

Note that $R^*_c(k) \geq R_c(k)$ always, and both parameters are monotone in c.

Moreover, $R_0(k) = R^*_0(k) = k$ and $R_1(k) = R^*_1(k) = R(k) = \exp(\Theta(k))$.

As we tune c between 0 and 1, how does $R^*_c(k)$ or $R_c(k)$ change?
Ramsey (1930) still implies, for any $c \in [0, 1]$, the existence of

$$R_c^*(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} = k \}$$
and

$$R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} \geq k \}.$$

Note that $R_c^*(k) \geq R_c(k)$ always, and both parameters are monotone in c.

Moreover, $R_0(k) = R_0^*(k) = k$ and $R_1(k) = R_1^*(k) = R(k) = \exp(\Theta(k))$.

As we tune c between 0 and 1, how does $R_c^*(k)$ or $R_c(k)$ change? From when is it superlinear in k? ... superpolynomial? ... exponential?
Quasi-Ramsey numbers

\[R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} = k \} \quad \text{and} \quad R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} \geq k \}. \]

As we tune \(c \) between 0 and 1, how does \(R^*_c(k) \) or \(R_c(k) \) change? From when is it superlinear in \(k \)? . . . superpolynomial? . . . exponential?
Quasi-Ramsey numbers

\[R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} = k \} \] and
\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} \geq k \}. \]

As we tune \(c \) between 0 and 1, how does \(R^*_c(k) \) or \(R_c(k) \) change? From when is it superlinear in \(k \) ... superpolynomial? ... exponential?

Proposition (Erdős and Pach 1983)
Fix \(c \in [0, 1] \).

- If \(c < 1/2 \), then \(R^*_c(k) = \Theta(k) \).
- If \(c > 1/2 \), then \(R_c(k) = \exp(\Theta(k)) \).
Quasi-Ramsey numbers

\[R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} = k \} \]

and

\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} \geq k \}. \]

As we tune \(c \) between 0 and 1, how does \(R^*_c(k) \) or \(R_c(k) \) change? From when is it superlinear in \(k \)? ... superpolynomial? ... exponential?

Proposition (Erdős and Pach 1983)

Fix \(c \in [0, 1] \).

- If \(c < 1/2 \), then \(R^*_c(k) = \Theta(k) \).
- If \(c > 1/2 \), then \(R_c(k) = \exp(\Theta(k)) \).

An intuition for this transition comes from \(\max \{ \alpha_c(G_{n,1/2}), \omega_c(G_{n,1/2}) \} \).
Quasi-Ramsey numbers

\[R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} = k \} \] and
\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} \geq k \}. \]

As we tune \(c \) between 0 and 1, how does \(R^*_c(k) \) or \(R_c(k) \) change? From when is it superlinear in \(k \)? . . . superpolynomial? . . . exponential?

Proposition (Erdős and Pach 1983)
Fix \(c \in [0, 1] \).
- If \(c < 1/2 \), then \(R^*_c(k) = \Theta(k) \).
- If \(c > 1/2 \), then \(R_c(k) = \exp(\Theta(k)) \).

An intuition for this transition comes from \(\max \{ \alpha_c(G_{n,1/2}), \omega_c(G_{n,1/2}) \} \).

What happens at \(c = 1/2 \)?
Magnification

What happens at $c = 1/2$?
From when is it superlinear in k? . . . superpolynomial? . . . exponential?

A vertex subset with ℓ vertices
- of minimum degree $\geq c(\ell - 1)$ is called a c-clique;
- of maximum degree $\leq (1 - c)(\ell - 1)$ is called a c-stable set.
What happens at $c = 1/2$?

From when is it superlinear in k? . . . superpolynomial? . . . exponential?

A vertex subset with ℓ vertices
- of minimum degree $\geq c(\ell - 1)$ is called a c-clique;
- of maximum degree $\leq (1 - c)(\ell - 1)$ is called a c-stable set.

Consider $c = 1/2 + \varepsilon$ where $\varepsilon = \varepsilon(\ell)$ is a real function tending to 0 as $\ell \to \infty$.
The “variable” quasi-Ramsey numbers

\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} \geq k \}. \]
Variable sharp threshold

The “variable” quasi-Ramsey numbers

\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} \geq k \}. \]

Theorem (Erdős and Pach 1983)

\[R_{1/2}(k) = O(k \log k) \] and \[R_{1/2}(k) = \Omega(k \log k / \log \log k). \]
Variable sharp threshold

The “variable” quasi-Ramsey numbers

$$R_c(k) = \min \{n : |V(G)| = n \Rightarrow \max \{\alpha_c(G), \omega_c(G)\} \geq k\}.$$

Theorem (Erdős and Pach 1983)

$$R_{1/2}(k) = O(k \log k) \text{ and } R_{1/2}(k) = \Omega(k \log k / \log \log k).$$

Theorem (Kang, Pach, Patel and Regts 2015)

*For some nonnegative real function \(\nu = \nu(\ell) \), let\(c = 1/2 + \nu \sqrt{\log \ell/\ell}. \)\)
Variable sharp threshold

The “variable” quasi-Ramsey numbers

$$R_c(k) = \min \{n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} \geq k\}.$$

Theorem (Erdős and Pach 1983)

$$R_{1/2}(k) = O(k \log k) \text{ and } R_{1/2}(k) = \Omega(k \log k / \log \log k).$$

Theorem (Kang, Pach, Patel and Regts 2015)

For some nonnegative real function $$\nu = \nu(\ell)$$, let $$c = 1/2 + \nu \sqrt{\log \ell / \ell}$$.

- If $$\nu = o(1)$$ as $$\ell \to \infty$$, then $$R_c(k) = k^{1+o(1)}$$ as $$k \to \infty$$.
- If $$\nu = \Theta(1)$$ as $$\ell \to \infty$$, then $$R_c(k) = k^{\Theta(1)}$$ as $$k \to \infty$$.
- If $$\nu = \omega(1)$$ as $$\ell \to \infty$$, then $$R_c(k) = k^{\omega(1)}$$ as $$k \to \infty$$.

Again an intuition for this transition comes from $$\max\{\alpha_c(G, 1/2), \omega_c(G, 1/2)\}.$$
Variable sharp threshold

The “variable” quasi-Ramsey numbers

\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} \geq k \} . \]

Theorem (Erdős and Pach 1983)

\[R_{1/2}(k) = O(k \log k) \text{ and } R_{1/2}(k) = \Omega(k \log k / \log \log k) . \]

Theorem (Kang, Pach, Patel and Regts 2015)

For some nonnegative real function \(\nu = \nu(\ell) \), let \(c = 1/2 + \nu \sqrt{\log \ell / \ell} \).

- If \(\nu = o(1) \) as \(\ell \to \infty \), then \(R_c(k) = k^{1+o(1)} \) as \(k \to \infty \).
- If \(\nu = \Theta(1) \) as \(\ell \to \infty \), then \(R_c(k) = k^{\Theta(1)} \) as \(k \to \infty \).
- If \(\nu = \omega(1) \) as \(\ell \to \infty \), then \(R_c(k) = k^{\omega(1)} \) as \(k \to \infty \).

Again an intuition for this transition comes from \(\max\{\alpha_c(G_{n,1/2}), \omega_c(G_{n,1/2})\} \).
The "fixed" quasi-Ramsey numbers:

\[R_c^*(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} = k \}. \]
The “fixed” quasi-Ramsey numbers:

\[R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} = k \}. \]

Theorem (Erdős and Pach 1983)

\(R^*_{1/2}(k) = O(k^2). \) (\(R^*_{1/2}(k) = \Omega(k \log k / \log \log k) \) by previous.)
The “fixed” quasi-Ramsey numbers:

$$R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} = k \}.$$

Theorem (Erdős and Pach 1983)

$$R^*_{1/2}(k) = O(k^2). \quad (R^*_{1/2}(k) = \Omega(k \log k / \log \log k) \text{ by previous.})$$

Problem (Erdős and Pach 1983)

“We suspect that the order of magnitude of $R^*_{1/2}(k)$ is in fact close to $k \log k$.”
The “fixed” quasi-Ramsey numbers:
\[R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G),\omega_c(G)\} = k \} . \]

Theorem (Erdős and Pach 1983)
\[R^*_{1/2}(k) = O(k^2) . \] (\[R^*_{1/2}(k) = \Omega(k \log k / \log \log k) \) by previous.)

Problem (Erdős and Pach 1983)
"We suspect that the order of magnitude of \(R^*_{1/2}(k) \) is in fact close to \(k \log k \)."

Theorem (Kang, Long, Patel and Regts 2016+)
\[R^*_{1/2}(k) = O(k \log k) . \]
Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of k vertices inducing minimum degree $k/2 + \Omega(\sqrt{k/\log k})$ in the graph or complement.
Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of k vertices inducing minimum degree $k/2 + \Omega(\sqrt{k / \log k})$ in the graph or complement.

Call a subset of ℓ vertices excessive if it induces minimum degree $\geq \frac{1}{2}(\ell - 1) + \zeta$ for some excess $\zeta \geq 0$.

Beginning with $Ck \log k$ vertices, here are the rough proof ingredients.
Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of k vertices inducing minimum degree $k/2 + \Omega(\sqrt{k/\log k})$ in the graph or complement.

Call a subset of ℓ vertices excessive if it induces minimum degree
\[
\geq \frac{1}{2}(\ell - 1) + \zeta
\]
for some excess $\zeta \geq 0$.

Beginning with $Ck \log k$ vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of $\ell \geq 2k$ vertices that is $\Omega(\sqrt{\ell})$ excessive either in the graph or complement.
Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of k vertices inducing minimum degree $k/2 + \Omega(\sqrt{k/\log k})$ in the graph or complement.

Call a subset of ℓ vertices excessive if it induces minimum degree $\geq \frac{1}{2}(\ell - 1) + \zeta$ for some excess $\zeta \geq 0$.

Beginning with $Ck \log k$ vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of $\ell \geq 2k$ vertices that is $\Omega(\sqrt{\ell})$ excessive either in the graph or complement.
2. Reduction from a $\Omega(\sqrt{\ell})$ excessive set of Dk vertices, $D > 1$ fixed, to an excessive set of exactly k vertices.
Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of k vertices inducing minimum degree $k/2 + \Omega(\sqrt{k/\log k})$ in the graph or complement.

Call a subset of ℓ vertices excessive if it induces minimum degree $\geq \frac{1}{2}(\ell - 1) + \zeta$ for some excess $\zeta \geq 0$.

Beginning with $Ck \log k$ vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of $\ell \geq 2k$ vertices that is $\Omega(\sqrt{\ell})$ excessive either in the graph or complement.
2. Reduction from a $\Omega(\sqrt{\ell})$ excessive set of Dk vertices, $D > 1$ fixed, to an excessive set of exactly k vertices.
3. Partition of an excessive set into two parts of prescribed size at least one of which is excessive.
Proof ingredient 1: graph discrepancy

Lemma (1)

For fixed $\nu \geq 0$, let $c = \frac{1}{2} + \frac{\nu}{\sqrt{\ell} - 1}$. Then $R_c(k) = O(k \log k)$.

\iff

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of $\ell \geq k$ vertices inducing minimum degree $\ell/2 + \Omega(\sqrt{\ell})$ in the graph or complement.
Proof ingredient 1: graph discrepancy

Lemma (1)

For fixed $\nu \geq 0$, let $c = 1/2 + \nu/\sqrt{\ell - 1}$. Then $R_c(k) = O(k \log k)$.

\iff

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of $\ell \geq k$ vertices inducing minimum degree $\ell/2 + \Omega(\sqrt{\ell})$ in the graph or complement.

Note: This improves on the Erdős and Pach bound $R_{1/2}(k) = O(k \log k)$.
Proof ingredient 1: graph discrepancy

Lemma (1)

For fixed \(\nu \geq 0 \), let \(c = 1/2 + \nu/\sqrt{\ell - 1} \). Then \(R_c(k) = O(k \log k) \).

\[\iff \]

For some \(C > 0 \), in any graph on \(Ck \log k \) vertices there is a set of \(\ell \geq k \) vertices inducing minimum degree \(\ell/2 + \Omega(\sqrt{\ell}) \) in the graph or complement.

Note: This improves on the Erdős and Pach bound \(R_{1/2}(k) = O(k \log k) \).

Theorem (Erdős and Spencer 1972)

\[e(S) - \frac{1}{2} \left(\frac{|S|}{2} \right) \]
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed $\nu \geq 0$, let $c = 1/2 + \nu/\sqrt{\ell - 1}$. Then $R_c(k) = O(k \log k)$.

\iff

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of $\ell \geq k$ vertices inducing minimum degree $\ell/2 + \Omega(\sqrt{\ell})$ in the graph or complement.

Note: This improves on the Erdős and Pach bound $R_{1/2}(k) = O(k \log k)$.

Theorem (Erdős and Spencer 1972)
For n large any graph $G = (V, E)$ with $|V| = n$ has

$$\max_{S \subseteq V} \left| e(S) - \frac{1}{2} \binom{|S|}{2} \right| = \Omega \left(n^{3/2} \right).$$
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed $\nu \geq 0$, let $c = 1/2 + \nu/\sqrt{\ell - 1}$. Then $R_c(k) = O(k \log k)$.

\iff

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of $\ell \geq k$ vertices inducing minimum degree $\ell/2 + \Omega(\sqrt{\ell})$ in the graph or complement.

Note: This improves on the Erdős and Pach bound $R_{1/2}(k) = O(k \log k)$.

Theorem (Erdős and Spencer 1974)
For n large and $\frac{1}{2} \log_2 n < t \leq n$ any graph $G = (V, E)$ with $|V| = n$ has

$$\max_{S \subseteq V, |S| \leq t} \left| e(S) - \frac{1}{2} \binom{|S|}{2} \right| = \Omega \left(t^{3/2} \sqrt{\log(n/t)} \right).$$
Proof ingredient 2: set system discrepancy

Lemma (2)

Suppose X is of size $\ell = Dk$, $D > 1$, inducing minimum degree $\geq \ell/2 + \nu \sqrt{\ell}$. Some $X' \subseteq X$ of size k induces minimum degree $\geq k/2 + (\nu/\sqrt{D} - 15\sqrt{D})\sqrt{k}$.
Proof ingredient 2: set system discrepancy

Lemma (2)
Suppose X is of size $\ell = Dk$, $D > 1$, inducing minimum degree $\geq \ell/2 + \nu \sqrt{\ell}$. Some $X' \subseteq X$ of size k induces minimum degree $\geq k/2 + (\nu/\sqrt{D - 15\sqrt{D}})\sqrt{k}$.

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)
For $A_1, \ldots, A_n \subseteq [n]$ and $p \in [0, 1]$, there exists $Y \subseteq [n]$ such that for all i $||A_i \cap Y| - p|A_i|| \leq 6\sqrt{n}$.

"Six standard deviations suffice."
Proof ingredient 2: set system discrepancy

Lemma (2)
Suppose X is of size $\ell = Dk$, $D > 1$, inducing minimum degree $\geq \ell/2 + \nu \sqrt{\ell}$.
Some $X' \subseteq X$ of size k induces minimum degree $\geq k/2 + (\nu/\sqrt{D} - 15\sqrt{D})\sqrt{k}$.

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)
For $A_1, \ldots, A_n \subseteq [n]$ and $p \in [0, 1]$, there exists $Y \subseteq [n]$ such that for all i
$|A_i \cap Y| - p|A_i| \leq 6\sqrt{n}$.

"Six standard deviations suffice."

Proof of Lemma (2).
Writing $X = [\ell]$, let $A_i \subseteq X$ be neighbourhood $N(i)$ of $i \in [\ell - 1]$, and $A_\ell = X$.

Proof ingredient 2: set system discrepancy

Lemma (2)

Suppose X is of size $\ell = Dk$, $D > 1$, inducing minimum degree $\geq \ell/2 + \nu \sqrt{\ell}$.
Some $X' \subseteq X$ of size k induces minimum degree $\geq k/2 + (\nu / \sqrt{D} - 15 \sqrt{D}) \sqrt{k}$.

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)

For $A_1, \ldots, A_n \subseteq [n]$ and $p \in [0, 1]$, there exists $Y \subseteq [n]$ such that for all i

$$||A_i \cap Y| - p|A_i|| \leq 6\sqrt{n}.$$

"Six standard deviations suffice."

Proof of Lemma (2).

Writing $X = [\ell]$, let $A_i \subseteq X$ be neighbourhood $N(i)$ of $i \in [\ell - 1]$, and $A_\ell = X$.
Apply Theorem to A_1, \ldots, A_ℓ with $p = (k + 1 + 6\sqrt{\ell})/\ell$ (done if $p > 1$)
to produce $Y \subseteq [\ell]$ such that $||A_i \cap Y| - p|A_i|| \leq 6\sqrt{\ell}$.
Proof ingredient 2: set system discrepancy

Lemma (2)
Suppose X is of size $\ell = Dk$, $D > 1$, inducing minimum degree $\geq \ell / 2 + \nu \sqrt{\ell}$. Some $X' \subseteq X$ of size k induces minimum degree $\geq k / 2 + (\nu / \sqrt{D} - 15 \sqrt{D}) \sqrt{k}$.

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)
For $A_1, \ldots, A_n \subseteq [n]$ and $p \in [0, 1]$, there exists $Y \subseteq [n]$ such that for all i
$||A_i \cap Y| - p|A_i|| \leq 6\sqrt{n}$.

"Six standard deviations suffice."

Proof of Lemma (2).
Writing $X = [\ell]$, let $A_i \subseteq X$ be neighbourhood $N(i)$ of $i \in [\ell - 1]$, and $A_\ell = X$. Apply Theorem to A_1, \ldots, A_ℓ with $p = (k + 1 + 6\sqrt{\ell}) / \ell$ (done if $p > 1$) to produce $Y \subseteq [\ell]$ such that $||A_i \cap Y| - p|A_i|| \leq 6\sqrt{\ell}$.

$i \in [\ell - 1] \implies |N(i) \cap Y| \geq p(\ell / 2 + \nu \sqrt{\ell}) - 6\sqrt{\ell} \geq k / 2 + \nu k / \sqrt{\ell} + 1 - 3\sqrt{\ell}$.
Proof ingredient 2: set system discrepancy

Lemma (2)
Suppose X is of size $\ell = Dk$, $D > 1$, inducing minimum degree $\geq \ell/2 + \nu\sqrt{\ell}$. Some $X' \subseteq X$ of size k induces minimum degree $\geq k/2 + (\nu/\sqrt{D} - 15\sqrt{D})\sqrt{k}$.

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)
For $A_1, \ldots, A_n \subseteq [n]$ and $p \in [0, 1]$, there exists $Y \subseteq [n]$ such that for all i
$$||A_i \cap Y| - p|A_i|| \leq 6\sqrt{n}.$$
“Six standard deviations suffice.”

Proof of Lemma (2).
Writing $X = [\ell]$, let $A_i \subseteq X$ be neighbourhood $N(i)$ of $i \in [\ell - 1]$, and $A_\ell = X$. Apply Theorem to A_1, \ldots, A_ℓ with $p = (k + 1 + 6\sqrt{\ell})/\ell$ (done if $p > 1$) to produce $Y \subseteq [\ell]$ such that $||A_i \cap Y| - p|A_i|| \leq 6\sqrt{\ell}$.

$i \in [\ell - 1] \implies |N(i) \cap Y| \geq p(\ell/2 + \nu\sqrt{\ell}) - 6\sqrt{\ell} \geq k/2 + \nu k/\sqrt{\ell} + 1 - 3\sqrt{\ell}$.

$i = \ell \implies k + 1 = p\ell - 6\sqrt{\ell} \leq |Y| \leq p\ell + 6\sqrt{\ell} = k + 1 + 12\sqrt{\ell}$.
Proof ingredient 2: set system discrepancy

Lemma (2)

Suppose X is of size $\ell = Dk$, $D > 1$, inducing minimum degree $\geq \ell/2 + \nu \sqrt{\ell}$. Some $X' \subseteq X$ of size k induces minimum degree $\geq k/2 + (\nu/\sqrt{D} - 15\sqrt{D})\sqrt{k}$.

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)

For $A_1, \ldots, A_n \subseteq [n]$ and $p \in [0, 1]$, there exists $Y \subseteq [n]$ such that for all i

$$||A_i \cap Y| - p|A_i|| \leq 6\sqrt{n}.$$

"Six standard deviations suffice."

Proof of Lemma (2).

Writing $X = [\ell]$, let $A_i \subseteq X$ be neighbourhood $N(i)$ of $i \in [\ell - 1]$, and $A_\ell = X$. Apply Theorem to A_1, \ldots, A_ℓ with $p = (k + 1 + 6\sqrt{\ell})/\ell$ (done if $p > 1$) to produce $Y \subseteq [\ell]$ such that $||A_i \cap Y| - p|A_i|| \leq 6\sqrt{\ell}$.

$i \in [\ell - 1] \implies |N(i) \cap Y| \geq p(\ell/2 + \nu \sqrt{\ell}) - 6\sqrt{\ell} \geq k/2 + \nu k/\sqrt{\ell} + 1 - 3\sqrt{\ell}$.

$i = \ell \implies k + 1 = p\ell - 6\sqrt{\ell} \leq |Y| \leq p\ell + 6\sqrt{\ell} = k + 1 + 12\sqrt{\ell}$.

Take $X' \subseteq [\ell - 1]$ arbitrary with $|X'| = k$. By the above, for all $i \in X'$

$$|N(i) \cap X'| \geq k/2 + \nu k/\sqrt{\ell} - 15\sqrt{\ell} = k/2 + (\nu/\sqrt{D} - 15\sqrt{D})\sqrt{k}.$$

\square
Lemma (3)

Suppose X is of size $\ell = \ell_1 + \ell_2$ inducing minimum degree $\geq \delta = \delta_1 + \delta_2$. Then there exists $X_1, X_2 \subseteq X$ with $|X_1| = \ell_1$ and $|X_2| = \ell_2$ such that either X_1 induces minimum degree $\geq \delta_1$ or X_2 induces minimum degree $\geq \delta_2$.
Lemma (3)
Suppose X is of size $\ell = \ell_1 + \ell_2$ inducing minimum degree $\geq \delta = \delta_1 + \delta_2$. Then there exists $X_1, X_2 \subseteq X$ with $|X_1| = \ell_1$ and $|X_2| = \ell_2$ such that either X_1 induces minimum degree $\geq \delta_1$ or X_2 induces minimum degree $\geq \delta_2$.

Proof.
Start with X_1, X_2 an arbitrary partition of X with $|X_1| = \ell_1$ and $|X_2| = \ell_2$.
Proof ingredient 3: greedy swaps

Lemma (3)
Suppose X is of size $\ell = \ell_1 + \ell_2$ inducing minimum degree $\delta \geq \delta = \delta_1 + \delta_2$. Then there exists $X_1, X_2 \subseteq X$ with $|X_1| = \ell_1$ and $|X_2| = \ell_2$ such that either X_1 induces minimum degree $\geq \delta_1$ or X_2 induces minimum degree $\geq \delta_2$

Proof.
Start with X_1, X_2 an arbitrary partition of X with $|X_1| = \ell_1$ and $|X_2| = \ell_2$. If $a \in X_1$ has $\deg_{X_1}(a) \leq \delta_1 - 1$ and $b \in X_2$ has $\deg_{X_2}(b) \leq \delta_2 - 1$, swap them.
Lemma (3)

Suppose X is of size $\ell = \ell_1 + \ell_2$ inducing minimum degree $\geq \delta = \delta_1 + \delta_2$. Then there exists $X_1, X_2 \subseteq X$ with $|X_1| = \ell_1$ and $|X_2| = \ell_2$ such that either X_1 induces minimum degree $\geq \delta_1$ or X_2 induces minimum degree $\geq \delta_2$.

Proof.

Start with X_1, X_2 an arbitrary partition of X with $|X_1| = \ell_1$ and $|X_2| = \ell_2$. If $a \in X_1$ has $\deg_{X_1}(a) \leq \delta_1 - 1$ and $b \in X_2$ has $\deg_{X_2}(b) \leq \delta_2 - 1$, swap them. The number of edges in X_1 increases by at least

$$\deg_{X_1}(b) - \deg_{X_1}(a) - 1 \geq \delta - \deg_{X_2}(b) - \deg_{X_1}(a) - 1 \geq \delta - \delta_2 - \delta_1 + 1 = 1$$

(where the -1 accounts for the possibility of the edge ab).
Lemma (3)

Suppose X is of size $\ell = \ell_1 + \ell_2$ inducing minimum degree $\geq \delta = \delta_1 + \delta_2$. Then there exists $X_1, X_2 \subseteq X$ with $|X_1| = \ell_1$ and $|X_2| = \ell_2$ such that either X_1 induces minimum degree $\geq \delta_1$ or X_2 induces minimum degree $\geq \delta_2$.

Proof.

Start with X_1, X_2 an arbitrary partition of X with $|X_1| = \ell_1$ and $|X_2| = \ell_2$. If $a \in X_1$ has $\deg_{X_1}(a) \leq \delta_1 - 1$ and $b \in X_2$ has $\deg_{X_2}(b) \leq \delta_2 - 1$, swap them. The number of edges in X_1 increases by at least

$$\deg_{X_1}(b) - \deg_{X_1}(a) - 1 \geq \delta - \deg_{X_2}(b) - \deg_{X_1}(a) - 1 \geq \delta - \delta_2 - \delta_1 + 1 = 1$$

(where the -1 accounts for the possibility of the edge ab).

At some point we cannot find two vertices to swap, but then we are done. \qed
Proof ingredients

Theorem (Kang, Long, Patel and Regts 2016+)

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of k vertices inducing minimum degree $k/2 + \Omega(\sqrt{k/\log k})$ in the graph or complement.

Call a subset of ℓ vertices excessive if it induces minimum degree $\geq \frac{1}{2}(\ell - 1) + \zeta$ for some excess $\zeta \geq 0$.

Beginning with $Ck \log k$ vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of $\ell \geq 2k$ vertices that is $\Omega(\sqrt{\ell})$ excessive either in the graph or complement.
2. Reduction from a $\Omega(\sqrt{\ell})$ excessive set of Dk vertices, $D > 1$ fixed, to an excessive set of exactly k vertices.
3. Partition of an excessive set into two parts of prescribed size at least one of which is excessive.

First apply 1.
Proof ingredients

Theorem (Kang, Long, Patel and Regts 2016+)

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of k vertices inducing minimum degree $k/2 + \Omega(\sqrt{k/\log k})$ in the graph or complement.

Call a subset of ℓ vertices excessive if it induces minimum degree $\geq \frac{1}{2}(\ell - 1) + \zeta$ for some excess $\zeta \geq 0$.

Beginning with $Ck \log k$ vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of $\ell \geq 2k$ vertices that is $\Omega(\sqrt{\ell})$ excessive either in the graph or complement.
2. Reduction from a $\Omega(\sqrt{\ell})$ excessive set of Dk vertices, $D > 1$ fixed, to an excessive set of exactly k vertices.
3. Partition of an excessive set into two parts of prescribed size at least one of which is excessive.

First apply 1. If $\ell \not\equiv 0 \pmod{k}$, then apply 3 to lop off a possibly excessive piece of size Dk, with $Dk \equiv \ell \pmod{k}$ and $D > 1$ fixed, then possibly apply 2.
Proof ingredients

Theorem (Kang, Long, Patel and Regts 2016+)

For some $C > 0$, in any graph on $Ck \log k$ vertices there is a set of k vertices inducing minimum degree $k/2 + \Omega(\sqrt{k/\log k})$ in the graph or complement.

Call a subset of ℓ vertices excessive if it induces minimum degree $\geq \frac{1}{2}(\ell - 1) + \zeta$ for some excess $\zeta \geq 0$.

Beginning with $Ck \log k$ vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of $\ell \geq 2k$ vertices that is $\Omega(\sqrt{\ell})$ excessive either in the graph or complement.

2. Reduction from a $\Omega(\sqrt{\ell})$ excessive set of Dk vertices, $D > 1$ fixed, to an excessive set of exactly k vertices.

3. Partition of an excessive set into two parts of prescribed size at least one of which is excessive.

First apply 1. If $\ell \not\equiv 0 \pmod{k}$, then apply 3 to lop off a possibly excessive piece of size Dk, with $Dk \equiv \ell \pmod{k}$ and $D > 1$ fixed, then possibly apply 2. Otherwise apply 3 repeatedly to partition an excessive set of size $\equiv 0 \pmod{k}$ into roughly equal parts of size $\equiv 0 \pmod{k}$, one excessive.
Summary and open questions

For the quasi-Ramsey numbers

\[R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{\alpha_c(G), \omega_c(G)\} = k \} \] and

\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{\alpha_c(G), \omega_c(G)\} \geq k \}, \]

- identified a sharp transition for \(R_c(k) \) at \(c = 1/2 + \Theta(\sqrt{\log \ell / \ell}) \), and
- solved a problem of Erdős and Pach by showing \(R^*_{1/2}(k) = O(k \log k) \).
Summary and open questions

For the quasi-Ramsey numbers
\[
R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{\alpha_c(G), \omega_c(G)\} = k \} \quad \text{and} \\
R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{\alpha_c(G), \omega_c(G)\} \geq k \},
\]

- identified a sharp transition for \(R_c(k) \) at \(c = 1/2 + \Theta(\sqrt{\log \ell/\ell}) \), and
- solved a problem of Erdős and Pach by showing \(R^*_1/2(k) = O(k \log k) \).

Open questions:

- The remaining \(\log \log k \) factor for \(R^*_1/2(k) \)?
Summary and open questions

For the quasi-Ramsey numbers

\[R^*_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} = k \} \]
\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} \geq k \}, \]

- identified a sharp transition for \(R_c(k) \) at \(c = 1/2 + \Theta(\sqrt{\log \ell/\ell}) \), and
- solved a problem of Erdős and Pach by showing \(R^*_{1/2}(k) = O(k \log k) \).

Open questions:

- The remaining log log \(k \) factor for \(R^*_{1/2}(k) \)?
- How strict could the inequality \(R_c(k) \leq R^*_c(k) \) be?
For the quasi-Ramsey numbers

\[R_c^*(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} = k \} \quad \text{and} \]
\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max \{ \alpha_c(G), \omega_c(G) \} \geq k \}, \]

- identified a sharp transition for \(R_c(k) \) at \(c = 1/2 + \Theta(\sqrt{\log \ell/\ell}) \), and
- solved a problem of Erdős and Pach by showing \(R_{1/2}^*(k) = O(k \log k) \).

Open questions:

- The remaining \(\log \log k \) factor for \(R_{1/2}^*(k) \)?
- How strict could the inequality \(R_c(k) \leq R_c^*(k) \) be?
- For fixed \(c \in (1/2, 1) \), is \(\limsup_{k \to \infty} k^{-1} \log(R(k)/R_c(k)) > 0 \)?

Hypergraphs? (See next page.)
Summary and open questions

For the quasi-Ramsey numbers
\[R_c^*(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} = k \} \] and
\[R_c(k) = \min \{ n : |V(G)| = n \Rightarrow \max\{\alpha_c(G), \omega_c(G)\} \geq k \}, \]

- identified a sharp transition for \(R_c(k) \) at \(c = 1/2 + \Theta(\sqrt{\log \ell/\ell}) \), and
- solved a problem of Erdős and Pach by showing \(R_{1/2}^*(k) = O(k \log k) \).

Open questions:

- The remaining log log \(k \) factor for \(R_{1/2}^*(k) \)?
- How strict could the inequality \(R_c(k) \leq R_c^*(k) \) be?
- For fixed \(c \in (1/2, 1) \), is \(\limsup_{k \to \infty} k^{-1} \log(R(k)/R_c(k)) > 0 \)?
- Hypergraphs? (See next page.)
Thank you!

 Discrepancy and large dense monochromatic subsets.
 Submitted, 14 pp. arXiv:1610.06359

 On a Ramsey-type problem of Erdős and Pach.

 A precise threshold for quasi-Ramsey numbers.

[ErPa83] Paul Erdős and János Pach.
 On a quasi-Ramsey problem.
Heterogeneously weighted random graph

\[R_{1/2}(k) = \Omega(k \log k / \log \log k). \]

i.e. there is some graph on \(Ck \log k / \log \log k \) vertices such that any set of \(\ell \geq k \) vertices is excessive in neither the graph nor complement.
Heterogeneously weighted random graph

\[R_{1/2}(k) = \Omega(k \log k / \log \log k). \]

i.e. there is some graph on \(Ck \log k / \log \log k \) vertices such that any set of \(\ell \geq k \) vertices is excessive in neither the graph nor complement.

Let \(z = \frac{\zeta \log k}{\log \log k} \) for some suitably chosen fixed \(\zeta > 0 \).

Let \(V = V_1 \cup \cdots \cup V_z \) where \(|V_1| = \cdots = |V_z| = \left(1 - \frac{1}{2z} \right) k \).

Generate \(E \) randomly for any \(v_i \in V_i \) and \(v_j \in V_j \) by

\[
P(v_i; v_j \in E) = \begin{cases}
\frac{1}{2} - (2z)^{-4(i+j)-1} & \text{if } i \neq j; \\
\frac{1}{2} + (2z)^{-8i} & \text{if } i = j.
\end{cases}
\]

There is a chance the graph \(G = (V, E) \) has the desired properties.
Proof ingredient 2: set system discrepancy

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)

For \(A_1, \ldots, A_n \subseteq [n] \) and \(p \in [0, 1] \), there exists \(Y \subseteq [n] \) such that for all \(i \)
\[
||A_i \cap Y| - p|A_i|| \leq 6\sqrt{n}.
\]

For \(\mathcal{H} = \{A_1, \ldots, A_n\} \subseteq 2^{[n]} \), define the discrepancy of \(\mathcal{H} \) as

\[
\text{disc}(\mathcal{H}) := \min_{\chi \in \{-1, 1\}^n} \max_{S \in \mathcal{H}} \sum_{i \in S} \chi(i).
\]

Spencer showed that \(\text{disc}(\mathcal{H}) \leq 6\sqrt{n} \) for any such \(\mathcal{H} \).
Proof ingredient 2: set system discrepancy

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)

For $A_1, \ldots, A_n \subseteq [n]$ and $p \in [0, 1]$, there exists $Y \subseteq [n]$ such that for all i \[\|A_i \cap Y| - p|A_i|| \leq 6\sqrt{n}. \]

For $\mathcal{H} = \{A_1, \ldots, A_n\} \subseteq 2^{[n]}$, define the discrepancy of \mathcal{H} as
\[\text{disc}(\mathcal{H}) := \min_{\chi \in \{-1, 1\}^V} \max_{S \in \mathcal{H}} \sum_{i \in S} \chi(i). \]

Spencer showed that $\text{disc}(\mathcal{H}) \leq 6\sqrt{n}$ for any such \mathcal{H}.

If A is the incidence matrix of \mathcal{H}, i.e. A is the $n \times n$ matrix given by
\[A_{ij} = \begin{cases} 1 & \text{if } j \in A_i, \\ 0 & \text{otherwise}. \end{cases} \]

then the linear discrepancy is
\[\text{lindisc}(\mathcal{H}) := \max_{c \in [0,1]^V} \min_{x \in \{0,1\}^V} \|A(x - c)\|_\infty. \]

Via Lovász, Spencer and Vesztergombi, $\text{lindisc}(\mathcal{H}) \leq 6\sqrt{n}$ for any such \mathcal{H}.
Proof ingredient 2: set system discrepancy

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)

For $A_1, \ldots, A_n \subseteq [n]$ and $p \in [0, 1]$, there exists $Y \subseteq [n]$ such that for all i

$$||A_i \cap Y| - p|A_i|| \leq 6\sqrt{n}.$$

For $\mathcal{H} = \{A_1, \ldots, A_n\} \subseteq 2^{[n]}$, define the discrepancy of \mathcal{H} as

$$\text{disc}(\mathcal{H}) := \min_{\chi \in \{-1, 1\}^V} \max_{S \in \mathcal{H}} \sum_{i \in S} \chi(i).$$

Spencer showed that $\text{disc}(\mathcal{H}) \leq 6\sqrt{n}$ for any such \mathcal{H}.

If A is the incidence matrix of \mathcal{H}, i.e. A is the $n \times n$ matrix given by

$$A_{ij} = \begin{cases} 1 & \text{if } j \in A_i, \\ 0 & \text{otherwise.} \end{cases},$$

then the linear discrepancy is

$$\text{lindisc}(\mathcal{H}) := \max_{c \in [0,1]^V} \min_{x \in \{0,1\}^V} \|A(x - c)\|_{\infty}.$$

Via Lovász, Spencer and Vesztergombi, $\text{lindisc}(\mathcal{H}) \leq 6\sqrt{n}$ for any such \mathcal{H}.

Apply this result with c the all p vector.
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed $\nu \geq 0$, let $c = 1/2 + \nu/\sqrt{\ell - 1}$. Then $R_c(k) = O(k \log k)$.

Outline proof of Lemma (1).
Let $G = (V, E)$ be a graph on $Ck \log k$ vertices and define for any $X \subseteq V$
\[D_\nu(X) := |D(X)| - \nu |X|^{3/2} \]
Let $V_0 = V$. Form V_{i+1} in step $i+1$ by letting $X_i \subseteq V_i$ maximise $D_\nu(X_i)$ and $V_{i+1} = V_i \setminus X_i$. Stop after step $t+1$ if $|V_{t+1}| < 1/2 |V|$.
Let $\{i_1, \ldots, i_m\} \subseteq [t]$ be those i with $D(X_{i_j}) > 0$. Wlog $\sum_{j \in [m]} |X_{i_j}| \geq 1/4 |V|$.

Claim 1
For any $j \in [m]$, H_{i_j} has minimum degree $\geq 1/2 (|X_{i_j}| - 1) + \nu \sqrt{|X_{i_j}| - 1}$.

Claim 2
For any $\ell \in [m-3]$, $D(X_{i_{\ell+3}}) \leq 5/6 D(X_{i_\ell})$.

Then $\left(\frac{5}{6}\right) (m-1)/3 D(X_{i_1}) \geq D(X_{i_m}) \geq 1 \Rightarrow m-1 \leq 3 \log \frac{6}{5} / \frac{5}{6} D(X_{i_1}) \leq 6 \log \frac{6}{5} / 5 k$.
Pigeonhole guarantees some $|X_{i_j}| \geq |V| \log (6/5)^{25 \log k} = C \log (6/5)^{25 k} \geq k$ if $C \geq 25 \log (6/5)$.
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed \(\nu \geq 0 \), let \(c = 1/2 + \nu/\sqrt{\ell - 1} \). Then \(R_c(k) = O(k \log k) \).

Outline proof of Lemma (1).
Let \(G = (V, E) \) be a graph on \(Ck \log k \) vertices and define for any \(X \subseteq V \)
\[
D_\nu(X) := |D(X)| - \nu|X|^{3/2}.
\]
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed $\nu \geq 0$, let $c = 1/2 + \nu/\sqrt{\ell - 1}$. Then $R_c(k) = O(k \log k)$.

Outline proof of Lemma (1).
Let $G = (V, E)$ be a graph on $Ck \log k$ vertices and define for any $X \subseteq V$

$$D_\nu(X) := |D(X)| - \nu |X|^{3/2}.$$

Let $V_0 = V$. Form V_{i+1} in step $i + 1$ by letting $X_i \subseteq V_i$ maximise $D_\nu(X_i)$ and $V_{i+1} = V_i \setminus X_i$. Stop after step $t + 1$ if $|V_{t+1}| < \frac{1}{2} |V|$.

Claim 1 implies that X_i is the desired subset.
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed $\nu \geq 0$, let $c = 1/2 + \nu/\sqrt{\ell - 1}$. Then $R_c(k) = O(k \log k)$.

Outline proof of Lemma (1).
Let $G = (V, E)$ be a graph on $Ck \log k$ vertices and define for any $X \subseteq V$

$$D_\nu(X) := |D(X)| - \nu |X|^{3/2}.$$

Let $V_0 = V$. Form V_{i+1} in step $i + 1$ by letting $X_i \subseteq V_i$ maximise $D_\nu(X_i)$ and $V_{i+1} = V_i \setminus X_i$. Stop after step $t + 1$ if $|V_{t+1}| < \frac{1}{2} |V|$. Let $\{i_1, \ldots, i_m\} \subseteq [t]$ be those i with $D(X_i) > 0$. Wlog $\sum_{j \in [m]} |X_{i_j}| \geq \frac{1}{4} |V|$.

Claim 1
For any $j \in [m]$, H_{i_j} has minimum degree $\geq \frac{1}{2} (|X_{i_j}| - 1) + \nu \sqrt{|X_{i_j}| - 1}$.

Claim 2
For any $\ell \in [m - 3]$, $D(X_{i_\ell + 3}) \leq \frac{5}{6} D(X_{i_\ell})$. Then $(\frac{5}{6})^{(m - 1)/3} D(X_{i_1}) \geq D(X_{i_m}) \geq 1 \Rightarrow m - 1 \leq 3 \log \frac{6}{5} \cdot \frac{5}{5} k \leq 6 \log \frac{6}{5} k$.

Pigeonhole guarantees some $|X_{i_j}| \geq |V| \log \left(\frac{6}{5}\right)^{25 \log k} \geq k$ if $C \geq 25 \log \left(\frac{6}{5}\right)$. Claim 1 implies that X_{i_j} is the desired subset.
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed $\nu \geq 0$, let $c = 1/2 + \nu/\sqrt{\ell - 1}$. Then $R_c(k) = O(k \log k)$.

Outline proof of Lemma (1).
Let $G = (V, E)$ be a graph on $Ck \log k$ vertices and define for any $X \subseteq V$

$$D_\nu(X) := |D(X)| - \nu |X|^{3/2}.$$

Let $V_0 = V$. Form V_{i+1} in step $i + 1$ by letting $X_i \subseteq V_i$ maximise $D_\nu(X_i)$ and $V_{i+1} = V_i \setminus X_i$. Stop after step $t + 1$ if $|V_{t+1}| < \frac{1}{2}|V|$.
Let $\{i_1, \ldots, i_m\} \subseteq [t]$ be those i with $D(X_i) > 0$. Wlog $\sum_{j \in [m]} |X_{i_j}| \geq \frac{1}{4}|V|$.

Claim 1 For any $j \in [m]$, H_{i_j} has minimum degree $\geq \frac{1}{2}(|X_{i_j}| - 1) + \nu \sqrt{|X_{i_j}| - 1}$.
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed $\nu \geq 0$, let $c = 1/2 + \nu/\sqrt{\ell - 1}$. Then $R_c(k) = O(k \log k)$.

Outline proof of Lemma (1).
Let $G = (V, E)$ be a graph on $Ck \log k$ vertices and define for any $X \subseteq V$

$$D_\nu(X) := |D(X)| - \nu|X|^{3/2}.$$

Let $V_0 = V$. Form V_{i+1} in step $i + 1$ by letting $X_i \subseteq V_i$ maximise $D_\nu(X_i)$ and $V_{i+1} = V_i \setminus X_i$. Stop after step $t + 1$ if $|V_{t+1}| < \frac{1}{2}|V|$.

Let $\{i_1, \ldots, i_m\} \subseteq [t]$ be those i with $D(X_i) > 0$. Wlog $\sum_{j \in [m]} |X_{i_j}| \geq \frac{1}{4}|V|$.

Claim 1 For any $j \in [m]$, H_{ij} has minimum degree $\geq \frac{1}{2}(|X_{i_j}| - 1) + \nu \sqrt{|X_{i_j}| - 1}$.

Claim 2 For any $\ell \in [m - 3]$, $D(X_{i_{\ell+3}}) \leq \frac{5}{6}D(X_{i_{\ell}})$.
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed $\nu \geq 0$, let $c = \frac{1}{2} + \frac{\nu}{\sqrt{\ell - 1}}$. Then $R_c(k) = O(k \log k)$.

Outline proof of Lemma (1).
Let $G = (V, E)$ be a graph on $Ck \log k$ vertices and define for any $X \subseteq V$

$$D_\nu(X) := |D(X)| - \nu |X|^{3/2}.$$

Let $V_0 = V$. Form V_{i+1} in step $i + 1$ by letting $X_i \subseteq V_i$ maximise $D_\nu(X_i)$ and $V_{i+1} = V_i \setminus X_i$. Stop after step $t + 1$ if $|V_{t+1}| < \frac{1}{2}|V|$.

Let $\{i_1, \ldots, i_m\} \subseteq [t]$ be those i with $D(X_i) > 0$. Wlog $\sum_{j \in [m]} |X_{i_j}| \geq \frac{1}{4}|V|$.

Claim 1 For any $j \in [m]$, H_{i_j} has minimum degree $\geq \frac{1}{2}(|X_{i_j}| - 1) + \nu \sqrt{|X_{i_j}| - 1}$.

Claim 2 For any $\ell \in [m - 3]$, $D(X_{i_{\ell+3}}) \leq \frac{5}{6} D(X_{i_{\ell}})$.

Then $(\frac{5}{6})^{(m-1)/3} D(X_{i_1}) \geq D(X_{i_m}) \geq 1 \Rightarrow m - 1 \leq 3 \log_{6/5} D(X_{i_1}) \leq 6 \log_{6/5} k.$
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed \(\nu \geq 0 \), let \(c = \frac{1}{2} + \frac{\nu}{\sqrt{\ell - 1}} \). Then \(R_c(k) = O(k \log k) \).

Outline proof of Lemma (1).
Let \(G = (V, E) \) be a graph on \(Ck \log k \) vertices and define for any \(X \subseteq V \)
\[
D_\nu(X) := |D(X)| - \nu |X|^{3/2}.
\]

Let \(V_0 = V \). Form \(V_{i+1} \) in step \(i + 1 \) by letting \(X_i \subseteq V_i \) maximise \(D_\nu(X_i) \) and \(V_{i+1} = V_i \setminus X_i \). Stop after step \(t + 1 \) if \(|V_{t+1}| < \frac{1}{2} |V| \).
Let \(\{i_1, \ldots, i_m\} \subseteq [t] \) be those \(i \) with \(D(X_i) > 0 \). Wlog \(\sum_{j \in [m]} |X_{i_j}| \geq \frac{1}{4} |V| \).

Claim 1 For any \(j \in [m] \), \(H_{i_j} \) has minimum degree \(\geq \frac{1}{2} (|X_{i_j}| - 1) + \nu \sqrt{|X_{i_j}| - 1} \).

Claim 2 For any \(\ell \in [m - 3] \), \(D(X_{i_{\ell + 3}}) \leq \frac{5}{6} D(X_{i_\ell}) \).

Then \(\left(\frac{5}{6} \right)^{(m-1)/3} D(X_1) \geq D(X_{i_m}) \geq 1 \Rightarrow m - 1 \leq 3 \log_{6/5} D(X_1) \leq 6 \log_{6/5} k \).

Pigeonhole guarantees some \(|X_{i_j}| \geq \frac{|V| \log(6/5)}{25 \log k} = \frac{C \log(6/5)}{25} k \geq k \) if \(C \geq \frac{25}{\log(6/5)} \).
Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed $\nu \geq 0$, let $c = 1/2 + \nu/\sqrt{\ell - 1}$. Then $R_c(k) = O(k \log k)$.

Outline proof of Lemma (1).
Let $G = (V, E)$ be a graph on $Ck \log k$ vertices and define for any $X \subseteq V$

$$D_\nu(X) := |D(X)| - \nu |X|^{3/2}.$$

Let $V_0 = V$. Form V_{i+1} in step $i + 1$ by letting $X_i \subseteq V_i$ maximise $D_\nu(X_i)$ and $V_{i+1} = V_i \setminus X_i$. Stop after step $t + 1$ if $|V_{t+1}| < \frac{1}{2}|V|$.

Let $\{i_1, \ldots, i_m\} \subseteq [t]$ be those i with $D(X_i) > 0$. Wlog $\sum_{j \in [m]} |X_{i_j}| \geq \frac{1}{4}|V|$.

Claim 1 For any $j \in [m]$, H_{i_j} has minimum degree $\geq \frac{1}{2}(|X_{i_j}| - 1) + \nu \sqrt{|X_{i_j}| - 1}$.

Claim 2 For any $\ell \in [m - 3]$, $D(X_{i_{\ell+3}}) \leq \frac{5}{6} D(X_{i_\ell})$.

Then $(\frac{5}{6})^{(m-1)/3} D(X_{i_1}) \geq D(X_{i_m}) \geq 1 \Rightarrow m - 1 \leq 3 \log_{6/5} D(X_{i_1}) \leq 6 \log_{6/5} k$.

Pigeonhole guarantees some $|X_{i_j}| \geq \frac{|V| \log(6/5)}{25 \log k} = \frac{C \log(6/5)}{25} k \geq k$ if $C \geq \frac{25}{\log(6/5)}$.

Claim 1 implies that X_{i_j} is the desired subset. \qed
Claim 1 For any $j \in [m]$, H_{ij} has minimum degree $\geq \frac{1}{2}(|X_{ij}| - 1) + \nu \sqrt{|X_{ij}| - 1}$.

Proof of Claim 1.
If not there exists $x \in X_{ij}$ with $\deg_{H_{ij}}(x) < \frac{1}{2}(|X_{ij}| - 1) + \nu \sqrt{|X_{ij}| - 1}$.
Let $X'_{ij} = X_{ij} \setminus \{x\}$. Since $D(X_{ij}) > 0$,

$$D_\nu(X'_{ij}) = e(X'_{ij}) - \frac{1}{2}\left(\frac{|X_{ij}| - 1}{2}\right) - \nu(|X_{ij}| - 1)^{3/2}$$

$$> e(X_{ij}) - \frac{1}{2}\left(\frac{|X_{ij}|}{2}\right) - \nu \sqrt{|X_{ij}| - 1} - \nu(|X_{ij}| - 1)^{3/2}$$

$$> e(X_{ij}) - \frac{1}{2}\left(\frac{|X_{ij}|}{2}\right) - \nu |X_{ij}|^{3/2} = D_\nu(X_{ij})$$

(since $n^{3/2} > \sqrt{n - 1 + (n - 1)^{3/2}}$), contradicting maximality of $D_\nu(X_{ij})$. \qed