A generalisation of the Erdős–Nešetřil conjecture*

Ross J. Kang

Radboud University Nijmegen

Leiden 12/2016

^{*}This research was made possible thanks to a Van Gogh grant.

matching : set of non-interfering edges

edge-colouring : edge partition into matchings

matching : set of non-interfering edges

edge-colouring : edge partition into matchings

 $\mathit{chromatic}\ \mathit{index}\ \chi'$: least number of parts needed

Strengthen notion of matching: transmission gives stronger interference

Strengthen notion of matching: transmission gives stronger interference

Strengthen notion of matching: transmission gives stronger interference

strong matching : set of edges that induce a matching

strong matching : set of edges that induce a matching

strong matching : set of edges that induce a matching strong edge-colouring : edge partition into strong matchings strong chromatic index χ'_s : least number of parts needed

A basic question

Let $\Delta(G)$ denote the maximum degree in a graph G.

What is the worst value among those G with $\Delta(G) = d$?

A basic question

Let $\Delta(G)$ denote the maximum degree in a graph G.

What is the worst value among those G with $\Delta(G) = d$?

I.e.

What is
$$\chi'(d) := \sup\{\chi'(G) \mid \Delta(G) = d\}$$
?

What is $\chi'_s(d) := \sup\{\chi'_s(G) \mid \Delta(G) = d\}$?

Chromatic index

What is $\chi'(d) := \sup\{\chi'(G) \mid \Delta(G) = d\}$?

Chromatic index

What is
$$\chi'(d) := \sup\{\chi'(G) \mid \Delta(G) = d\}$$
?

Trivial: $\chi'(d) \le 2(d-1) + 1 = 2d - 1$. Greedy.

Easy: $\chi'(d) \ge d$. All edges around a vertex must get different colours.

Chromatic index

What is
$$\chi'(d) := \sup\{\chi'(G) \mid \Delta(G) = d\}$$
?

Trivial: $\chi'(d) \le 2(d-1) + 1 = 2d - 1$. Greedy.

Easy: $\chi'(d) \ge d$. All edges around a vertex must get different colours. Classic: $\chi'(d) \le d + 1$. Recolouring argument by Gupta and by Vizing (1960s).

What is $\chi'_s(d) := \sup\{\chi'_s(G) \mid \Delta(G) = d\}$?

What is
$$\chi'_s(d) := \sup\{\chi'_s(G) \mid \Delta(G) = d\}$$
?

Trivial: $\chi'_{s}(d) \leq 2d(d-1) + 1 = 2d^{2} - 2d + 1$. Greedy.

Lower bound?

Better upper bound?

What is
$$\chi'_s(d) := \sup\{\chi'_s(G) \mid \Delta(G) = d\}$$
?

Example: $\chi'_s(d) \ge 5d^2/4$, d even.

What is
$$\chi'_s(d) := \sup\{\chi'_s(G) \mid \Delta(G) = d\}$$
?

Example: $\chi'_s(d) \ge 5d^2/4$, d even.

Conjecture (Erdős & Nešetřil 1980s) $\chi'_{s}(d) \leq 5d^{2}/4.$

What is $\chi'_s(d) := \sup\{\chi'_s(G) \mid \Delta(G) = d\}$?

Example: $\chi'_s(d) \ge 5d^2/4$, d even.

Conjecture (Erdős & Nešetřil 1980s)

 $\chi_s'(d) \le 5d^2/4$. (Or even just $\chi_s'(d) \le (2-\varepsilon)d^2$ for some absolute $\varepsilon > 0$?)

```
What is \chi'_s(d) := \sup\{\chi'_s(G) \mid \Delta(G) = d\}?
```

This remains wide open, except

Theorem (Molloy & Reed 1997)

 $\chi'_{s}(d) \leq (2-\varepsilon)d^{2}$ for some absolute $\varepsilon > 0$. ($\varepsilon \ll 0.002$.)

What is
$$\chi'_s(d) := \sup\{\chi'_s(G) \mid \Delta(G) = d\}$$
?

This remains wide open, except

Theorem (Molloy & Reed 1997) $\chi'_{s}(d) \leq (2 - \varepsilon)d^{2}$ for some absolute $\varepsilon > 0$. ($\varepsilon \ll 0.002$.)

Theorem (Andersen 1992, Horák, He & Trotter 1993) $\chi_{s}'(3) = 10.$

Confirms first non-trivial case. Running example certifies sharpness.

```
What is \chi'_s(d) := \sup\{\chi'_s(G) \mid \Delta(G) = d\}?
```

This remains wide open, except

Theorem (Molloy & Reed 1997)

 $\chi'_{s}(d) \leq (2-\varepsilon)d^{2}$ for some absolute $\varepsilon > 0$. ($\varepsilon \ll 0.002$.)

Lemma (sparse neighbourhoods colouring)

If every neighbourhood is sparse enough and degree bound is large enough, then vertices can be coloured with < 1 factor lower than the trivial number.

Lemma (square of line graph neighbourhood sparsity)

The auxiliary graph implicit in strong edge-colouring of bounded degree graph has sparse enough neighbourhoods.

matching in G

matching in $G \equiv$ stable set in L(G)

The *line graph* L(G) of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

matching in $G \equiv$ stable set in L(G)

edge-colouring in G

The *line graph* L(G) of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

matching in $G \equiv$ stable set in L(G)

edge-colouring in $G \equiv$ vertex-colouring in L(G)

The *line graph* L(G) of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

matching in $G \equiv$ stable set in L(G)

edge-colouring in $G \equiv$ vertex-colouring in L(G)

strong matching in ${\it G}$

strong edge-colouring in ${\it G}$
The *line graph* L(G) of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

matching in $G \equiv$ stable set in L(G)

edge-colouring in $G \equiv$ vertex-colouring in L(G)

strong matching in $G \equiv$ stable set in $(L(G))^2$

strong edge-colouring in $G \equiv$ vertex-colouring in $(L(G))^2$

The *line graph* L(G) of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

maximum degree Δ of G

The *line graph* L(G) of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

maximum degree Δ of $G \equiv$ clique number ω of L(G)

The *line graph* L(G) of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

maximum degree Δ of $G \equiv$ clique number ω of L(G)

Gupta-Vizing: $\chi'(G) = \chi(L(G)) \in \{\omega(L(G)), \omega(L(G)) + 1\}.$

The *line graph* L(G) of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

maximum degree Δ of $G \equiv$ clique number ω of L(G)

Gupta-Vizing: $\chi'(G) = \chi(L(G)) \in \{\omega(L(G)), \omega(L(G)) + 1\}.$ Molloy-Reed: $\chi'_s(G) = \chi((L(G))^2) \le (2 - \varepsilon)\omega(L(G))^2.$

In a line graph, every (vertex) neighbourhood partitions into two cliques.

In a line graph, every (vertex) neighbourhood partitions into two cliques.

In a line graph, every (vertex) neighbourhood partitions into two cliques.

Call any G with this property quasiline.

Any quasiline graph, and thus any line graph, contains no claw.

Call any G with this property claw-free.

Any quasiline graph, and thus any line graph, contains no claw.

Call any G with this property claw-free.

line graphs \subseteq quasiline graphs \subseteq claw-free graphs

Any quasiline graph, and thus any line graph, contains no claw.

Call any G with this property claw-free.

line graphs \subsetneq quasiline graphs \subsetneq claw-free graphs

Any quasiline graph, and thus any line graph, contains no claw.

Call any G with this property claw-free.

line graphs \subsetneq quasiline graphs \subsetneq claw-free graphs How do line graph results extend to claw-free graphs?

edge-colouring of graph \sim colouring of claw-free graph maximum degree of graph \sim clique number of claw-free graph

What is the worst $\chi(G)$ among those claw-free G with $\omega(G) = \omega$?

edge-colouring of graph \sim colouring of claw-free graph maximum degree of graph \sim clique number of claw-free graph

What is the worst $\chi(G)$ among those claw-free G with $\omega(G) = \omega$?

Gupta, Vizing (1960s): $\chi(G) \in \{\omega, \omega + 1\}$ if G line graph.

edge-colouring of graph \rightsquigarrow colouring of claw-free graph maximum degree of graph \rightsquigarrow clique number of claw-free graph

What is the worst $\chi(G)$ among those claw-free G with $\omega(G) = \omega$?

Gupta, Vizing (1960s): $\chi(G) \in \{\omega, \omega + 1\}$ if G line graph.

Chudnovsky & Ovetsky (2007): $\chi(G) \leq 3\omega/2$ if G quasiline. Sharp.

edge-colouring of graph \sim colouring of claw-free graph maximum degree of graph \sim clique number of claw-free graph

What is the worst $\chi(G)$ among those claw-free G with $\omega(G) = \omega$?

Gupta, Vizing (1960s): $\chi(G) \in \{\omega, \omega + 1\}$ if G line graph.

Chudnovsky & Ovetsky (2007): $\chi(G) \leq 3\omega/2$ if G quasiline. Sharp.

Chudnovsky & Seymour VI (2010): $\chi(G) \le 2\omega$ if G connected with stable set of size 3. Sharp.

Without stable set condition, $\chi(G) \leq \omega^2$ but $\chi(G)$ can be $\Omega(\omega^2/\log \omega)$ as $\omega \to \infty$ in suitable Ramsey graphs.

strong edge-colouring of graph \rightsquigarrow colouring of square of claw-free graph maximum degree of graph \rightsquigarrow clique number of claw-free graph

What is the worst $\chi(G^2)$ among those claw-free G with $\omega(G) = \omega$?

strong edge-colouring of graph \sim colouring of square of claw-free graph maximum degree of graph \sim clique number of claw-free graph

What is the worst $\chi(G^2)$ among those claw-free G with $\omega(G) = \omega$?

Erdős & Nešetřil (1980s): $\chi(G^2) \le 5\omega^2/4$ if G line graph? Molloy & Reed (1997): $\chi(G^2) \le (2 - \varepsilon)\omega^2$ if G line graph.

strong edge-colouring of graph \sim colouring of square of claw-free graph maximum degree of graph \sim clique number of claw-free graph

What is the worst $\chi(G^2)$ among those claw-free G with $\omega(G) = \omega$?

Erdős & Nešetřil (1980s): $\chi(G^2) \leq 5\omega^2/4$ if G line graph? Molloy & Reed (1997): $\chi(G^2) \leq (2 - \varepsilon)\omega^2$ if G line graph.

Does $\chi(G^2)$ get worse approaching claw-free from line (like for $\chi(G)$)?

strong edge-colouring of graph \rightsquigarrow colouring of square of claw-free graph maximum degree of graph \rightsquigarrow clique number of claw-free graph

What is the worst $\chi(G^2)$ among those claw-free G with $\omega(G) = \omega$?

strong edge-colouring of graph \rightsquigarrow colouring of square of claw-free graph maximum degree of graph \rightsquigarrow clique number of claw-free graph

What is the worst $\chi(G^2)$ among those claw-free G with $\omega(G) = \omega$?

Theorem (de Joannis de Verclos, K & Pastor 2016+)

 $\chi(G^2) \leq (2-\varepsilon)\omega^2.$

strong edge-colouring of graph \sim colouring of square of claw-free graph maximum degree of graph \sim clique number of claw-free graph

What is the worst $\chi(G^2)$ among those claw-free G with $\omega(G) = \omega$?

Theorem (de Joannis de Verclos, K & Pastor 2016+)

 $\chi(G^2) \leq (2 - \varepsilon)\omega^2$. Same small unspecified $\varepsilon > 0$.

strong edge-colouring of graph \sim colouring of square of claw-free graph maximum degree of graph \sim clique number of claw-free graph

What is the worst $\chi(G^2)$ among those claw-free G with $\omega(G) = \omega$?

Theorem (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \leq (2 - \varepsilon)\omega^2$. Same small unspecified $\varepsilon > 0$.

Conjecture (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \leq 5\omega^2/4.$

strong edge-colouring of graph \sim colouring of square of claw-free graph maximum degree of graph \sim clique number of claw-free graph

What is the worst $\chi(G^2)$ among those claw-free G with $\omega(G) = \omega$?

Theorem (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \leq (2 - \varepsilon)\omega^2$. Same small unspecified $\varepsilon > 0$.

Conjecture (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \leq 5\omega^2/4.$

Theorem (Cames van Batenburg & K 2016+) $\chi(G^2) \leq 10 \text{ if } \omega = 3.$

strong edge-colouring of graph \sim colouring of square of claw-free graph maximum degree of graph \sim clique number of claw-free graph

What is the worst $\chi(G^2)$ among those claw-free G with $\omega(G) = \omega$?

Theorem (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \leq (2 - \varepsilon)\omega^2$. Same small unspecified $\varepsilon > 0$.

Conjecture (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \le 5\omega^2/4$. \rightarrow Suffices to prove this for G line graph of multigraph.

Theorem (Cames van Batenburg & K 2016+) $\chi(G^2) \leq 10 \text{ if } \omega = 3.$

Greedy colouring

Recall "trivial" bound max degree+1, colouring greedily one by one. What if we colour the smallest degree element last? Recall "trivial" bound max degree+1, colouring greedily one by one. What if we colour the smallest degree element last?

Lemma (double greedy)

Fix $K \ge 0$ and \mathcal{C}_1 , \mathcal{C}_2 graph classes. Assume every $G \in \mathcal{C}_2$ has $\chi(G^2) \le K + 1$. Assume \mathcal{C}_1 contains singleton, closed under vertex-deletion and for any $G \in \mathcal{C}_1$

- G belongs to \mathbb{C}_2 , or
- there is vertex v ∈ G with square degree deg_{G2}(v) ≤ K such that those G-neighbours x with deg_{G2}(x) > K + 2 induce a clique in (G \ v)².

Then every $G \in \mathcal{C}_1$ has $\chi(G^2) \leq K + 1$.

Theorem (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \leq (2 - \varepsilon)\omega^2$ for claw-free G with $\omega(G) = \omega$.

Theorem (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \leq (2 - \varepsilon)\omega^2$ for claw-free G with $\omega(G) = \omega$.

Lemma (claw-free \rightarrow quasiline)

For claw-free G with $\omega(G) = \omega$, either G is quasiline or there is $v \in G$ with $\deg_{G^2}(v) \leq \omega^2 + (\omega + 1)/2$ s.t. neighbours induce clique in $(G \setminus v)^2$.

Theorem (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \leq (2 - \varepsilon)\omega^2$ for claw-free G with $\omega(G) = \omega$.

Lemma (claw-free \rightarrow quasiline)

For claw-free G with $\omega(G) = \omega$, either G is quasiline or there is $v \in G$ with $\deg_{G^2}(v) \le \omega^2 + (\omega + 1)/2$ s.t. neighbours induce clique in $(G \setminus v)^2$.

Lemma (quasiline \rightarrow line graph of multigraph)

For quasiline G with $\omega(G) = \omega$, either G is line graph of multigraph or there is $v \in G$ with $\deg_{G^2}(v) \leq \omega^2 + \omega$ s.t. neighbours x with $\deg_{G^2}(x) > \omega^2 + \omega$ induce clique in $(G \setminus v)^2$.

Theorem (de Joannis de Verclos, K & Pastor 2016+) $\chi(G^2) \leq (2 - \varepsilon)\omega^2$ for claw-free G with $\omega(G) = \omega$.

Lemma (claw-free \rightarrow quasiline)

For claw-free G with $\omega(G) = \omega$, either G is quasiline or there is $v \in G$ with $\deg_{G^2}(v) \le \omega^2 + (\omega + 1)/2$ s.t. neighbours induce clique in $(G \setminus v)^2$.

Lemma (quasiline \rightarrow line graph of multigraph)

For quasiline G with $\omega(G) = \omega$, either G is line graph of multigraph or there is $v \in G$ with $\deg_{G^2}(v) \leq \omega^2 + \omega$ s.t. neighbours x with $\deg_{G^2}(x) > \omega^2 + \omega$ induce clique in $(G \setminus v)^2$.

Lemma (line graph of multigraph)

 $\chi(G^2) \leq (2 - \varepsilon)\omega^2$ if G line graph of multigraph with $\omega(G) = \omega$.

Theorem (Cames van Batenburg & K 2016+)

 $\chi(G^2) \leq 10$ if G claw-free with $\omega(G) = 3$.

Theorem (Cames van Batenburg & K 2016+) $\chi(G^2) \leq 10$ if G claw-free with $\omega(G) = 3$.

Lemma

If G connected claw-free with $\omega(G) = 3$, then

- G is icosahedron;
- G is line graph of a 3-regular graph; or
- there is $v \in G$ with $\deg_{G^2}(v) \leq 9$ s.t. $\deg_{G^2}(x) \leq 11$ for all neighbours x.

Theorem (Cames van Batenburg & K 2016+) $\chi(G^2) \leq 10$ if G claw-free with $\omega(G) = 3$.

Lemma

If G connected claw-free with $\omega(G) = 3$, then

- G is icosahedron;
- G is line graph of a 3-regular graph; or
- there is $v \in G$ with $\deg_{G^2}(v) \leq 9$ s.t. $\deg_{G^2}(x) \leq 11$ for all neighbours x.

Similar techniques to achieve optimal reduction for $\omega(G) = 4$.

For further consideration

The Erdős-Nešetřil conjecture itself!

For further consideration

The Erdős-Nešetřil conjecture itself!

Other optimisation/extremal problems where claw-free reduces to (multi)line?
For further consideration

The Erdős-Nešetřil conjecture itself!

Other optimisation/extremal problems where claw-free reduces to (multi)line?

Superclasses of claw-free graphs?

For further consideration

The Erdős-Nešetřil conjecture itself!

Other optimisation/extremal problems where claw-free reduces to (multi)line?

Superclasses of claw-free graphs?

For $t \ge 3$, how does $\chi(G^t)$ behave in terms of $\omega(G)$ for claw-free G? (For line graph G and large fixed t this is already a difficult problem.) Announcement

26 and 27 January 2017

STAR Workshop on Random Graphs.

in Utrecht

Speakers include:

Mihyun Kang (Graz), Marián Boguña (Barcelona), Nick Wormald (Melbourne), Vincent Tassion (Zürich).

Thank you!