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X = (X)), irreducible discrete-time Markov chain
on finite state space €2, transition matrix P,
stationary dist. 7; law of X from x € Q is Py(+).
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Introduction

X = (X)), irreducible discrete-time Markov chain
on finite state space €2, transition matrix P,
stationary dist. 7; law of X from x € Q is Py(+).

The hitting time 74 of A C Q is min{t : X; € A}.
Extremal problem of max mean hitting time over ‘large enough’ A:

for 0 < a < 1,

T(a) = xerg,%gﬂ {Ex(7a) : m(A) > a}.
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A fanciful example

Imagine meandering (compassless, mapless, drunken) sailor X.

T

What is worst-case time expected to reach some island A?
A large island? A continent?
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Mixing time

Many other (more relevant) examples from statistical physics,
network analysis, machine learning, card shuffling, ...

Fundamental property if X ergodic is time to get near stationarity,
mixing time'

1
tmix = Min {t 1Vx € Q, VAC Q, |P(x,A) — 7n(A)| < 4}.

Usually for applications, the faster the better.

(If X periodic, we use weaker notion, Cesaro mixing time.)

"The choice of constant % is essentially irrelevant.
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Hitting and mixing
For lazy, reversible! X, mixing time is equivalent to the following

hitting time parameter:

tprod = XG?;,?L\XQQ {W(A)EX(TA) tA 7& ®} :

Theorem (Aldous, 1982)

1
3C > 0 such that Etprod < tmix < Ctproa if X lazy, reversible.

Later expanded (including Cesaro analogue without laziness, reversibility)
by Aldous, Lovédsz & Winkler (1997), Lovész & Winkler (1998).

X is reversible if I, w(i)P(i,j) = ©(j)Pt(j, i) for all i,j € Q and t > 0.
By lazy, we mean in the sense that P, > % for all x € Q.
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Hitting and mixing

Intuitively, X has not mixed until it has hit all large enough sets.

Does mixing time depend on hitting times of arbitrarily small sets?
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Hitting and mixing

Intuitively, X has not mixed until it has hit all large enough sets.
Does mixing time depend on hitting times of arbitrarily small sets?

No, can restrict attention to large enough sets. ..
Theorem (Oliveira, 2012, and Peres & Sousi, 2011+-/147)

1
Vo € (0,3), 3C > 0 such that ET(O[) < tmix < CT(a) if X lazy,

reversible.
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Hitting and mixing

... but not too large. Consider SSRW on

tmix = (n?) while T(% +¢)=0(n)

= hitting/mixing connection fails if all sets too large,
i.e. statement in previous theorem false when a > %
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Hitting and mixing

What about oo = %?

Question (Peres, 2007—)

1
3C > 0 such that ET(%) < tmix < CT(L) if X lazy, reversible?



Hitting large sets

Hitting large sets

These connections and this question led us to study

T(a) = xeraixgﬂ {Ex(7a) : m(A) > a}.

Note T(a) > T(B) for0 < a < < 1.

Question (‘Extremal ratio problem’)

Let 0 < o< < 1. Over all X, how large can T(«)/T(B) be?



Hitting large sets

Hitting large sets

These connections and this question led us to study

T(a) = xeraixgﬂ {Ex(7a) : m(A) > a}.

Note T(a) > T(B) for0 < a < < 1.
= ‘It can take longer to reach smaller islands.’
Question (‘Extremal ratio problem’)

Let 0 < o< < 1. Over all X, how large can T(«)/T(B) be?

= 'How much longer?’
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Hitting large sets

Question (‘Extremal ratio problem’)

Let 0 < a< B < 1. Over all X, how large can T(«)/T(B) be?
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Hitting large sets

Question (‘Extremal ratio problem’)
Let 0 < a< B < 1. Over all X, how large can T(«)/T(B) be?

Cesaro version of Oliveira/Peres & Sousi result implies

Corollary

T(5)

Let0<a<B<i 3C>0st T(a)<Cp for any X.
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Main theorem

Theorem (Griffiths, K., Oliveira & Patel, 2012+ /20147)

Let0<a<ﬁ§%. For any X,

T(a) < T(B) + G - 1> T1-8) < @

Shape



Hitting large sets

Sharpness of the theorem

Given0<a< g < % for some small € > 0, consider

Check m = (5,1 —a—¢,a), T(8) =1and T(a)=1.

= T(a)= ﬂ meeting (x) with equality.



Hitting large sets

Sharpness of the theorem

Given0<a<f<l,pg> % let max{a, %} <~ < B and N large.
Consider

1 1
1-J§ 15w
Q<j>0
YN

Check m = (7,1 —7), T(8) =0and T(a) > (1 —7)N.

= no constant bound in extremal ratio problem when 5 > %
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An application of the theorem

Corollary

3C > 0 such that %T(%) < tix < CT(%) if X lazy, reversible.
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An application of the theorem

Corollary

1
3C > 0 such that c T(3) < twix < CT(3) if X lazy, reversible.

Proof.
T(3)

Note — < max_{m(A)E«(7a): 7(A) > 3} < toroa.

x€Q,ACQ

Also, m(A)Ex(ta) < m(A)T(m(A)) < T(3) forall ACQ
(by theorem if m(A) < & and monotonicity of T otherwise).



Hitting large sets

An ergodic property

Given A, C C Q, define

dT (A, C) = maxE,(7¢c) and d (C,A) = minE(7a).
xEA xeC

Lemma

For any chain X and A, C C €,

d+(A, C)
A S TR O T (CA)



Hitting large sets

Proof of theorem

Fix x € Q, A C Q with 7(A) > «. Suffices to prove

B) < T(0)+ (1 -1) T - 9)

Define set

C:{yEQ:Ey(TA)> (;—1> T(l—ﬁ)}

By definition, ‘hard’ to get from C to A. Also, 7(C) <1 —3:
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Proof of theorem

Fix x € Q, A C Q with 7(A) > «. Suffices to prove

B) < T(0)+ (1 -1) T - 9)

Define set
C— {yeQ:Ey(TA) > (;—1) T(l—ﬁ)}

By definition, ‘hard’ to get from C to A. Also, 7(C) <1 —3:

Suppose, for %, that 7(C) > 1— 3. Then d*(A, C) < T(1 - f)
while d=(C,A) > (L — 1) T(1 - B). Lemma implies 7(A) < a, %



Hitting large sets

Proof of theorem

G
e ‘easy’ to get from x to B: Ey(75) < T(f) as n(B) > ;

o ‘easy’ to get from B to A: d7(B,A) < (2 —1) T(1-p);

e from x to A, we must hit B.

Let B=Q\ C.
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Proof of theorem

G
e ‘easy’ to get from x to B: Ey(75) < T(f) as n(B) > ;

o ‘easy’ to get from B to A: d7(B,A) < (2 —1) T(1-p);

e from x to A, we must hit B.

Let B=Q\ C.

By Markovian property of X,

Ex(1a) < Ex(18) + d (B, A) < T(B) + (1 — 1) T(1-5). O

(e
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An ergodic property

Lemma

d*+(A, C)
A S A O+ d-(C.A)

where dT (A, C) = maxyea Ex(7¢), d™(C, A) = minyec Ex(7a).

Proof outline.

Martingale concentration + ergodic theorem
OR

Auxiliary chain simulates stationary hitting behaviour A +» C.
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Shape problem

We already saw tightness in two senses, but we may ask more.
Question (‘Shape problem’)

Besides decreasing and (x), what other constraints on T(«),
a € (0, 3], for all chains X on at least two states?



Shape problem

Let F be all decreasing functions f : (0, %] — R given by

T
fla) = () for some X on at least two states.
7(3)

Let J be all decreasing functions f : (0, %] — R which are obtained
by the almost everywhere pointwise limit of functions from &.

Question (‘Shape problem’)

Does (%) characterise F?

Shape
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Shape theorem

Theorem (GKOP)

Let f: (0,4] — R be a decreasing function.
Then f € F iff f(3) =1 and f(a) < L forall o € (0, 3).
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L-shaped chains

Vo1

Vo Vi Vo V3 V4 V5 Ve v7

(o)

1
2

=)

where f(3) =1 and f(a) < L forall a € 0,1.Then let n — oo.
2 « 2

Hitting time functions approximate any step function of form
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An additional contraint

We restricted our domain to (0, 3], but what about domain (0, 1)?

Theorem (GKOP)
For any X, if T(0.01) = 99.9T(0.02), then
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An additional contraint

We restricted our domain to (0, 3], but what about domain (0, 1)?
Theorem (GKOP)

For any X, if T(0.01) = 99.97(0.02), then

Notes

o There are L-shaped X with T(0.01) = 99.97(0.02).
o (%) implies T(0.01) < T(0.02) +997(0.98), and so

7(0.98) > %T(O.w).
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An additional contraint

We restricted our domain to (0, 3], but what about domain (0, 1)?
Theorem (GKOP)

For any X, if T(0.01) = 99.9T(0.02), then T(0.99) > 0.1T(0.02).
Notes

o There are L-shaped X with T(0.01) = 99.97(0.02).
o (%) implies T(0.01) < T(0.02) +997(0.98), and so

7(0.98) > %T(O.w).
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Further investigation

1. Shape problem for domain (0,1)?

2. Connect to (analogues of) other properties of Markov chains,
e.g. cover time, blanket times, ...7
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