EVERY PLANE GRAPH OF MAXIMUM DEGREE 8 HAS AN
EDGE-FACE 9-COLOURING
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Abstract. An edge-face colouring of a plane graph with edge set E and face set F' is a colouring
of the elements of E'U F' such that adjacent or incident elements receive different colours. Borodin
proved that every plane graph of maximum degree A > 10 can be edge-face coloured with A + 1
colours. Borodin’s bound was recently extended to the case where A = 9. In this paper, we extend
it to the case A = 8.
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1. Introduction. Let G be a plane graph with vertex set V, edge set F and
face set F'. Given a positive integer k, an edge-face k-colouring of G is a mapping
A: EUF —{1,2,...,k} such that

(i) M) # A(€’) for every pair (e, e’) of adjacent edges;

(1) A(e) # A(f) for edge e and every face f incident to e;

(#31) M(f) # M(f") for every pair (f, f/) of adjacent faces with f # f'.

The requirement in (i) that f and f’ be distinct is only relevant for graphs containing
a cut-edge; such graphs would not have an edge-face colouring otherwise. Let x.f(G)
be the value of the smallest integer k such that there exists an edge-face k-colouring of
G. Although this problem is well-defined for graphs with loops or multiple edges, we
shall throughout the paper only consider graphs that are simple (and this requirement
is necessary, for instance, in Lemma 5.5). We comment here that the multigraph
formed by replacing each edge in a triangle by A/2 parallel edges is planar with
maximum degree A and requires at least 3A /2 colours in an edge colouring (let alone
an edge-face colouring).

Edge-face colourings were first studied by Jucovié¢ [4] and Fiaméik [3], who con-
sidered 3- and 4-regular graphs. A conjecture of Mel'nikov [5] spurred research into
upper bounds on x.¢(G) for plane graphs G with A(G) < A. For small values of A,
the best bounds known are A + 3 for A € {2,...,6} [1,6,9] and A +2 for A =7 [7].
For A > 10, Borodin [2] proved the bound of A + 1. This is tight, as can be seen
by considering trees. Recently, the second and third authors [8] extended the A + 1
bound to the case A = 9 by proving that every plane graph of maximum degree 9 has
an edge-face 10-colouring. Here, we settle the case A = 8.

THEOREM 1.1. FEwvery plane graph of maximum degree 8 has an edge-face 9-
colouring.

*School of Engineering and Computing Sciences, Durham University, UK (ross.kang@gmail.com).
This research was conducted while this author was a Postdoctoral Fellow at McGill University, sup-
ported by the National Sciences and Engineering Research Council of Canada (NSERC). He is
currently supported by the Engineering and Physical Sciences Research Council (EPSRC), grant
EP/G066604/1.

TCNRS (LIAFA, Université Denis Diderot), Paris, France and Department of Applied Mathe-
matics (KAM), Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
(sereni@kam.mff.cuni.cz). This author’s work was partially supported by the French Agence Na-
tionale de la Recherche under reference ANR 10 Jcic 0204 01.

fUJF-Grenoble 1 / CNRS / Grenoble-INP, G-SCOP UMR5272 Grenoble, F-38031, France
(matej.stehlik@g-scop.inpg.fr).



2 ROSS J. KANG, JEAN-SEBASTIEN SERENI AND MATEJ STEHLIK

Our result is a strengthening of the A = 7 result of Sanders and Zhao [7]; it can
also be viewed as an extension of the recent work on A = 9 [8]. The problem of finding
the provably optimal upper bounds on x.f(G) for plane graphs G with A(G) < A
remains open for A € {4,5,6,7}.

We prove Theorem 1.1 by contradiction. From now on, we let G = (V, E, F') be
a counter-example to the statement of Theorem 1.1 with as few edges as possible.
That is, G is a plane graph of maximum degree 8 and no edge-face 9-colouring, but
every plane graph of maximum degree at most 8 with less than |F| edges has an
edge-face 9-colouring. In particular, for every edge e € F the plane subgraph G — e
of G has an edge-face 9-colouring. First, we describe various structural properties of
G in Section 2; the proofs of these properties are given at the end of this paper in
Section 5. In Section 3 we describe the discharging rules. In Section 4 we use the
discharging rules and the structural properties of G to obtain a contradiction, and
thus a proof of Theorem 1.1.

Our discharging procedure was developed through several rounds, with corrective
adjustments and optimisations included in each round, starting from a naive scheme
in which only the vertices of degree at least 7 compensated for the deficit of charge
on triangles. A breakthrough in the design of our strategy was the realisation that
Lemma 2.1 below could allow us to conserve considerable charge at degree 7 or 8
vertices incident to faces of a particular type. We could then balance these savings
against the loss of charge to incident triangles with the development of further re-
ducible configurations. As will become apparent, the analysis of the final charge of
vertices of degree 7 or 8 is particularly involved.

In the sequel, a vertex of degree d is called a d-verter. A vertex is an (<d)-
vertex if its degree is at most d; it is an (=d)-vertez if its degree is at least d. The
notions of d-face, (<d)-face and (>d)-face are defined analogously as for the vertices,
where the degree of a face is the number of edges incident to it. A face of length 3
is called a triangle. For integers a, b, c, an (<a, <b, <c)-triangle is a triangle xyz of
G with deg(z) < a, deg(y) < b and deg(z) < ¢. The notions of (a, <b, <c)-triangles,
(a, b, 2c)-triangles, (a, <b, ¢, d)-faces, and so on, are defined analogously. A vertex is
triangulated if all its incident faces are triangles.

2. Reducible configurations. For our proof of Theorem 1.1, we identify that
some plane graphs are reducible configurations, i.e. configurations that cannot be part
of the chosen embedding of G. Their reducibility follows from Lemmas 2.1-5.11; these
lemmas are proved in Section 5. In this section, we give an explicit description of the
reducible configurations as well as the statement of Lemma 2.1.

For convenience, we depict these configurations in Figure 2.1. We use the following
notational conventions for vertices: 2-, 3- and 4-vertices are depicted by black bullets,
black triangles and black squares, respectively; a white bullet containing a number
represents a vertex of degree that quantity; an empty white bullet represents a vertex
of arbitrary degree (but at least that shown in the figure). For faces, we use the
following conventions: a straight line indicates a single edge; a curved line indicates a
portion of the face with an unspecified number of edges; a curved face that is shaded
grey represents an (<4)-face.

The following configurations are reducible. Note that, for any of the below, if
an edge can be removed without affecting the prescribed incidence or facial structure,
then the configuration remains reducible; for example, B6 modified by replacing the
6 by a 5 or 4 is reducible.

A0 A l-vertex.
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Configurations with faces incident to a 2-vertex.
A1 A triangle incident to a 2-vertex.

A2 A 4-face incident to a 2-vertex and an (<3)-vertex.
A3 A 2-vertex adjacent to a 3-vertex and an (<5)-vertex.

Configurations with an edge incident to a (<4)-face.

B1 An edge uv that is incident to an (<4)-face, with deg(u) + deg(v) < 9.

B2 A triangle uvw with deg(u) 4 deg(v) < 10 and deg(w) = 6.

B3 A triangle uvw with ww incident to two (<4)-faces, and deg(u) +deg(v) < 10
and deg(w) = 7.

B4 A triangle vvw with ww adjacent to two (<4)-faces, vw incident to two (<4)-
faces, and deg(u) + deg(v) < 10.

Configurations with an edge incident to two (<4)-faces.

C1 An edge wv that is incident to two (<4)-faces, with deg(u) + deg(v) < 10.

C2 A triangle uvw with uv incident to two (<4)-faces, and deg(u) + deg(v) < 11
and deg(w) = 6.

C3 A triangle uvw with wv and uw each incident to two (<4)-faces, and deg(u) +
deg(v) < 11 and deg(w) = 7.

C4 A triangle uvw with vw incident to the triangle vwz and wx incident to two
(<4)-faces, and deg(u) = deg(x) = 3.

C5 A triangle uvw with vw incident to the triangle vwz and wx incident to two
(<4)-faces, and deg(u) + deg(v) < 10 and deg(v) + deg(x) < 11.

Configurations along a 2-path.

D1 A 2-path uvw such that vwz is a triangle, with wv incident to an (<4)-face,
vw and vz each incident to two (<4)-faces, and deg(u) + deg(v) < 10 and
deg(v) + deg(w) < 11.

D2 A 2-path wvw such that vwz is a triangle, with uv, vw and vz each incident
to two (<4)-faces, and deg(u) + deg(v) < 11 and deg(v) + deg(w) < 11.

D3 A 2-path uvw such that vwz is a triangle, with v incident to two (<4)-faces,
and deg(u) = 2, deg(v) = 7 and deg(u) = 3.

D4 A 2-path wvw such that vwz is a triangle, with vw and vz each incident to
two (<4)-faces, and deg(u) = 2, deg(v) = 7 and deg(u) = 4.

Note on configurations D1 and D2. An (<4)-face incident to uv is not ruled out
from also being an (<4)-face (distinct from vwz) incident to vw or vz. In this sense,
the figures representing configurations D1 and D2 in Figure 2.1 belie the configura-
tions’ fuller forms.

Exceptional configurations.

E1 A 4-path wvwzy, such that wvz, vwz, wrz and xyz are triangles, with yz
incident to two (<4)-faces, and deg(v) = 3, deg(z) = 4.

E2 A 4-path uwowzy, such that uvz, vwz, wrz and zyz are triangles, and deg(v) =
3, deg(z) = 4 and deg(y) = 6.

E3 A triangulated 8-vertex that is adjacent to both a 3-vertex and a 4-vertex.

E4 A 3-path wowz, with uov incident to an (<4)-face, and deg(u) < 5, deg(v) = 6,
deg(w) = 2 and deg(x) = 3.

Special lemmas for (>5)-faces. An edge uv is loose if deg(u) + deg(v) < 8.
The following lemma implies a general set of reducible configurations for (>5)-faces.
These configurations are not depicted in Figure 2.1.
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LEMMA 2.1. Let f be a d-face of G incident to x loose edges and q vertices of
degree 2. If d 2 5 and © > 1, then 2d —q — x > 9. For (>6)-faces, we require one
more configuration not depicted in Figure 2.1.

LEMMA 2.2. Let u and v be two adjacent 2-vertices in G. If u' # v and v’ # u
are neighbours of u and v, respectively, then v’ =o' and deg(u’) = 8.

3. Discharging rules. Recall that G = (V, E,F) is a plane graph that is a
minimum counter-example to the statement of Theorem 1.1, in the sense that |F| is
minimum. (In particular, a planar embedding of G is fixed.) We obtain a contradiction
by using the Discharging Method. Each vertex and face of G is assigned an initial
charge; the total sum of the charge is negative by Euler’s Formula. Then vertices
and faces send or receive charge according to certain redistribution rules. The total
sum of the charge remains unchanged, but ultimately (by using all of the reducible
configurations in Section 2) we deduce that the charge of each face and vertex is
non-negative, a contradiction.

3.1. Initial charge. We assign a charge to each vertex and face. For every
vertex v € V, we define the initial charge ch(v) to be 2 - deg(v) — 6, while for every
face f € F, we define the initial charge ch(f) to be deg(f) — 6. The total sum is

> ch(v) + > ch(f) = -

veV fer
Indeed, by Euler’s formula |E| — |V| — |F| = —2. Thus, 6 |E| —6|V| —6|F| = —
Since ),y deg(v) =2 |E| = 3, deg(f), it follows that

~12=4-[E| -6 V| + ) (deg(f) -

fer
=" (2deg(v) —6) + Y (deg(f) —
veV fer

3.2. Rules. We need the following definitions to state the discharging rules.
Given an (=7)-vertex v, a face is special (for v) if it is an (>5)-face that is inci-
dent to a degree 2 neighbour of v (and so, in particular, such a face is incident to v).
Given a 6-vertex v, a face f is exceptional (for v) if f is a 6-face vvivs ... vs where vq
is a 2-vertex and v, is a 3-vertex.

Since G may have cut-vertices (of a type not forbidden by Lemma 5.1), some
vertices may be incident to the same face several times. Thus, in the rules below,
when we say that a vertex or a face sends charge to an incident face or vertex, we
mean that the charge is sent as many times as these elements are incident to each
other.

The following describe how the charge is redistributed among the edges and faces
in G.

RO An (>4)-face sends 1 to each incident 2-vertex.

R1 An (>7)-vertex sends

R1la 3/2 to incident (3, >7, >7)-triangles and (4, 6, >7)-triangles;
R1b 7/5 to incident (5,5, >7)-triangles;
7, 27)-triangles and (2, 8,4, 8)-faces;

3
(5
Rlc 5/4 to incident (4, >
R1d 6/5 to incident (5, 6, 8)-triangles;
R1le 11/10to incident (5,6, 7)- and (5, >7, >7)-triangles, and incident (2, 8, 5, 8)-
faces;
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R1f 1 to incident (=6, >6, >6)-triangles, to every incident 4-face that is not
a (2,8, <5, 8)-face, and to each of its incident special faces;
R1lg 1/2 to each of its incident non-special 5-faces.
R2 A 6-vertex sends
R2a 11/10 to incident (5,6, 6)- and (5,6, 7)-triangles;
R2b 1 to every other incident triangle, to each incident 4-face, and to each
of its incident exceptional faces;
R2c 1/2 to each of its incident 5-faces and to each of its incident unexcep-
tional 6-faces.
R3 A 5-vertex sends 4/5 to each incident face.
R4 A 4-vertex sends 1/2 to each incident face.

Note on rules R1 and R2. Since configurations Al, B1 and B2 are reducible,
it follows from rule R1 that an (>7)-vertex sends positive charge to every incident
triangle. We conclude that an (>7)-vertex sends zero charge only to incident (>6)-
faces that are not special. Similarly, a 6-vertex sends zero charge only to incident
(=7)-faces.

4. Proof of Theorem 1.1. In this section, we prove that the final charge ch*(z)
of every x € V U F' is non-negative. Hence, we obtain

—12= > ch(@)= Y ch(z) >0,

zEVUF zEVUF
a contradiction. This contradiction establishes Theorem 1.1.

4.1. Final charge of faces. Let f be a d-face. Our goal is to show that ch™(f) >
0. Recall that the initial charge of f is ch(f) =d — 6.

First suppose that d > 6. Let p be the number of occurrences of an (>7)-vertex
having f as an incident special face, and ¢ the number of 2-vertices incident to f.
In particular, ch*(f) > d — 6 — ¢ + p by rules RO and R1f. We define z to be the
number of edges of f between a 2-vertex and an (<6)-vertex, y the number of edges
of f between a 2-vertex and an (>7)-vertex, and z the number of edges of f between
two 2-vertices. We have 2¢ = x +y + z and 2p > y. If z = 0, then p > ¢, and hence
ch*(f) > 0. Assume now that z > 1. Then Lemma 2.1 implies that 2d —q —x > 9,
that isd —x/2 > (¢ +9)/2. Now, ch*(f) >d—6—q+p > [d—6 — (v + 2)/2] since
p>2y/2,qg=(x+y+2)/2and d — 6 — g+ p is integral. Hence,

ar(f) > |15

which is non-negative if ¢ — z > 2. It remains to deal with the case where ¢ — z < 1.
Note that ¢ > 2z due to Lemma 2.2. It therefore follows that z < 1. Let us first
consider the case z = 1, hence ¢ = 2. In this case, it follows by Lemma 2.2 that
p = 2 and therefore ch*(f) > d —6 —2+2 > 0. We just need to check the case
z=0and ¢ =1 (since z > 1). Then we may assume that d = 6, for if d > 7 then
ch*(f) 2 d—6—1 > 0. Moreover, if y > 1 then ch*(f) > 0 by rule R1f. Hence,
x=2q—y—z=2. Let v and v' be the two (<6)-neighbours of the 2-vertex of f.
First, if both v and v’ have degree more than 3, then each of them sends at least 1/2
to f by rules R2, R3 and R4, and hence ch*(f) > 0. So, as ¢ = 1, we may assume
that v has degree 3. Now, by the reducibility of configuration A3, the degree of v’ is
at least 6 and hence exactly 6. Consequently, f is exceptional for v’ and f receives 1
from v" by rule R2b, which concludes the analysis for (>6)-faces.
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Suppose that d = 5, and let ¢ be the number of 2-vertices incident to f. Lemma 2.1
implies that f is incident to at most one loose edge. Thus, if ¢ = 0 (so that f sends
no charge to vertices) then f is incident to at least two (>4)-vertices, and hence
ch*(f) >5—6+2-1/2 =0 by rules Rlg, R2¢, R3 and R4. Moreover, if ¢ > 1, then
Lemma 2.1 implies that f is not incident to a loose edge and f is thus incident to at
least ¢ + 1 vertices of degree at least 7. herefore, f receives at least ¢ + 1 from its
incident (>7)-vertices by rule R1f, and so ch*(f) >5—-6—-q¢+q¢+1=0.

Next suppose that d = 4. Let the four vertices incident to f be wvg,...,vs in
clockwise order and suppose without loss of generality that vy has the least degree
among vy, . . ., v3. First, if deg(vg) > 4, then by rules R1f, R2b, R3 and R4, the charge
sent to f by each incident vertex is at least 1/2, so that ch*(f) > -2+ 4-1/2 = 0.
If deg(vo) = 3, then since configuration Bl is reducible deg(v1) > 7 and deg(vs) > 7.
Thus, by rule RI1f, ch*(f) > —2+ 2 = 0. Last, assume that deg(vg) = 2. Since
configuration B1 is reducible, deg(v;) = deg(vs) = 8, and since configuration A2 is
reducible, deg(vz) > 4. By rule RO, f sends charge 1 to vg. But f receives charge 3: by
rules Rlc and R4 if f is a (2,8, 4, 8)-face; by rules Rle and R3 if f is a (2,8, 5, 8)-face;
and by rules R1f and R2b if f is a (2,8, >6, 8)-face. Thus, ch*(f) > 0.

Finally suppose that d = 3. Let the three vertices incident to f be vy, v; and wva,
and let us assume without loss of generality that deg(vo) < deg(v1) < deg(ve). Since
configuration Al is reducible, deg(vg) > 3. Thus f sends no charge, but needs to
make up for an initial charge of —3. We analyse several cases according to the value
of deg(vp).

deg(vp) = 3. Since configuration Bl is reducible, deg(v1) > 7. By rule Rla, f
receives charge 2 - 3/2 = 3.

deg(vp) = 4. Since configuration B1 is reducible, deg(v1) > 6. If deg(v1) > 7, then f
receives charge 2-5/4+1/2 = 3 by rules Rlc and R4. Otherwise, deg(vy) = 6
and hence deg(v2) > 7 since configuration B2 is reducible, but then f receives
charge 3/2+ 1+ 1/2 = 3 by rules Rla, R2b and R4.

deg(vo) = 5. If deg(v1) = 5, then deg(vz) > 7 since configuration B2 is reducible, but
then f receives charge 7/5+2-4/5 = 3 by rules R1b and R3. If deg(v1) = 6,
then we separately consider the cases of deg(ve) € {6,7,8}. If deg(ve) €
{6, 7}, then f receives charge 2-11/10+4/5 = 3 by rules Rle, R2a and R3;
if deg(ve) = 8, then f receives charge 6/5+ 1+ 4/5 = 3 by rules R1d, R2b
and R3. Last, if deg(vy) > 7, then f receives charge 2-11/10+4/5 = 3 by
rules Rle and R3.

deg(vp) > 6. The face f receives charge at least 3 by rules R1f and R2b.

This concludes our analysis of the final charge of f, verifying that ch*(f) > 0.

4.2. Final charge of (<6)-vertices. Let v be an arbitrary vertex of G. Our goal
is to show that ch*(v) > 0. Recall that the initial charge of v is ch(v) = 2 - deg(v) — 6.
Moreover, deg(v) > 2 since configuration A0 is reducible.

If deg(v) = 2, then v is incident to two (>4)-faces since configuration Al is
reducible; thus, v receives charge 1 from both incident faces by rule RO and the final
charge of v is ch*(v) = -2+ 2 = 0.

If deg(v) = 3, then v neither sends nor receives any charge; hence, the final charge
of v is ch™(v) = ch(v) = 0.

If deg(v) € {4,5}, then v sends charge ch(v)/ deg(v) to each incident face by rules
R3 and R4; the final charge of v is ch*(v) = 0.

Suppose now that deg(v) = 6. The initial charge of v is ch(v) = 6. If v is
incident to a 5-face or an unexceptional (>6)-face, then it sends charge at most 1/2
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to one of the faces by rule R2c and so by rule R2 the total charge sent by v is
at most 5-11/104+ 1/2 = 6. If v is incident to an exceptional 6-face, then, since
configuration E4 is reducible, v has no incident (5,6, 6)- or (5,6, 7)-triangles and thus
the total charge sent is at most 5-1+ 1 = 6 by rules R2b and R2c. We conclude
that v is only incident to (<4)-faces. Then, since configuration C2 is reducible, v has
no incident (5,6, 6)-face; furthermore, since configuration C3 is reducible, v has no
incident (5, 6, 7)-face. Therefore, the charge sent by v is at most 6 and the final charge
of v satisfies ch”(v) > 0.

4.3. Final charge of 7-vertices. Next, suppose that deg(v) = 7. For conve-
nience, let vy, vy, ...,vs be the neighbours of v in clockwise order, and let f; be the
face vv;v;41 for i € {0,1,...,6}, where the index is modulo 7. The initial charge of
v is ch(v) = 8. We partition our analysis based on the number of incident special
(=5)-faces. Note that since configuration B1 is reducible, if v is adjacent to a 2-vertex
then both of the 2-vertex’s incident faces are special for v.

4.3.1. There is an adjacent 2-vertex. We first treat the cases in which v is
adjacent to some 2-vertex. In these cases, there are at least two incident special (=5)-
faces. Thus, we may assume that v is incident to at most one non-special (>5)-face
(which is sent at most 1/2 charge by rule Rlg), for otherwise the total charge sent by
v is at most 3-3/2+ 24 2-1/2 < 8. Now note that, by rules Rla and R1b, any face
that is sent charge more than 5/4 must be a (3,7, >7)-, (4,6,7)- or (5,5, 7)-triangle.
And so we assert that if f; is such a triangle, then both f;_; and f; 11 are (=5)-faces.
The assertion holds if f; is a (3,7, >7)-triangle since configurations C1 and D3 are
reducible, and the fact that configuration B3 is reducible implies the assertion for the
two other cases.

Case 4.53.1(1). If v is incident to (exactly) one non-special (>5)-face, then v is
incident to only two special (=5)-faces (for otherwise the total charge sent by v is
3-3/24+3+1/2 = 8). Thus, the remaining four incident faces are (<4)-faces. Observe
that there are at least three of these faces that are adjacent around v to another (<4)-
face. Hence by the assertion at the end of the last paragraph, each of these three faces
is sent at most 5/4 charge. So the charge sent by v is at most 3/2+3-5/4+2+1/2 < 8.
Thus, v is not incident to a non-special (>5)-face.

Case 4.3.1(2). If v is incident to at least five (=5)-faces, then the charge sent is
at most 2 -3/2+ 5 = 8 due to rule RIf.

Case 4.3.1(3). If v is incident to exactly four (>5)-faces, all of which are special,
then there must be two incident (<4)-faces that are adjacent. (Recall that each special
face is adjacent to another special face.) By the assertion in the second paragraph of
the 7-vertex analysis, both of these are sent charge at most 5/4. Therefore, the total
charge sent by v in this case is at most 3/2+2-5/4+4 = 8.

Case 4.83.1(4). If v is incident to exactly three (>5)-faces, all of which are special,
then these faces are sequentially adjacent around v. Hence, by the assertion in the
second paragraph of the 7-vertex analysis, no face is sent charge more than 5/4 and
the total charge sent is at most 4-5/4+ 3 =8

Case 4.3.1(5). Suppose that v is incident to exactly two (=5)-faces, say fo and f1,
both special (so vy is a 2-vertex). Recall that all other incident faces have size at most
4. Let us analyse which incident faces can be sent charge 5/4. By rule Rlc, such a face
must be a (4,7, >7)-triangle. Since configuration D4 is reducible, such a face must be
adjacent to a special face for v. Thus, there are at most two such faces, namely fo
and fg. Consequently, the total charge sent by v is at most 2-5/44+3-11/104+2 < 8
by rules Rlc, Rle and R1f.
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4.3.2. There is no adjacent 2-vertex. Now we may assume that v is not
adjacent to a 2-vertex. In these cases, we may assume that v is incident to at most
two (non-special) (>5)-faces (which are sent at most 1/2 charge by rule Rlg), for
otherwise the total charge sent by v is at most 4-3/2+3-1/2 < 8.

Case 4.8.2(1). Suppose that v is incident to two 5-faces (and hence to no other
(=5)-faces). First suppose that there are four (<4)-faces that are sequentially adjacent
around v. Since configuration B3 is reducible, none of these is a (3,7,7)-, (4,6,7)-
or (5,5, 7)-triangle. Also, since configuration C1 is reducible, at most two of these
are (3,7,8)-triangles. It follows that at most three faces are sent charge 3/2, and
the remaining two (<4)-faces are sent charge at most 5/4; so the total charge sent
by v is at most 3-3/24+2-5/4+2-1/2 = 8. Next suppose that there are only
three (<4)-faces that are sequentially adjacent around v. As before, we deduce that
none of these is a (3,7,7)-, (4,6,7)- or (5,5, 7)-triangle and at most two of these are
(3,7,8)-triangles. If two of these faces are (3,7, 8)-triangles, then the middle one is
either a (7,8, 8)-triangle or a 4-face, and hence sent charge 1 by rule R1f. Hence, the
total charge sent by v is at most max{4-3/2+1+4+2-1/2,3-3/24+2-5/4+2-1/2} =8.

Case 4.3.2(2). Suppose that v is incident to exactly one 5-face, say it is fo without
loss of generality. Then v cannot be adjacent to an (>6)-face, for otherwise the total
charge sent by v is at most 5-3/2+ 1/2 = 8. As above, since configurations B3 and
C1 are reducible, none of the remaining faces (all (<4)-faces) is a (3,7,7)-, (4,6,7)-
or (5,5, 7)-triangle and at most two of them are (3,7, 8)-triangles (either fi or fs).
Indeed, one of fi and fs, must be a (3,7, 8)-triangle, for otherwise the charge sent
by v is at most 6 - 5/4 + 1/2 = 8. Assume without loss of generality that vy has
degree 3. Therefore, since configuration D1 is reducible, for each ¢ € {2,3,4,5},
either f; is a 4-face or both v; and wv; 1 have degree at least 5. It follows that each
of fa, f3, f4 and f5 is sent charge at most 11/10; thus, v sends total charge at most
2-3/244-11/10+1/2 < 8.

Case 4.3.2(3). Tt cannot be that v is incident to two (>6)-faces, for then the
total charge sent by v would be at most 5-3/2 < 8. The case in which v is incident
to exactly one (=6)-face is handled by an argument identical to the one used in the
previous paragraph.

Case 4.3.2(4). If v is incident only to (<4)-faces, then, since configurations B3
and C1 are reducible, v is not incident to a (3,7, 27)-, (4,6,7)- or (5,5, 7)-triangle.
If v is incident to a (4,7, >7)-triangle, then, since configuration D2 is reducible, v
cannot be adjacent to any other 4-vertex. It therefore follows that the total charge
sent by v in this case is at most 2-5/4+5-11/10 = 8.

This concludes the analysis of the final charge of the 7-vertices.

4.4. Final charge of 8-vertices. Last, suppose that deg(v) = 8. For conve-
nience, let vy, ..., v7 be the neighbours of v in clockwise order, and for ¢ € {0, ..., 7},
let f; be the face of G incident with vv; and vv; 1, where the index is modulo 8. The
initial charge of v is ch(v) = 10. We partition our analysis based on the number of
incident special faces. Note that since configuration C1 is reducible, if v is adjacent
to a 2-vertex then at least one of the 2-vertex’s incident faces is special for v. Further-
more, since configurations A2 and B1 are reducible, if one of the 2-vertex’s incident
faces is an (<4)-face, then it must be a (2, 8, >4, 8)-face.

4.4.1. There is an incident special face. We start with the cases in which
there is a face that is special for v. In these cases, we may assume that there is at
most one incident non-special (>5)-face (that is sent charge at most 1/2 by rule R1g),
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for otherwise the total charge sent by v is at most 5-3/2+1+2-1/2 < 10.

Suppose that v is incident to (exactly) one non-special (>5)-face. It may not be
that v is incident to more than one special face, since then v would send charge at
most 5-3/2+2+1/2 = 10. So the remaining faces are (<4)-faces. Let us suppose
that vg is the 2-vertex, fy is the special face and f7 is a (2,8, >4, 8)-face (sent charge
at most 5/4 by rules Rlc, Rle and R1f), without loss of generality. Among the faces
fi,---, fe, (disregarding which one is the non-special (>5)-face), there must be three
(<4)-faces that are sequentially adjacent around v. Since configurations B4 and D1
are reducible, the middle of these faces may not be a (3,>7,8)-, (4,6, 8)- or (5,5, 8)-
triangle and hence is sent charge at most 5/4. Therefore, the total charge sent by v
isat most 4-3/2+2-5/44+1+1/2=10.

So we assume now that every (=5)-face incident to v is special for v. If v has at
least four incident special faces, then the charge sent is at most 4-3/2 + 4 = 10.

Case 4.4.1(1). Suppose that v is incident to exactly three special faces. If v is
incident to at least two (2,8, >4, 8)-faces, each sent charge at most 5/4 by rule Rlc,
then the total charge sent by v is at most 3-3/2+42-5/4+ 3 = 10. If v is incident to
exactly one (2,8, >4, 8)-face, then it must be that v is incident to three sequentially
adjacent (<4)-faces, say fo, f1 and fa. Since configuration B4 is reducible, fi is
not a (3,7,8)-, (4,6,8)- or (5,5,8)-face; since v is incident to a (2,8, >4, 8)-face and
configuration D1 is reducible, f; is not a (3,8, 8)-face; hence, f1 receives charge at
most 5/4. Consequently, the total charge sent by v is at most 3-3/2+2-5/4+ 3 = 10.
If v is not incident to a (2,8, >4, 8)-face, then the three incident special faces are
sequentially adjacent around v. In the following we shall assume that f5, f¢ and f7
are the three special faces. The remaining five faces are all triangles, otherwise (by
rule R1f) the total charge sent by v is at most 4 -3/2 + 4 = 10. Note that there is no
i € {1,2,3} such that all of f;_1, fi, fi+1 are (3,27, 8)-triangles since configuration
C4 is reducible. Since configuration B4 is reducible, none of f1, fo, f3 is a (3,7,8)-,
(4,6,8)- or (5,5,8)-triangle. Furthermore, since configuration D2 is reducible, v is
incident to at most one pair of adjacent (3,>7,8)-triangles. Thus, at most one of
v1,...,04 1S & 3-vertex.

If none of vy,...,v, is a 3-vertex, then the only faces that can be sent charge more
than 5/4 are fo and f;. Therefore, the total charge sent by v is at most
2-3/2+3-5/4+3 < 10.

Suppose that ve or vs is a 3-vertex, say ve by symmetry. Then v; and vs are 8-
vertices. Since configuration C4 is reducible, vg and vy are (>4)-vertices and
hence fy and f3 are each sent charge at most 5/4. Thus, the total charge sent
by v is at most 3-3/2+2-5/4+ 3 = 10.

Suppose that v1 or v4 is a 3-vertex, say v; by symmetry. Then f4 is the only face
other than fy and f; that can be sent charge more than 5/4. In this case, the
total charge sent by v is at most 3-3/2+2-5/4 + 3 = 10.

Case 4.4.1(2). Suppose that v is incident to exactly two special faces (and hence
is incident to at most two (2,8, >4, 8)-faces). First, assume that v is incident to a
(2,8, >4,8)-face. Since configuration B4 is reducible, if f; is a (3,7,8)-, (4,6,8)- or
(5,5, 8)-triangle, then f;_1 or fiy1 is an (=5)-face; also, since configuration D1 is
reducible (and v is incident to a (2,8, >4, 8)-face), the same conclusion holds if f;
is a (3,8, 8)-triangle. Since each incident special face is sequentially adjacent either
to an incident (2,8, >4, 8)-face or to the other special face, we deduce that at most
two faces are sent charge more than 5/4. Thus, the total charge sent by v is at most
2.3/24+4-5/4+2 = 10.
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Now we deal with the case where v is not incident to a (2,8, >4, 8)-face. Suppose
fe and f; are the two special faces, with v; being a 2-vertex. Recall that none of
fos-.., f5 is an (=b)-face. Note also that at most one of fo,..., f5 is a 4-face, for
otherwise the charge sent by v is at most 4 - 3/2 + 4 = 10. We analyse possible
(3, 27, 8)-triangles among these six faces. First, note that there is no i € {1,2, 3,4}
such that all of f;_1, fi, fi+1 are (3, 27, 8)-triangles since configuration C4 is reducible.
Since configuration B4 is reducible, none of f1,..., fyisa (3,7,8)-, (4,6,8)- or (5,5, 8)-
triangle. Furthermore, since configuration D2 is reducible, v is incident to at most
one pair of adjacent (3, >7, 8)-triangles.

Case 4.4.1(2)(a). First, we suppose that all of fo,..., f5 are triangles. It follows
that at most one of vy, ..., vs is a 3-vertex. We consider several cases regarding which
neighbours of v are (<4)-vertices.

If none of vy, ...,v5 is a 3-vertex, then the only faces that can be sent charge more
than 5/4 are fo and f5. Therefore, the total charge sent by v is at most
2-3/2+4-5/4+2=10.

Suppose that vs is a 3-vertex. Hence, vo and vy are 8-vertices. We show that fy and
f1 are sent charge at most 5/2 altogether by v. Indeed, if v; is a 4-vertex,
then deg(vg) > 7 because configurations Bl and E2 are reducible. Hence, v
sends charge 5/4 to each of fo and f1 by rule Rlc. If vy is a 5-vertex, then
deg(vg) = 5 as configuration B1 is reducible, and hence v sends charge 11/10
to f1 and at most 7/5 to fo by rules R1b and Rle. Last, if deg(v1) > 6 then
v sends charge 1 to f1 and at most 3/2 to fo by rules Rla and R1f. Similarly,
we deduce that v sends charge at most 5/2 to f4 and f5 altogether. Therefore,
the total charge sent by v is at most 2-3/2+2-5/2 + 2 = 10.

Suppose that vy or vs is a 3-vertex, say vy by symmetry. Then, v; and vs are 8-
vertices. We have deg(vg) > 4 since configuration C4 is reducible, so that fo
receives charge at most 5/4 from v. Thus, it suffices to show that v sends
to f3, fa and f5 charge at most 15/4 altogether: the total charge sent by v
would then be at most 2-3/2+4 5/4 4+ 15/4 + 2 = 10. First, deg(vs) = 5
since configuration E1 is reducible. Recall that deg(vs) + deg(vs) > 11. If
deg(vy) +deg(vs) > 12, then f5 and f4 are sent charge at most 9/4 altogether
by v. Thus, the conclusion holds since fg is sent charge at most 3/2 by v. Now,
if deg(v4) +deg(vs) = 11, then deg(vs) 4+ deg(vs) > 11 since configuration C5
is reducible. Consequently, each of f; and f5 is sent charge at most 5/4 by
v: recall that none of v3, v4 and vs is a 3-vertex, and if vg were a 3-vertex
then vs would be an 8-vertex so that v4 would have to be a 3-vertex in order
for the charge sent to be more than 5/4. Moreover, f3 is sent charge at most
11/10 by rule Rle, so that the conclusion holds.

Suppose that v or vs is a 3-vertex, say v1 by symmetry. Then, deg(vy) = 8 = deg(v2),
and deg(vs) > 5 since configuration E1 is reducible. Further, recall that vg
and vs both have degree at least 4. If deg(vg) < 4, then deg(vs) > 6. Since
deg(vs) + deg(vs) = 11 (because configuration B4 is reducible), at least one
of fo and f4 is sent charge at most 1, implying that the total charge sent by
v is at most 3-3/2+2-5/4+ 3 = 10. If deg(vs) > 5, then f5 is sent charge
at most 7/5 and fy is sent charge at most 11/10, so the total charge sent by
visatmost 2-3/2+7/5+2-5/4+11/10+ 2 = 10.

Case 4.4.1(2)(b). Assume now that (exactly) one of fo,..., f5 is a 4-face. (Such
a 4-face is assumed to not have an incident 2-vertex.) Without loss of generality, we
may suppose that it is one of fy, f1 and fo. Recall that none of f1,..., f1isa (3,7,8)-,
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(4,6,8)- or (5,5, 8)-triangle since configuration B4 is reducible. Also, at most one of
v1,...,0s5 is a 3-vertex since configurations C4 and D2 are reducible. Moreover, if at
most one of f1,..., f1 is sent charge 3/2 by v (i.e. is a (3, 8, 8)-triangle), then the total
charge sent by v is at most 3-3/2+2-5/4 + 3 = 10. In particular, we assume that
(exactly) one of ve, v3,v4 has degree 3.

Suppose that the 4-face is fo. At most three of f1,..., f5 are sent charge more than
5/4, so the total charge sent by v is at most 3-3/2+2-5/4 + 3 = 10.

Suppose that the 4-face is f;. By the remark above, one of v3 and vy has degree
3. If deg(vs) = 3, then deg(vs) = deg(vs) = 8. Further, deg(vg) > 4 since
configuration C4 is reducible. Consequently, the total charge sent by v is at
most 3-3/2+2-5/4+3 =10. If deg(vz) = 3, then deg(v4) = 8 and we shall
see that fy and fs are sent at most 5/2 altogether by v. Indeed, let us check
all of the subcases: if deg(vg) < 4, then deg(vs) > 6, implying that f4 is sent
charge 1 and f5 is sent charge at most 3/2; if deg(vg) = 5, then deg(vs) > 5,
implying that fy is sent charge at most 11/10 and f5 is sent charge at most
7/5; if deg(vs) = 6, then deg(vs) > 5 since configuration E2 is reducible, and
so each of fy and f5 are sent charge at most 6/5; if deg(vs) = 7, then each of
fa and f5 are sent charge at most 5/4. Therefore, the total charge sent by v
is at most 3-3/2+3+45/2 = 10.

Suppose that the 4-face is fo. Then, deg(vs) = 3, for otherwise at most one face
among fi,..., f4 is sent charge 3/2 by v. Then, deg(vs) = 8 and deg(vg) > 4
since configuration C4 is reducible. Therefore, the total charge sent by v is
at most 3-3/2+2-5/4+3 = 10.

Case 4.4.1(8). Suppose that v is incident to exactly one special face. Then v is
incident to a (2,8, >4, 8)-face and, since configurations B4 and D1 are reducible, v is
incident to at most one (3,>7,8)-, (4,6,8)- or (5,5, 8)-face; the total charge sent by
v is at most 3/2+6-5/4+1 = 10.

4.4.2. There is no incident special face. Suppose that v is not incident to a
special face. Any (=5)-face incident to v is sent charge at most 1/2 by rule Rlg. If
there are two such faces, then the total charge sent by v is at most 6-3/2+2-1/2 = 10.

Case 4.4.2(1). Suppose there is exactly one incident (>5)-face, say fo. None of
the faces fo,..., fo isa (3,7,8)-, (4,6,8)- or (5,5, 8)-triangle since configuration B4 is
reducible. Since configuration D2 is reducible, among the vertices vo, ..., v7 there is
at most one 3-vertex that is incident to some triangle among fs,..., fg. None of the
vertices vo,...,v7 is a 2-vertex since configuration C1 is reducible (so in particular
none of fa,..., f¢ is a (2,8, <5, 8)-face). Consequently, f1,..., f7 are all triangles, or
else the total charge sent by v is at most 4-3/2+2-5/4+4 1+ 1/2 = 10. Moreover,
one of vg,...,v7 must be a 3-vertex or else the total charge sent by v is at most
3-3/2+4-5/4+1/2 = 10. Suppose, without loss of generality, that the 3-vertex
is vo, vz or vg. If it is wg, then at most three faces are sent charge 3/2 and the
total charge sent by v is at most 3-3/2+4-5/4+ 1/2 = 10. If it is vs, then vy
has degree 8 and v sends charge at most 10 unless v; has degree 3; however, this
contradicts the reducibility of configuration C4. If it is w4, then v has degree 8 and
there are three sub-cases. First, if vy has degree 6, then v sends f, charge 1 and
charge at most 4-3/2+2-5/4+ 14 1/2 = 10 in total; second, if vy has degree 5,
then v sends fo charge at most 11/10, f; charge at most 7/5, and charge at most
3-3/2+7/5+11/10+2-5/4+1/2 = 10 in total; third, if v, has degree 4, then,
since configuration E2 is reducible, v; has degree at least 7, so v sends f; and fs each
charge at most 5/4, and charge at most 3-3/2+4-5/4+1/2 =10 in total.



12 ROSS J. KANG, JEAN-SEBASTIEN SERENI AND MATEJ STEHLIK

Case 4.4.2(2). Finally, we are in the case that v is only incident to (<4)-faces
(in particular none of which are (2, 8, <5, 8)-faces since configuration C1 is reducible).
Since configuration B4 is reducible, v is incident to no (3,7,8)-, (4,6,8)- or (5,5, 8)-
triangle. If v is not incident to a (3,8, 8)-triangle, then no face is sent charge more
than 5/4 and hence the total charge sent by v is at most 8 - 5/4 = 10. So assume
that vy is a 3-vertex, and that f7 is a (3,8,8)-triangle. Since configuration D2 is
reducible, v is adjacent to no other 3-vertices. We may assume that v is incident
to fewer 4-faces than the number of (3,8, 8)-triangles incident to v. (Otherwise, if
2 is the number of 4-faces incident to v, then the total charge sent by v is at most
z-(3/2+1)+ (8—2-x)-5/4 =10.) If f7 were the only (3,8, 8)-triangle then fg
would necessarily be a 4-face. We conclude, therefore, that v is incident to exactly
two (3,8, 8)-triangles, namely fs and f7, and to at most one 4-face. Now, if v is
incident to only triangles, then since configuration E3 is reducible, every neighbour
of v other than v7; has degree at least 5, and so the total charge sent is at most
2-3/2+4-6/5+2-11/10 = 10 (where we observe that the faces adjacent around v
to the (3,8, 8)-triangles are (=5, 8, 8)-faces and hence sent charge at most 11/10).

Therefore, in addition to the two (3, 8, 8)-triangles, v must be incident to exactly
one 4-face. By symmetry, let us assume that fy, fi and fo are triangles. Since
configuration E1 is reducible, v; has degree at least 5. If v; has degree at least 6, then
v sends fy charge 1 and total charge at most 2-3/2+4-5/4+2 = 10. If v; has degree 5,
then v sends fy charge 11/10 and v2 has degree at least 6. If vy has degree at least 7,
then v sends f; charge 11/10 and total charge at most 2-3/2+3-5/4+2-11/10+1 < 10.
If vo has degree 6, then v sends f; and fs each charge at most 6/5, and total charge
at most 2-3/2+2-5/4+2-6/5+11/10+ 1 = 10.

We have shown that if deg(v) = 8, then ch*(v) > 0. This allows us to conclude
our analysis of the final charge of v, having shown ch*(v) > 0 in all cases. This
completes the proof of Theorem 1.1. O

5. Proofs of reducibility. In this section, we prove that the graph G cannot
contain any of the configurations given in Section 2.

Let A\ be a (partial) edge-face 9-colouring of G. For each element z € E U F,
we define C(x) to be the set of colours (with respect to A) of the edges and faces
incident or adjacent to z. If x € V we define £(x) to be the set of colours of the edges
incident to x. Moreover, A is nice if only some (<4)-faces are uncoloured. Observe
that every nice colouring can be greedily extended to an edge-face 9-colouring of G,
since |C(f)| < 8 for each (<4)-face f, i.e. f has at most 8 forbidden colours. Therefore,
in the rest of the paper, we shall always suppose that such faces are coloured at the
very end. More precisely, every time we consider a partial colouring of GG, we uncolour
all (<4)-faces, and implicitly colour them at the very end of the colouring procedure
of G. We make the following observation about nice colourings, which we rely on
frequently.

Observation. Let e be an edge of G incident to two faces f and f’. There exists a
nice colouring A of G — e, and hence a partial edge-face 9-colouring of G in which only
e and f are uncoloured. Moreover, if f is an (<4)-face, then it suffices to properly
colour the edge e with a colour from {1,2,...,9} to extend A to a nice colouring of
G.

The following lemma implies the reducibility of configuration A0. We require the
stronger form as it is necessary for later arguments, in particular, for the reducibility
of configurations A1-A3.

LEMMA 5.1. Let v be a vertex of G with neighbours vy, v, . ..,vq—1 in clockwise
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order. If v is a cut-vertex of G, then no component C' of G — v is such that the
neighbourhood of v in C is contained in {v;,viy1} for some i € {0,1,...,d — 1},
where the index © is taken modulo d.

Proof. Suppose on the contrary that C' is a component of G — v such that the
neighbourhood of v in C' is contained in, say, {vo, v1}.

First, assume that the neighbourhood of v in C' is {vg,v1}. Then G is the edge-
disjoint union of two plane graphs Gi = (C' U {v},E1) and Ga = (V \ C, Ez). The
outer face f; of G corresponds to a face fs of Go. By the minimality of G, the graph
G; has an edge-face 9-colouring \; for ¢ € {1,2}. Since both vvy and vv; are incident
in G to f1, we may assume that A1 (f1) = 1, A1 (vvg) = 8 and A\ (vv1) = 9. Regarding
A2, we may assume that A2(f2) = 1. Furthermore, up to permuting the colours, we
can also assume that the colours of the edges of G9 incident to v are contained in
{1,2,...,7}, since there are at most 6 such edges.

We now define an edge-face 9-colouring A of G as follows. For every edge e of G,
set Ale) := M(e) if e € E7 and A(e) := Aqo(e) if e € Ey. To colour the faces of G,
let f be the face of G incident to both vvy and vvg_;. (Note that there is only one
such face, since otherwise v would have degree 2, which would be a contradiction.)
Now observe that there is a natural one-to-one correspondence between the faces of
(1 and a subset Fj of the face set F' of G that maps f; to f. Similarly, there is a
natural one-to-one correspondence between the faces of G and a subset Fy of F' that
maps fa to f. Note that Fy N Fy, = {f}. Now, we can colour every face f € F; using
A;. This is well defined since A1 (f1) = A2(f2) = 1.

Let us check that A is proper. Two adjacent edges of G are assigned different
colours. Indeed, if the two edges belong to F; for some ¢ € {1,2}, then it comes from
the fact that \; is an edge-face 9-colouring of GG;. Otherwise, both edges are incident
with v, and one is in G; and the other in G5. The former is coloured either 8 or 9, and
the latter with a colour of {1,2,...,7} by the choice of A; and Aa. Two adjacent faces
in G necessarily correspond to two adjacent faces in G; or G2, and hence are assigned
different colours. Last, let g be a face of G and e an edge incident to g in G. If g # f,
then g and e are incident in G; or G2, and hence coloured differently. Otherwise e is
incident to f; in G; for some i € {1,2}, and hence A(e) = \;(e) # N (fi) =1 = A(f).

The case where the neighbourhood of v in C'is {vo}, i.e. vvg is a cut-edge, is dealt
with in the very same way so we omit it. O

The next lemma shows the reducibility of configurations B1 and C1.

LEMMA 5.2. Letuv be an edge of G, and let s € {1,2} be the number of (<4)-faces
incident to wv. Then deg(u) + deg(v) =9+ s.

Proof. Suppose on the contrary that deg(u) + deg(v) < 8 +s. Let f and f’ be
the two faces incident to uv.

Without loss of generality assume that f is an (<4)-face. By the minimality of G,
the graph G — uv has a nice colouring . Let f” be the face of G — uv corresponding
to the union of the two faces f and f’ of G after having removed the edge uv. We
obtain a partial edge-face 9-colouring of G in which only wv, f and the (<4)-faces
are uncoloured by just assigning the colour A(f”) to f’, and keeping all the other
assignments.

Consequently, |C(uv)| < deg(u) + deg(v) —2 + 2 — s < 8. Hence, we can properly
colour the edge uv, thereby obtaining a nice colouring of G; a contradiction. O

In light of Lemma 5.2, we make the following definition and observation. An edge
wv of G is called tight if deg(u) + deg(v) — s = 9, where s € {1,2} is the number of
(<4)-faces incident to uwv.
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Observation. Assume that c is an edge-face 9-colouring of G in which only uv and
the (<4)-faces are uncoloured. Let S be the (possibly empty) set of colours assigned
by ¢ to the (>5)-faces incident to uv. If wv is tight, then the sets £(u), £(v) and S
are pairwise disjoint, and C(uwv) = E(u) UE(w)U S ={1,...,9}.

The reducibility of configurations B2, B3, B4, C2 and C3 follows from the next
lemma.

LEMMA 5.3. Let uvw be a triangle of G such that deg(u) + deg(v) = 10 + s,
where s € {0,1} is the number of (<4)-faces distinct from uwvw incident to uv, and
let t € {0,1,2} be the number of (<4)-faces distinct from wvw incident to uw or vw.
Then deg(w) > 7+ t.

Proof. As we pointed out, there exists a partial edge-face 9-colouring ¢ of G in
which only wv and the (<4)-faces are left uncoloured. Let auy, @y and ., be the
colours, if any, assigned to the (=5)-faces incident to uv, vw and ww, respectively.
Since the edge wv is tight, £(u), E(v) and {ayw} form a partition of {1,2,...,9}.
Thus, if there is a colour £ € £(u) U {ay, } that is not in E(w) U {ayw}, then we can
colour uv with ¢(vw) and next recolour vw with £ to obtain a nice colouring of G. We
deduce that £(u) U {au} C E(w) U {aupw}- Similarly, £(v) U {auw} C E(w) U {awyw}-
Hence, deg(w) +2 —t > 9, so deg(w) > 7 +t, as required. O

The following verifies that configuration A1l is reducible. The lemma is also needed
for showing the reducibility of configurations A3, C4 and C5.

LEMMA 5.4. Let u,v,w be vertices of G with deg(v) = 2. Then uvw is not a face
of G.

Proof. Suppose on the contrary that uvw is a face of G. There exists a nice
colouring ¢ of G — uw. Note that the face f; of G other than uvw that is incident to
both wv and vw must be an (=5)-face, or else |C(uv)| < 8 and we can immediately
extend c to a nice colouring of G. Note that f; is distinct from the face fo of G other
than uwvw that is incident to uw; otherwise, one of u or w is a cut-vertex of a type
forbidden by Lemma 5.1. Let 3., be the colour, if any, assigned by ¢ to fs.

Observe that ¢(f1) ¢ {Buw,c(uw)}. Indeed, since wv is tight, the sets &(u),
{c(vw)} and {c(f1)} are pairwise disjoint. Since vw is tight, we deduce that c(f1) ¢
E(w), for otherwise we could colour uv with ¢(vw) and next recolour vw with a colour
from {1,...,9}\ &(w). Hence ¢(f1) ¢ E(u) UE(w) U {Buw}, so that colouring uv with
c(uw) and next recolouring uw with ¢(f1) yields a nice colouring of G; a contradiction.
a

The next lemma will be used to show the reducibility of configurations A3 and
E4.

LEMMA 5.5. Let v be a 2-vertex of G, and let uw and w be its two neighbours. If
deg(u) < 6, then u and w are adjacent in G.

Proof. Suppose on the contrary that v and w are not adjacent in G. Then, the
graph G’ obtained by contracting the edge wwv is planar, simple and has maximum
degree at most 8. By the minimality of G, let A be a nice colouring of G’. Let g and ¢’
be the faces of G’ corresponding to the contracted faces f and f’ of G, respectively. We
obtain a partial edge-face 9-colouring of G in which only uv is uncoloured by assigning
the colour A(g) to f, the colour A(¢') to f’, and keeping all the other assignments.

Now, |C(uv)| < deg(u)+deg(v) —2+2 < 8. Consequently, we can properly colour
the edge uv to obtain a nice colouring of GG; a contradiction. O

We now deduce the reducibility of configuration A3.

COROLLARY 5.6. Let v be a 2-vertex of G and let u and w be its two neighbours.
If deg(u) = 3, then deg(w) > 6.
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Proof. Suppose on the contrary that u has degree 3 and w has degree at most
5. Lemma 5.5 implies that v and w are adjacent. Note that uvw cannot be a face
by Lemma 5.4. Let u’ be the neighbour of u besides v and w. By Jordan’s curve
theorem, the curve wvw splits the plane into two parts, .# and € with v’ € 0.
First, note that w has a neighbour in &, for otherwise v would be a cut-vertex that
contradicts Lemma 5.1. Moreover, Lemma 5.4 implies that w has a neighbour in ..
Consequently, w has either one or two neighbours in .#, and hence w is a cut-vertex
that contradicts Lemma 5.1. O

The following demonstrates that configuration A2 is reducible.

LEMMA 5.7. Let u,v, w, x be vertices of G with deg(v) = 2 and deg(x) < 3. Then
uvwz is not a face of G.

Proof. Suppose on the contrary that wvwz is a face of G. There exists a partial
edge-face 9-colouring ¢ of G in which only uv and the (<4)-faces are uncoloured. Let
a be the colour, if any, assigned to the (>5)-face incident to both uv and vw, and let
Buz and By, be the colours, if any, assigned to the (>5)-faces incident to ux and wz,
respectively.

By Lemma 5.1, observe that o ¢ {Buz, Bwa, c(ux), c(wz)}. Since uv is tight, the
sets €(u), {c(vw)} and {a} are pairwise disjoint. Since vw is tight, we deduce that
a ¢ E(w), for otherwise we could colour uv with ¢(vw) and next recolour vw with a
colour from {1,...,9}\ &(w). Hence a ¢ E(u) U E(w) U {Buz, Buws }-

Let 2’ be the vertex adjacent to x distinct from v and w. We must have c(zz’) = «,
otherwise we could colour wv with c¢(uz) and next recolour ux with . Since Buy # Buwws
at least one of S, and B, is distinct from c(vw). Observing that we can colour uv
with c¢(vw) and next uncolour vw, we may assume without loss of generality that
Buwa # c(vw). As a result, colouring uv with ¢(vw), and next swapping the colours of
vw and zw yields a nice colouring of G; a contradiction. O

The following verifies that configurations C4 and C5 are reducible.

LEMMA 5.8. Let uvw and vwz be triangles of G such that wx is incident to two
(<4)-faces.

(1) At least one of u and x has degree at least 4.

(7i) If wv is tight, then deg(v) + deg(x) > 12.

Proof. (i). Suppose on the contrary that both uw and x have degree less than 4.
Then both have degree 3 by Lemma 5.4. Let u’ (respectively z’) be the neighbour of
u (respectively z) distinct from v and w. Let ¢ be a partial edge-face 9-colouring of
G in which only wx and the (<4)-faces are uncoloured. Let cyy, Gy and a,, be the
colours, if any, assigned to the (=5)-faces incident to uv, uw and vz, respectively.

Since the edge wz is tight, the sets £(w) and £(x) are disjoint. Hence c(xa’) €
&(v), otherwise we could colour wz with c(vw) and recolour vw with c(zx’).

We first assert that au,, # c(vw). Otherwise, |C(vz)| = |E(v)| < 8 and there
exists £ € {1,2,...,9}\C(vz). Now, colouring wz with ¢(vz) and recolouring v with
¢ yields a nice colouring of G a contradiction. Consequently, we can safely swap the
colours of vw and vz, if necessary.

Our next assertion is that {c(uu’), oy } = {c(vw), c(vz)}. For, if c(vx) ¢ {c(un’), cyw }
we can colour wz with ¢(uw) and recolour uw with ¢(vz); a contradiction. The same
argument after swapping the colours of vw and va shows that c(vw) € {c(uu’), ayw}-
Thus, up to swapping the colours of vw and va, we may assume that c(vx) = Q.

Let us recolour uv with c(vz), colour wx with ¢(vz) and uncolour vz. The
obtained colouring is proper, since qu, # auyw = c¢(vz) and £(w) NE(x) = 0. Now, if
vx cannot be coloured greedily, then for the obtained colouring £(v) UE(x) U{ay, } =
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{1,2,...,9}. But then, since there are at most ten in the set of edges incident to v or
x, two of which (uv and wz) have the same colour and one of which is uncoloured, it
follows that c(zz’) ¢ £(v) U E(w). Now we can colour vx with c(vw) and colour vw
with ¢(zz’) to obtain a nice colouring of G; a contradiction.

(#4). Suppose on the contrary that wov is tight and deg(v) + deg(x) = 11. Let
¢ be a partial edge-face 9-colouring of G in which only uv and the (<4)-faces are
uncoloured. Let @y, (uw and ay, be the colours, if any, assigned to the (=5)-faces
incident to uv, uw and vz, respectively. Since the edge uv is tight, the sets £(u), £(v)
and {au, } are pairwise disjoint.

Let & be the colourin {1,...,9}\&(w) (unique since we can assume that deg(w) =
8 without loss of generality). Then £ € £(v), otherwise we could colour uv with ¢(vw)
and recolour vw with &. It follows that £ ¢ E(u). Therefore, au,, = £, otherwise we
could colour uv with ¢(uw) and recolour uw with £. Thus, the colours of uw and vw
may be exchanged, if necessary.

Let us show that £(u) U {auy, c(vw)} C E(x) U {aw,}. First, if there is a colour
v € E(u)U{ayy } that is not in E(x) U{,. }, then we can recolour vz with v and then
colour v with ¢(vx) to obtain a nice colouring of G, which is a contradiction. Similarly,
by exchanging the colours of uw and vw, we conclude that c(vw) € E(x) U {ayy}-

Since uv is tight and deg(v) + deg(x) = 11, we deduce that £(z) U {aws} =
E(u) U{ayy, c(vw), c(ve)}. (Indeed, |E(z) U {ays}| < deg(x) + 1 = 12 — deg(v), and
I€(u) U{au}| = 9 — (deg(v) — 1) = 10 — deg(v).) In particular, a,, # c(wz) and
£ ¢ E(x)\ {c(vx)}. Now, colour uv with ¢(vz), and then recolour va with ¢(wz) and
wzx with £ to obtain a nice colouring of GG a contradiction. O

The next lemma implies that configurations D1-D4 are reducible.

LEMMA 5.9. Let vwx be a triangle of G and u a neighbour of v distinct from x
and w. If vz is incident to two (<4)-faces, then either uv or vw is not tight.

Proof. Suppose on the contrary that both uv and vw are tight. Let ¢ be a partial
edge-face 9-colouring of G in which only vw and the (<4)-faces are left uncoloured.
Let « be the colour, if any, assigned to the (=5)-face incident to vw. Since vw is
tight, we know that the sets £(v), £(w) and {a} form a partition of {1,2,...,9}. In
particular, c(vz) ¢ E(w) and c(wz) ¢ E(v).

If an edge e that is adjacent to vw could be properly recoloured with a colour
&, then colouring vw with c(e) and recolouring e with £ would yield a nice colouring
of G; a contradiction. Applying this to vz yields that &(w) U {a} C &(x), since
C(vz) = E(x) UE(v), and as we noted above {1,...,9}\ E(v) = E(w)U{a}. Applying
the same remark to wz, we obtain £(v) U {a} C E(x) U {B}, where 3 is the colour, if
any, assigned to the (>5)-face incident to wz.

Since 9 = |E(w) U E(w) U{a}| < |E(x) U{B} < 9, we deduce that 8 ¢ E(x).
Therefore, we can safely swap the colours of vz and wz if needed (recalling that
Ew)N&(w) = 0).

Let S be the set of colours of the (>5)-faces incident to uv. Thus, |S| = 2—s where
s is the number of (<4)-faces incident to wv. Again, we apply the same arguments
as above to uwv: since uv cannot be recoloured, we deduce that E(u) U E(v) U S =
{1,2,...,9}. But |E(u)UEW)US| < deg(u) — 1+ deg(v) — 14+ 2 — s = deg(u) +
deg(v) — s < 9 since uw is tight and vw is uncoloured. Consequently, £(u), £(v) and
S are pairwise disjoint. In particular, c(vz) ¢ E(u) U S. As a result, colouring vw
with ¢(uv), then recolouring uv with ¢(vz) and finally swapping the colours of va and
wax yields a nice colouring of G a contradiction. O

The next lemma implies that configurations E1 and E2 are reducible.
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LEMMA 5.10. Let v be an 8-vertex of G with neighbours vy, vy, ...,v7 in anti-
clockwise order. Assume that v;v;+1 is an edge for i € {0,1,2,3}, and that vi an
(<4)-vertex. If vy is an (<6)-vertex or vvg is adjacent to two (<4)-faces, then vs is
an (>4)-vertez.

Proof. Suppose on the contrary that vz is a 3-vertex. By the minimality of G, the
graph G — vv3 has a nice colouring and hence G has a partial edge-face 9-colouring
¢ in which only vvs and the (<4)-faces are left uncoloured. Since vvsz is tight, we
deduce that |E(v) U&(v3)] =9 and E(v) N E(v3) = 0.

Let « be the colour, if any, of the (=5)-face incident with both vovs and vzvy. If
w3 can be recoloured with a colour £, then colouring vus with ¢(vevs) and then vovs
with € would yield a nice colouring of G; a contradiction. Thus, £(v) C E(ve) U {a}.

Let j € {1,2}. If there exists a colour { € £(vs) \ £(vj;), then colouring vus with
c(vvj) and then vv; with £ yields a nice colouring of G (recalling that £(v3) and £(v)
are disjoint). Therefore, £(vs) C E(v;) for j € {1,2}. Letting vy be the colour, if any,
of the (>5)-face incident to vvy we similarly find that £(vs) C E(vo) U {~}.

Since E(v2) U{a} D E(w) UE(vs) ={1,2,...,9} and |E(ve) U {a}| <9, it follows
that a # c(vvy). As E(v) N E(vs) = 0, this implies that the colours of vvy and vovs
can be freely swapped. By doing so, we can conclude that £(vs) U {c(vv2)} C E(vj)
for j € {1,2} and E(v3) U {c(vve)} C E(vo) U {~}.

Since deg(v1) = 4, we find that E(v1) = {c(vv1), c(vv)} U E(v3). Furthermore,
by swapping the colours of vvy and vavs if necessary, we may assume that c(vovy) €
E(vs). Now, if vyvy could be recoloured with a colour &, then colouring vvs with
c(vvy), then vvy with ¢(vgvr) and then vov; with € would yield a nice colouring of
G. Thus, letting 8 be the colour, if any, of the (>5)-face incident to vov; we obtain
E(vp) UE(n)U{B} ={1,2,...,9}.

Let us partition our analysis now based on if vy is an (<6)-vertex or if vvg is
adjacent to two (<4)-faces.

Suppose we are in the former case. Since £(v3)U{c(vva)} C (E(vo)U{y})NE(v1),
we deduce that |E(vg) U E(v1)| < deg(vo) +deg(vy) —2 < 8. Consequently, 5 # c(vvy)
and c(vvr) ¢ E(vg). In particular, the colours of v, and vovy can safely be swapped
if needed. As a result, colouring vvs with ¢(vv;) and then swapping the colours of vy
and vgv; yields a nice colouring of GG; a contradiction.

Now suppose we are in the latter case. Then there is no colour 7. For j € {0,1},
it cannot be that c(vv;) € £(vi—;) (and hence c(vv;) € E(vo) NE(v1)). Otherwise, we
would have, using &(vs) U {c(vve)} C E(vg) N E(v1), that [E(ve) UE(v1)] < deg(vo) +
deg(v1) — 4 < 8, in which case, recolouring as we did in the last paragraph, we would
reach a contradiction. However, for some j € {0,1}, we must have § # c(vv;), and so
the colours of vv; and vyv1 can be swapped safely. Thus, colouring vvs with c(vv;) and
then swapping the colours of vv; and vgv; yields a nice colouring of G; a contradiction.
a

In the following lemma, we show that configuration E3 is reducible.

LEMMA 5.11. Let v be a triangulated 8-vertex of G with neighbours vy, vy, ..., v7
in anti-clockwise order. If vy is a 3-vertex, then every vertex v; with i # 0 has degree
at least 5.

Proof. Suppose on the contrary that v; is an (<4)-vertex with j € {1,...,7}.
First, note that j ¢ {1,7} by Lemma 5.3 (the reducibility of configuration B2, in
particular). By the minimality of G, the graph G — vvy has a nice colouring, and
hence the graph G has a partial edge-face 9-colouring in which only vvg and the (<4)-
faces are left uncoloured. Since vvg is tight and incident to two triangles, we infer
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that |E(v) UE(vg)| =9 and E(v) N E(vg) = 0.

Note that E(vg) C E(v;) for i # 0, for otherwise we could colour vvy with c(vv;)
and then recolour vv; with a colour in E(vp) \ £(v;) to obtain a nice colouring of G
(recalling that £(v) N E(vo) = 0). Since {c(vv;)} UE(vo) C E(v;) and deg(v;) < 4, we
deduce that one of c(vv1) and c(vvr) does not belong to €(v;), say c(vvr).

Let « be the colour of the face incident to both vgv; and vgv;. We prove that
a # c(vvr). Indeed, suppose on the contrary that o = c(vvz). Then, there exists
a colour & that does not belong to E(v7) U {a} = &(vr), since deg(vy) < 8. As
E(vg) C E(vr), we deduce that € ¢ E(vy) UE(v7) U{a}. Therefore, colouring vvg with
c(vgvr) and then vour with € yields a nice colouring of G; a contradiction. Hence,
a # c(vuy). Consequently, we can freely swap the colours of vv; and vovy. Now,
colouring vvg with c(vv;), then recolouring vv; with c(vv7) and last swapping the
colours of vvy and vguy yields a nice colouring of G; a contradiction. O

The next lemma implies that configuration E4 is reducible.

LEMMA 5.12. Let v be a 6-vertex of G with neighbours u and w, and suppose
x # v is a neighbour of w. Suppose w is a 2-vertex and x is a 3-vertex. Assume that
wv is adjacent to an (<4)-face. Then u is an (=6)-vertex.

Proof. First of all note that, due to Lemma 5.5, v and x are adjacent in G.
Suppose on the contrary that w is an (<5)-vertex. By the minimality of G, the graph
G — uv has a nice colouring and hence G has a partial edge-face 9-colouring in which
only wv and the (<4)-faces are left uncoloured. Let us further uncolour vw and vz.
Now, |C(uv)| < deg(u) —1 4 deg(v) —1—2+41 < 8, so we may properly colour
uv. It remains to colour vw and vx. Next, since vw was uncoloured, we see that
IC(vx)] < deg(v) — 1+ deg(x) —1 —1+2 =8, so we may properly colour vz. Finally,
we consider vw and notice that |C(vw)| < deg(v) — 1 + deg(w) — 1+ 2 = 8, which
does not prevent us from properly colouring vw. We have thereby obtained a nice
colouring of G; a contradiction. O

It remains to prove Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. By the minimality of G, the (proper) subgraph G’ formed
from G by deleting all loose edges incident to f has a nice colouring. To extend this
to a nice colouring of G, it would suffice to properly colour f, as every loose edge on
f can then be greedily coloured. Indeed, a loose edge uv on f is incident to at most
deg(u) — 1 + deg(v) — 1 < 6 other edges. Consequently, since G cannot have a nice
colouring, we conclude that f is incident or adjacent to elements of all nine colours.
Now, f is adjacent to at most d — g other faces, and incident to d — x coloured edges.
Therefore, d — q+d — xz > 9, as asserted. O

Proof of Lemma 2.2. That u’ = v’ follows directly from Lemma 5.5. Note that by
Lemma 5.4, uvvu’ is not a face. By Jordan’s curve theorem, the curve uvu’ splits the
plane into two parts, .# and ¢. Then v must have three neighbours in .# and three
neighbours in &, or else it would be a cut vertex of a type forbidden by Lemma 5.1.
This implies that v’ has degree 8. O
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