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t-component set = subset of V, no induced component more than ¢ vertices

t-component colouring = partition of V into t-comp. sets

t-component chromatic number = least number of parts in ¢-comp. colouring
denoted x4(G)
t =1 == ordinary chromatic number

larger ¢ = “more error” allowed and possibly fewer colours needed



Warm up

Graph G = (V. E)

t-component set = subset of V, no induced component of more than ¢ vertices
t-component colouring = partition of V' into t-comp. sets

t-component chromatic number = least number of parts in ¢-comp. colouring

denoted x4 (G)

M <@ = min {uo | FE |



Previous study

Dynamic/evolving databases:
cf. Kleinberg, Motwani, Raghavan, Venkatasubramanian 1997

H-minor free and bounded maximum degree graphs:

* Alon, Ding, Oporowski, Vertigan 2003
* Berke and Szabé 2007

* Kawarabayashi and Mohar 2007

+ Linial, Matoudek, Sheffet, Tardos 2008
* Esperet and Joret 2014

+ Liu and Oum 2015+



Random graphs G, ,

Binomial random graph G, p, championed by Erdds and Rényi 1959/60:

V(Gnp): [n]={1,...,n}
E(Gnp):  edgesincluded independently with probability p = p(n)

Want properties holding asymptotically almost surely (a.as.), i.e. with prob. — 1 asn — oo



History of x!(Gnp)

Problem of finding x(Gn,p) mentioned by Erdés and Rényi 1959/60
and conjecture made by Grimmett and McDiarmid 1979

Theorem (Bollobas 1988, Matula 1987, Fuczak 1991)

Suppose np — oo and p bounded from 1 asm — oo. Lettingb = 1/(1 — p),

n
X(Gnp) ~

——— aas.
2log, np
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n
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... fixed np remains open, but close to settled: Coja-Oghlan and Vilenchik 2013



A rough view of x%(Gpp)

Proposition (Broutin and Kang)

Suppose np — oo and p bounded from 1 asm — oo. Let b=1/(1 — p).

. — t — n
Ift = o (log, np), then x¢(Gnp) = © (10gb np) a.as.

* If t = w (log, np) and t = o(n), then Xe(Grp) ~ ? a.as.
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t
Recall x(Gnp) ~ a.a.s. and note [W-‘ ~ Zift = o(n).

_n
2 ]ogb np

Le. partition into asymptotically fewer than x(Gn,p) parts yields
a monochromatic component of at least average part size.



A rough view of x%4(Gyp), p fixed

Slightly better focus when p fixed as n — co:

Fix0<p<1 Letb=1/(1—p).

* Ift = o (log, np), then Xe(Grp) ~ i a.as.

2log, np

* Ift = w (log, np) and t = o(n), then X.(Gn p) ~ % a.as.



A rough view of x%4(Gyp), p fixed

Slightly better focus when p fixed as n — co:

Fix0<p<1 Letb=1/(1—p).

n

* Ift = o (log, np), then Xe(Grp) ~ a.as.

2log, np
* If t = © (log, np), then ...
* Ift = w (log, np) and t = o(n), then X.(Gn p) ~ % a.as.



A finer view of x'(G), ), p fixed

Theorem (Broutin and Kang)

Fix0<p<1 Letb=1/(1—p).

Ift ~ 7log, np and r is unique root of (1, k) = 0, then Xe(Grp) ~ o as.

—a
rklog, np



A finer view of x'(G), ), p fixed

For 7,k > 0, define

Theorem (Broutin and Kang)

Fix0<p<1 Letb=1/(1—p).

Ift ~ 7log, np and r is unique root of (1, k) = 0, then Xe(Grp) ~ ﬁbnp a.as.



Plot of «(z, )




First moment

Non-smooth behaviour governed by expected number of ¢-component k-sets

T > 2: two components, one with exact]y t vertices

< )@

7 < 2: more than two components, all but at most one with exactly ¢ vertices

00002




Second moment

Theorem (Broutin and Kang)

Fix0<p<1l Letb=1/(1—p).

n

Ift ~ 7log, np and & is unique root of u(7, k) = 0, then x¢(Gn p) ~ aas.

rlog, np

Lemma

Ift ~ Tlog, np, K is unique root of r, k) =0,and k ~ (k — ¢) logb n,
then P(al(Gn,p) < k) < exp(—n?®/(logn)®).
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Second moment

Theorem (Broutin and Kang)

Fix0<p<1l Letb=1/(1—p).

n

Ift ~ 7log, np and & is unique root of u(7, k) = 0, then x¢(Gn p) ~ aas.

rlog, np

Lemma

If t ~ 7log, np, k is unique root of 1(7, k) = 0, and k ~ (k — €) log, n,
then P(al(Gn,p) < k) < exp(—n?®/(logn)®).

Proof of Theorem.

Lemma implies each subset with > n/(logn)? vertices has t-component k-set.
Start with S" = [n].

While [S'| > n/(logn)?, extract a t-component k-set from S’ as a new colour.
For each of remaining n/(logn?) vertices, use a new colour. O



Second moment

Lemma

Ift ~ Tlogb np,  is the unique root of L(7, k) =0, and k ~ (k — ¢) logb n,
then P(al(Gn,p) < k) < exp(—n?/(logn)®).



Second moment

Lemma

Ift ~ Tlogb np,  is the unique root of L(7, k) =0, and k ~ (k — ¢) logb n,
then P(al(Gn,p) < k) < exp(—n?/(logn)®).

Requires an upper bound on

A= Z P(A, B are t-comp. k-sets)

A,BC[n],2<|ANB|<k

5 (1)) (e

where p(k, £) is prob. two k-sets, sharing exactly £ vertices are t-comp. sets.

Want A to be much smaller than squared expected number of t-comp. k-sets.



Ay

When number of common vertices £ is small, we reduce to when the graph of
the intersection A N B has no edges:

E=$



Aj

When number of common vertices £ is large, we use the fact that the maximum
degree from B \ A to B is at most ¢ if B is a {--component set:



Ay

An intermediate case consideration needed only when 7 > 2, so that we basically
only need consider when A and B have two components:




Ramsey-type parameter

The t-component Ramsey number is the smallest R* (k) such that
any R'(k)-vertex graph or its complement has a t-component k-set.

R'(k) coincides with diagonal 2-colour Ramsey numbers so exponential in ,
while R*(k) is trivially .



Ramsey-type parameter

The t-component Ramsey number is the smallest R* (k) such that
any R'(k)-vertex graph or its complement has a t-component k-set.

R'(k) coincides with diagonal 2-colour Ramsey numbers so exponential in ,
while R*(k) is trivially .

Proposition

Rk—Q(k) (k) — 2Q(k) Rk—m(log k)(k) _ k}u(l),

Proposition

kao(lug k) (k) _ kO(l).
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Further study

Theorem (Broutin and Kang)

Fix0<p<1l Leb=1/(1-p).
n

— a.d.s.
rlog, np

Ift ~ 7log, np and k is unique root of 1(7, k) = 0, then x¢(Gn p) ~

How about the p = o(1) case? (Janson and Thomason 2008)

What about edge partitions? (Bohman, Frieze, Krivelevich, Loh, Sudakov 2011
and Spdhel, Steger, Thomas 2010)



Thank you!



