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Abstract

Given a graph G = (V,E), a vertex colouring of V is t-frugal if no colour appears more than t times in any
neighbourhood and is acyclic if each of the bipartite graphs consisting of the edges between any two colour
classes is acyclic. For graphs of bounded maximum degree, Hind, Molloy and Reed [14] studied proper
t-frugal colourings and Yuster [22] studied acyclic proper 2-frugal colourings. In this paper, we expand and
generalise this study.
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1. Introduction

In this paper, a (vertex) colouring of a graph G = (V,E) is any map f : V → N. The colour classes of a
colouring f are the preimages f−1(i) := {v ∈ V : f(v) = i}. Recall that a colouring of a graph is proper if
adjacent vertices receive distinct colours. In this article, we will consider colourings that are not necessarily
proper, but satisfy another condition.

For t ≥ 1, a colouring of G is t-frugal if no colour appears more than t times in any neighbourhood.
The notion of frugal colouring was introduced in 1997 by Hind, Molloy and Reed [14]. They investigated
proper t-frugal colourings as a way to improve bounds related to the Total Colouring Conjecture (cf. [15]).
Note that a proper 1-frugal colouring of G is equivalent to a proper colouring of the square G2 of G, i.e. the
graph formed from G by adding the edges between any two vertices at distance two from each other. A brief
account of optimal proper 1-frugal colourings for bounded degree graphs is given in [5]. We also remark
that 1-frugal colourings were studied by Hahn et al. [13] (and they refer to such colourings as injective); in
particular, they characterised the extremal examples for 1-frugal colouring of bounded degree graphs. In
Section 3, we consider the asymptotic difference between optimal t-frugal and proper t-frugal colourings for
various choices of t.

In Section 4, we make a similar comparison while imposing an additional condition that is well-studied
in the graph colouring literature. A colouring of V is acyclic if each of the bipartite graphs consisting of the
edges between any two colour classes is acyclic. In other words, a colouring of G is acyclic if G contains no
alternating cycle (that is, an even cycle that alternates between two distinct colours). See, e.g. [12, 3, 8, 4],
for more on acyclic proper colouring. We also consider an even stronger condition. A star colouring of G
is a colouring such that no path of length three (i.e. with four vertices) is alternating; in other words, each
bipartite subgraph consisting of the edges between two colour classes is a disjoint union of stars. Clearly,
every star colouring is acyclic. With respect to graphs of bounded maximum degree, the study of acyclic
proper colourings was instigated by Erdős (cf. [3]) and settled asymptotically by Alon, McDiarmid and
Reed [4]; proper star colourings were studied by Fertin, Raspaud and Reed [11]. Extending the work of Alon
et al., Yuster [22] investigated acyclic proper 2-frugal colourings (but called them linear colourings, since
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the edges between any pair of colour classes induce a disjoint union of paths). In Section 4, we expand this
study to different values of t and colourings that are not necessarily proper.

Before we describe our results, let us outline the notation used throughout the paper, as well as some
straightforward observations. As usual, the chromatic number χ(G) denotes the least number of colours
needed in a proper colouring. The acyclic chromatic number χa(G) denotes the least number of colours
needed in an acyclic proper colouring, and the star chromatic number χs(G) of a graph G is the least
number of colours needed in a proper star colouring. For t ≥ 1, the superscript t will denote that we require
colourings to be t-frugal. That is, χt(G) will denote the least number of colours used in a proper, t-frugal
colouring. Similarly, χta(d) denotes the least number of colours in a proper, acyclic, t-frugal colouring and
χts(d) denotes the least number of colours in a proper, star, t-frugal colouring.

Often we will drop the constraint that the colourings be proper. In this case we will use the notation ϕ
instead of χ. The t-frugal chromatic number ϕt(G) denotes the least number of colours needed in a t-frugal
colouring that is not necessarily proper. We define the acyclic t-frugal chromatic number ϕta(G) and the
t-frugal star chromatic number ϕts(G) analogously.

We will be interested in studying these parameters for graphs of bounded degree. To this end, let χ(d)
denote the maximum possible value of χ(G) over all graphs G whose maximum degree ∆(G) is d. We
analogously define χa(d), ϕt(d), χt(d), ϕta(d), χta(d), ϕts(d) and χts(d).

We frequently use the monotonicity of these parameters with respect to d: χ(d− 1) ≤ χ(d), χa(d− 1) ≤
χa(d), ϕt(d−1) ≤ ϕt(d), and so on. The parameters are also monotone with respect to t: ϕt+1(G) ≤ ϕt(G),
χt+1(G) ≤ χt(G), and so on. The proofs for the next proposition are left to the reader.

Proposition 1.1. For any graph G and any t ≥ 1, the following hold:

(i) χ1(G) = χ1
a(G) = χ1

s(G) = χ(G2);
(ii) ϕt(G) ≤ χt(G), ϕta(G) ≤ χta(G), ϕts(G) ≤ χts(G);

(iii) ϕt(G) ≤ ϕta(G) ≤ ϕts(G), χt(G) ≤ χta(G) ≤ χts(G);
(iv) ϕt(G) ≥ ∆(G)/t.

We are now prepared to highlight some of our findings in fuller detail. In Section 3, we study the
asymptotic behaviour of ϕt(d) (for t-frugal colourings) and compare it with that of χt(d) (for proper t-frugal
colourings). We find that these quantities are roughly of the same order when t grows reasonably slowly as
a function of d, but that they differ substantially for more quickly growing choices of t.

Theorem 1.2. Let t = t(d) ≥ 1 be any sequence of positive integers. As d → ∞, the following hold for
ϕt(d) and χt(d):

(i) if t = o(ln d/ ln ln d), then both ϕt(d) and χt(d) are Θ(d1+1/t/t);
(ii) if t = ω(ln d), then ϕt(d) = (1 + o(1))d/t while χt(d) = d+ 1 for d sufficiently large.

Part (i) follows from Corollary 3.4 and Theorem 3.2. Part (ii) follows from Theorem 3.7 and Theorem 3.1. We
determine that, asymptotically, ϕt(d) and χt(d) diverge when t = Θ(ln d/ ln ln d), but our characterisation
of ϕt(d) is not tight in the range between t = Θ(ln d/ ln ln d) and t = Θ(ln d) (cf. Theorem 3.6).

In Section 4, we consider χta(d) (for acyclic proper t-frugal colourings) and χts(d) (for proper t-frugal star
colourings), to flesh out the next theorem.

Theorem 1.3. As d→∞, the following hold for χta(d) and χts(d):

(i) χ1
a(d) and χ1

s(d) are both Θ(d2);
(ii) χ2

a(d) and χ2
s(d) are both Θ(d3/2);

(iii) for any 3 ≤ t ≤ d, we have χta(d) = Õ(d4/3), whereas χts(d) = Õ(d3/2).

This theorem follows from Proposition 1.1(i), Corollary 3.4, Theorem 4.4 and Theorem 4.5.
We also in Section 4 consider ϕta(d) (for acyclic t-frugal colourings) and ϕts(d) (for t-frugal star colourings),

and our result, a corollary of Theorem 4.8 below, extends previous work on acyclic t-improper colouring (a
notion that we define later).

Theorem 1.4. ϕts(d) = O(d ln d+ (d− t)d).

For a compact overview of this work, the reader may consult Tables 1, 3 and 4. Some open problems are
mentioned at the end of the paper.
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2. Probabilistic and asymptotic preliminaries

We make use of two standard versions of the Lovász Local Lemma [9].

Symmetric Lovász Local Lemma ([9], cf. [19], page 40). Let E be a set of (typically bad) events such
that for each A ∈ E

(i) Pr(A) ≤ p < 1, and

(ii) A is mutually independent of a set of all but at most δ of the other events.

If ep(δ + 1) < 1, then with positive probability none of the events in E occur.

General Lovász Local Lemma ([9], cf. [19], page 222). Let E be a set {A1, . . . , An} of (typically bad)
events such that for each Ai there exists a set Di ⊆ E such that Ai is mutually independent of all Aj not in
Di. If there are real weights 0 ≤ xi < 1 such that for all i

Pr(Ai) ≤ xi
∏

Aj∈Di

(1− xj),

then with positive probability none of the events in E occur.

We will also use the following bound on the upper tail of the binomial distribution BIN(n, p).

A Chernoff Bound (cf. Equation (2.5) of [17]). If t ≥ 0, then

Pr(BIN(n, p) ≥ np+ t) ≤ exp

(
− t2

2(np+ t/3)

)
.

3. Frugal colourings

Notice that χt(Kd+1) = d+ 1, implying χt(d) ≥ d+ 1. As a tool to improve bounds for total colouring

(cf. [15]), Hind et al. [14], showed for sufficiently large d that χ(ln d)5(d) = d+1. Recently, this was improved
as follows.

Theorem 3.1 (Molloy and Reed [20, 21]). For sufficiently large d,

χ50 ln d/ ln ln d(d) = d+ 1.

Since χt(Kd+1) ≥ d + 1, it follows that χt(d) = d + 1 for t = t(d) ≥ 50 ln d/ ln ln d. For smaller frugalities,
Hind et al. [14] also showed the following.

Theorem 3.2 (Hind et al. [14]). For any t ≥ 1 and sufficiently large d,

χt(d) ≤ max

{
(t+ 1)d,

⌈
e3
d1+1/t

t

⌉}
.

Note that χ1(d) ∼ d2 by Proposition 1.1(i). By Proposition 1.1(iii), the following example due to Alon
(cf. [14]) shows that Theorem 3.2 is asymptotically correct up to a constant multiple when t = o(ln d/ ln ln d).

Proposition 3.3. For any t ≥ 1 and any prime power n,

ϕt(nt + · · ·+ 1) ≥ nt+1 + · · ·+ 1

t
.
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Proof. Set d = nt + · · · + 1 and m = nt+1 + · · · + 1. Let P be a (t + 2)-dimensional projective geometry
with m points (see for instance [18]). We form a bipartite graph G with parts A and B, where A is the set
of points in P and B is the set of (t+ 1)-flats (hyperplanes), and an edge between two vertices a ∈ A, b ∈ B
if the point a lies in the hyperplane b.

Every hyperplane contains exactly d points in P and every point is in exactly d hyperplanes. So G has
maximum degree d. Since every set of t + 1 points lies in a (t + 1)-flat, no colour can appear more than t
times on A in any t-frugal colouring of G (whether proper or not); thus, at least m/t colours are required.

Corollary 3.4. Suppose that t = t(d) ≥ 1 and t = o(ln d/ ln ln d). Then

ϕt(d) ≥ (1 + o(1))
d1+1/t

t

for sufficiently large d.

Proof. Let x solve d = xt(d) + · · ·+ 1 where d is chosen large enough to satisfy certain inequalities specified
below. Set m = xt(d)+1 + · · · + 1. Note that x → ∞ as d → ∞, since t = o(ln d). It follows that
d = (1 + o(1))xt(d) and x = (1 + o(1))d1/t(d).

Due to a classical result of Ingham [16] on the gaps between primes, there is a prime n between x−Cx5/8
and x, for some absolute constant C. Let d′ = nt(d) + · · · + 1 and m′ = nt(d)+1 + · · · + 1. We have, using
Proposition 3.3,

ϕt(d)(d) ≥ ϕt(d)(d′) ≥ m′

t(d)
≥
(

1− C

x3/8

)t(d)+1
m

t(d)
. (1)

Since x = (1 + o(1))d1/t(d) and t(d) = o(ln d/ ln ln d), we have(
1− C

x3/8

)t(d)+1

≥ 1− C(t(d) + 1)

x3/8
≥ 1− 2C(t(d) + 1)

d0.375/t(d)
= 1 + o(1).

Also, using d = (1 + o(1))xt(d) and x = (1 + o(1))d1/t(d), we have that

m = (xt(d)+2 − 1)/(x− 1) = (1 + o(1))xt(d)+1 = (1 + o(1))d1+1/t(d).

Combining these last two inequalities with Inequality (1), we obtain that

ϕt(d)(d) ≥ (1 + o(1))
d1+1/t(d)

t(d)
,

as claimed.

Theorems 3.1 and 3.2 and Corollary 3.4 determine the behaviour of χt(d) up to a constant multiple for
all t except for some range of t = Θ(ln d/ ln ln d).

Next, we provide some upper bounds on ϕt(d) which show that this parameter is asymptotically lower
than χt(d), if t grows quickly enough as a function of d.

Theorem 3.5. For positive integers t and d with t ≤ d, let γ be such that

γ >

(
e(t+ 1)√

2πte1/(12t+1)

)1/t

e.

Then

ϕt(d) ≤
⌈
γ
d1+1/t

t

⌉
.
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Proof. Let G = (V,E) be any graph with maximum degree d and let x =
⌈
γd1+1/t/t

⌉
. Let f : V → {1, . . . , x}

be a random colouring of the vertices of G where for each v ∈ V , f(v) is chosen uniformly and independently
at random from the set {1, . . . , x}.

For vertices v1, . . . , vt+1 with {v1, . . . , vt+1} ⊆ N(v) for some v, let A{v1,...,vt+1} be the event that
f(v1) = · · · = f(vt+1). If none of these events hold, then f is t-frugal.

Clearly, Pr
(
A{v1,...,vt+1}

)
= 1/xt. Furthermore, each vertex participates in at most d

(
d−1
t

)
of these

events; thus, each event is independent of all but at most (t+ 1)d
(
d−1
t

)
other events. We have that

ePr
(
A{v1,...,vt+1}

)(
(t+ 1)d

(
d− 1

t

)
+ 1

)
< e

tt

γtdt+1
(t+ 1)

dt+1

t!
=
e(t+ 1)tt

γtt!
.

By a precise form of Stirling’s formula (cf. (1.4) of [7]),

t! ≥ (t/e)t
√

2πte1/(12t+1);

therefore,

e(t+ 1)tt

γtt!
≤ e(t+ 1)√

2πte1/(12t+1)

(
e

γ

)t
.

It follows that ePr
(
A{v,v1,...,vt+1}

) (
(t+ 1)d

(
d−1
t

)
+ 1
)
< 1; thus, by the Symmetric Lovász Local Lemma,

f is a t-frugal colouring with positive probability.

To get a more concrete feeling of this bound, note that, for example,

• when t = 2, we need γ >
(

3√
4π
e24/25

)1/2
e ≈ 1.487e,

• when t = 3, we need γ >
(

4√
6π
e36/37

)1/3
e ≈ 1.346e,

• when t = 4, we need γ >
(

5√
8π
e48/49

)1/4
e ≈ 1.277e, and

• when t = 1000, we need γ >
(

1001√
2000π

e12000/12001
)1/1000

e ≈ 1.004e.

If t → ∞ as d → ∞, then we can choose γ = e + ε for any fixed ε. By Corollary 3.4, this result is
asymptotically correct up to a constant multiple when t = o(ln d/ ln ln d). When t → ∞ as d → ∞ and
t = o(ln d/ ln ln d), this result is asymptotically correct up to a multiplicative factor of e.

We now provide some better bounds on ϕt(d) when t grows faster than ln d/ ln ln d. Recall from the
Proposition 1.1(iv) that ϕt(d) ≥ d/t. The following result follows from a routine modification of the proof
of Theorem 3.5 and so we omit the proof.

Theorem 3.6. For any fixed ε > 0, if εt > 2 ln d/ ln ln d, then

ϕt(d) ≤
⌈

d

t1−ε

⌉
.

From this result we can conclude that asymptotically ϕt(d) becomes smaller than χt(d) at around t =
Θ(ln d/ ln ln d), since necessarily χt(d) = Ω(d). Now, for the case t = ω(ln d), we give an essentially optimal
upper bound for ϕt(d).

Theorem 3.7. Suppose t = ω(ln d). Then ϕt(d) = (1 + o(1))dt .
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Proof. Let ε > 0 be arbitrary (but fixed). Let G be any graph with maximum degree d and let x =
d(1 + ε)d/te. Let f : V → {1, . . . , x} be a random colouring of the vertices of G where for each v ∈ V , f(v)
is chosen uniformly and independently at random from the set {1, . . . , x}.

For a vertex v and a colour i ∈ {1, . . . , x}, let Av,i be the event that v has more than t neighbours
with colour i. If none of these events hold, then f is t-frugal. Each event is independent of all but at most
d2x� d3 other events.

By a Chernoff bound, we have that

Pr (Av,i) = Pr (BIN(d, 1/x) > t) ≤ Pr (BIN(d, 1/x) > d/x+ ct)

≤ exp
(
−c2t2/(2d/x+ 2ct/3)

)
where c = ε/(1+ε). Thus, ePr (Av,i) (d3 +1) = exp(−Ω(t))d3 < 1 for large enough d, and by the Symmetric
Lovász Local Lemma, f is t-frugal with positive probability for large enough d.

Table 1 gives a rough overview of the behaviour we have outlined in this section.

Table 1: Bounds for ϕt(d) and χt(d).

ϕt(d) χt(d)

t lower upper lower upper

O
(

ln d
ln ln d

)
Ω
(
d1+1/t

t

)
O
(
d1+1/t

t

)
Ω
(
d1+1/t

t

)
O
(
d1+1/t

t

)
O (ln d) ⌈

d
t

⌉
⌈

d
t1−ε

⌉
d+ 1 d+ 1ω

(
ln d

ln ln d

) ⌈
(1 + ε)dt

⌉

4. Acyclic frugal colourings

Alon et al. [4] tackled the question of the asymptotic behaviour of χa(d). They found a nearly optimal
upper bound for the acyclic chromatic number of graphs of maximum degree d, answering a long-standing
question of Erdős (cf. [3]). Using the Lovász Local Lemma, they showed the following.

Theorem 4.1 (Alon et al. [4]). χa(d) ≤ d50d4/3e.

Using a probabilistic construction, they showed this upper bound to be asymptotically correct up to a
logarithmic multiple.

Theorem 4.2 (Alon et al. [4]). χa(d) = Ω
(
d4/3/(ln d)1/3

)
.

Yuster [22] considered acyclic proper 2-frugal colourings of graphs and showed χ2
a(d) = Θ(d3/2). In

particular, by an adaptation of Theorem 4.1, he showed the following.

Theorem 4.3 (Yuster [22]). χ2
a(d) ≤ dmax{50d4/3, 10d3/2}e.

For acyclic frugal colourings, we start by considering the smallest cases t = 1, 2, 3 and establish upper
bounds for acyclic proper frugal colourings. Later in the section, we consider larger values of t and focus on
acyclic frugal colourings that are not necessarily proper.
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For t = 1, 2, 3, notice that Corollary 3.4 implies the bounds ϕ1
a(d) ≥ (1 − ε)d2, ϕ2

a(d) ≥ (1/2 − ε)d3/2
and ϕ3

a(d) ≥ (1/3 − ε)d4/3, for fixed ε > 0 and large enough d. By Proposition 1.1(i), it follows that
ϕ1
a(d) ∼ χ1

a(d) ∼ d2.
Theorem 4.3 implies that ϕ2

a(d) = Θ(d3/2) and χ2
a(d) = Θ(d3/2). We give two extensions to Theorem 4.3,

one for the case t ≥ 2 with a slightly stronger notion of acyclic colouring, and the other for the case t ≥ 3.
For the first extension, the slightly stronger notion we use is that of star colouring. It was shown by Fertin et
al. [11] that the star chromatic number satisfies ims(d) = O(d3/2) and ims(d) = Ω

(
d3/2/(ln d)1/2

)
.

Theorem 4.4. χ2
s(d) ≤ d12d3/2e.

In showing this, we provide a slightly simpler proof of the fact that χ2
a(d) = O(d3/2). Our proof is an

extension of the proof of Theorem 8.1 in Fertin et al. [11]. For t = 2, this bound is correct up to a constant
multiple since χ2

s(d) ≥ ϕ2(d) ≥ (1/2 − ε)d3/2. Furthermore, for t ≥ 3, this bound is correct up to a
logarithmic multiple since χts(d) ≥ ims(d) = Ω

(
d3/2/(ln d)1/2

)
. Note that χ1

s(G) = χ(G2) ≤ (∆(G))2 + 1
for any graph G, so that χ1

s(d) ∼ d2 using Corolllary 3.4.

Theorem 4.5. χ3
a(d) ≤ d50d4/3e.

Our proof is an extension of the proof of Theorem 1.1 in Alon et al. [4]. For t = 3, this bound is correct
up to a constant multiple since χta(d) ≥ (1/3− ε)d4/3. For t ≥ 4, this bound is correct up to a logarithmic
multiple since χta(d) ≥ χa(d) = Ω

(
d4/3/(ln d)1/3

)
. This partially answers a question by Esperet, Montassier

and Raspaud [10].
In our proofs of Theorems 4.4 and 4.5, we employ the General Lovász Local Lemma. Since they are

fairly similar, we just provide the full details for one of them.

Proof of Theorem 4.4. Let G = (V,E) be any graph with maximum degree d and let x = d12d3/2e. Let
f : V → {1, . . . , x} be a random colouring of the vertices of G where for each v ∈ V , f(v) is chosen uniformly
and independently at random from the set {1, . . . , x}. We define three types of events, the first two of which
are from Fertin et al. [11].

I For adjacent vertices u, v, let A{u,v} be the event that f(u) = f(v).

II For a path of length three v1v2v3v4, let B{v1,...,v4} be the event that f(v1) = f(v3) and f(v2) = f(v4).

III For vertices v1, v2, v3 with {v1, v2, v3} ⊆ N(v) for some v, let A{v1,v2,v3} be the event that f(v1) =
f(v2) = f(v3).

It is clear that if none of these events occur, then f is a proper 2-frugal star colouring. Furthermore,
Pr(A) = 1/x and Pr(B) = Pr(C) = 1/x2, where A,B,C are events of Types I, II, III, respectively. Also,
since G has maximum degree d, each vertex participates in at most d ·

(
d−1
2

)
< d3/2 events of Type III. It is

routine to check that in Table 2, the (i, j) entry is an upper bound on the number of nodes corresponding to
events of Type j which are adjacent in the dependency graph to a node corresponding to an event of Type
i.

Table 2: Upper bounds in the dependency graph for Theorem 4.4.

I II III

I 2d 4d3 d3

II 4d 8d3 2d3

III 3d 6d3 3d3/2

We define the weight xi of each event i to be twice its probability and we want to show that each of the
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following inequalities hold:

1

x
≤ 2

x

(
1− 2

x

)2d(
1− 2

x2

)5d3

, (2)

1

x2
≤ 2

x2

(
1− 2

x

)4d(
1− 2

x2

)10d3

, and (3)

1

x2
≤ 2

x2

(
1− 2

x

)3d(
1− 2

x2

)15d3/2

. (4)

Inequalities (2), (3) and (4) correspond to events of Type I, II and III, respectively. Inequality (3) implies
the other two and it is valid for sufficiently large d since(

1− 2

x

)4d(
1− 2

x2

)10d3

≥
(

1− 8

12
√
d

)(
1− 20

122

)
>

1

2
.

Therefore, by the General Lovász Local Lemma, f is an acyclic proper 3-frugal colouring with positive
probability.

Proof outline for Theorem 4.5. Our proof is an extension of the proof of Theorem 4.1 in which we add a
fifth event to ensure that the random colouring f is 3-frugal:

V For vertices v, v1, v2, v3, v4 with {v1, v2, v3, v4} ⊆ N(v), let E{v1,...,v4} be the event that f(v1) = f(v2) =
f(v3) = f(v4).

For acyclic proper t-frugal colourings and proper t-frugal star colourings, Theorems 4.5 and 4.4, respec-
tively, basically give the correct behaviour for graphs of (large) bounded maximum degree, so now we would
like to consider what happens when we no longer prescribe that the colourings be proper.

For lower bounds, we defer to lower bounds on a weaker parameter. For t ≥ 0, a colouring of G is
t-improper if every vertex v has at most t neighbours with the same colour as v. Clearly, every t-frugal
colouring is t-improper. The acyclic t-improper chromatic number imt

a(G) (respectively, the t-improper star
chromatic number imt

s(G)) of a graph G is the least number of colours needed in an acyclic t-improper
colouring (respectively, a t-improper star colouring). We define imt

a(d) and imt
s(d) similarly as before.

We now mention some lower bounds on imt
a(d) and imt

s(d) which are clearly also lower bounds on ϕta(d)
and ϕts(d), respectively. First, by a probabilistic construction applying bounds on the t-dependence number
of random graphs, Addario-Berry et al. [1] showed the following non-trivial extensions of the lower bounds
for χa(d) and ims(d) of Alon et al. [4] and Fertin et al. [11], respectively.

Theorem 4.6 (Addario-Berry et al. [1]). For any t = t(d) ≤ d− 10
√
d ln d and sufficiently large d,

imt
a(d) ≥ (d− t)4/3

214(ln d)1/3
.

For any t = t(d) ≤ d− 16
√
d ln d and sufficiently large d,

imt
s(d) ≥ (d− t)3/2

212(ln d)1/2
.

An important implication of this is that, even if t = (1−ε)d for some fixed ε > 0, the bounds of Theorems 4.5
and 4.4 correctly describe the behaviours of ϕta(d) and ϕts(d), respectively, up to a logarithmic multiple.

A deterministic construction by Addario-Berry, Kang and Müller [2] based on a “doubled” grid shows
that imt

a(d) (and hence both ϕta(d) and ϕts(d)) grow significantly even if t is as close to d as possible (without
being equal to d, in which case all of the parameters imt

a(d), imt
s(d), ϕta(d) and ϕts(d) are trivially 1).
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Theorem 4.7 (Addario-Berry, Kang and Müller [2]). imd−1
a (d) = Ω(d).

Observe that the lower bound for ϕta(d) (respectively, ϕts(d)) of Theorem 4.6 is stronger than that of Theo-
rem 4.7 when d− t = ω(d3/4(ln d)1/4) (respectively, d− t = ω(d2/3(ln d)1/3)).

We can obtain an asymptotic improvement compared to Theorems 4.4 and 4.5 only when t = t(d) is very
close to d. We adapt an argument of Addario-Berry et al. [1]. The following theorem, for example, implies
that ϕta(d) is asymptotically smaller than χta(d) when d− t(d) = o

(
d1/3/(ln d)1/3

)
.

Theorem 4.8. For any t = t(d) ≥ 1 and sufficiently large d,

ϕts(d) ≤ d ·max{3(d− t), 31 ln d}+ 2.

The proof of this result relies on the following lemma which is essentially from Addario-Berry et al. [1].
A total k-dominating set D in a graph is a set of vertices such that each vertex has at least k neighbours
in D. Given a d-regular graph G = (V,E) and 1 ≤ k ≤ d, let ψ(G, k) be the least integer k ≤ k′ ≤ d such
that there exists a total k-dominating set D for which |N(v) ∩ D| ≤ k′ for all v ∈ V . The quantity ψ(G, k)
is well-defined due to the fact that V is a total k-dominating set in G for all k ≤ d. Let ψ(d, k) be the
maximum over all d-regular graphs G of ψ(G, k).

Lemma 4.9. For any 1 ≤ k ≤ d and sufficiently large d,

ψ(d, k) ≤ max{3k, 31 ln d}.

Because this is only a slight modification to an analogous lemma in Addario-Berry et al. [1], we omit its
proof here and mention that it is an application of the Symmetric Lovász Local Lemma.

Proof of Theorem 4.8. We first remark that if G is a subgraph of G′, then ϕts(G) ≤ ϕts(G
′). As any graph

of maximum degree d is contained in a d-regular graph, it therefore suffices to show the theorem holds for
d-regular graphs. We hereafter assume G = (V,E) is d-regular and d is large enough to apply Lemma 4.9.
Let k = d− t. We will show that ϕts(G) ≤ dψ(d, k) + 2, which proves the theorem.

By the definition of ψ(d, k), if d is sufficiently large, there is a set D such that k ≤ |N(v) ∩ D| ≤ ψ(d, k)
for any v ∈ V . Fix such a set D and form the auxiliary graph H as follows: let H have vertex set D and let
uv be an edge of H precisely if u and v have graph distance at most two in G. As |N(v) ∩ D| ≤ ψ(d, k) for
any v ∈ V , H has maximum degree at most dψ(d, k).

To colour G, we first properly colour H by using the greedy algorithm to choose colours from the set
{1, . . . , dψ(d, k) + 1} and then assign each vertex v of D the colour it received in H. We next assign colour
dψ(d, k) + 2 to all vertices of V \ D. Since k ≤ |N(v) ∩ D| for any v ∈ V , colour dψ(d, k) + 2 appears at
most d − k = t times in any neighbourhood. Since the vertices of H at distance two have distinct colours,
each colour other than dψ(d, k) + 2 appears at most once in any neighbourhood. So the resulting colouring
is t-frugal.

Furthermore, given any path P = v1v2v3v4 of length three in G, either two consecutive vertices vi, vi+1

of P are not in D (in which case vi and vi+1 have the same colour and P is not alternating), or two vertices
vi, vi+2 are in D (in which case vi and vi+2 have different colours and P is not alternating). Thus, the above
colouring is a t-frugal star colouring of G using at most dψ(d, k) + 2 colours.

What we have demonstrated in this section is, first, that the asymptotic behaviour of the acyclic proper
t-frugal chromatic number and the proper t-frugal star chromatic number can be determined up to at most
a logarithmic multiple. Second, we showed that the asymptotic behaviour of the acyclic t-frugal chromatic
number (respectively, t-frugal star chromatic number) of graphs of bounded maximum degree seems closely
tied to that of their acyclic t-improper chromatic number (respectively, t-improper star chromatic number)
as long as t ≥ 3 (respectively, t ≥ 2). Tables 3 and 4 give a summary of the bounds we have obtained.
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Table 3: Asymptotic bounds for χt
a(d) and χt

s(d).

χta(d) χts(d)

t lower upper lower upper

1 Ω
(
d2
)

O
(
d2
)

Ω
(
d2
)

O
(
d2
)

2 Ω
(
d3/2

)
O
(
d3/2

)
Ω
(
d3/2

)
O(d3/2)3 Ω

(
d4/3

)
O(d4/3) Ω

(
d3/2

(ln d)1/2

)
≥ 4 Ω

(
d4/3

(ln d)1/3

)

Table 4: Asymptotic bounds for ϕt
a(d) and ϕt

s(d).

ϕta(d) ϕts(d)

d− t lower upper lower upper

d− 1 Ω
(
d2
)

O
(
d2
)

Ω
(
d2
)

O
(
d2
)

d− 2 Ω
(
d3/2

)
O
(
d3/2

)
Ω
(
d3/2

)

O(d3/2)

d− 3 Ω
(
d4/3

)

O(d4/3)

Ω
(

(d−t)3/2
(ln d)1/2

)
ω(d3/4(ln d)1/4) Ω

(
(d−t)4/3
(ln d)1/3

)
ω(d2/3(ln d)1/3)

Ω (d)
Ω (d)

O(d1/2)
O((d− t)d)

O(d1/3) O((d− t)d)

O(ln d) O(d ln d) O(d ln d)

0 1 1 1 1
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5. Concluding remarks and open problems

We believe the following conjecture to be natural in light of the results we obtained in Section 3.

Conjecture 5.1. ϕt(d) ∼ dd1+1/t/te for any t = t(d) ≥ 1.

This conjecture essentially holds for t = ω(ln d), but, when t = O(ln d), the upper and lower bounds that
we outlined are separated by at least a constant multiple.

In Section 4, by dropping the condition that the colourings be proper, we demonstrated what seems to
be a close qualitative link between acyclic t-frugal and acyclic t-improper colourings for t large enough. We
believe that there is a threshold for t above which the acyclic t-frugal chromatic number is asymptotically
equal to the acyclic t-improper chromatic number. Indeed, we conjecture the following.

Conjecture 5.2. ϕta(d) = Θ(imt
a(d)) for any t = t(d) ≥ 1 unless t ∈ {1, 2}. Analogously, ϕts(d) = Θ(imt

s(d))
for any t = t(d) ≥ 1 unless t = 1.

We point out here that, in the setting of planar graphs, such an asymptotic “convergence” does not occur.
The acyclic t-improper chromatic number of planar graphs is bounded by a constant (namely, 5); whereas,
the t-frugal chromatic number of a planar graph G is at least ∆(G)/t and thus can be arbitrarily large. It
remains interesting to determine, for fixed t,

ϕtplanar(d) := max{ϕt(G) | G is planar and ∆(G) ≤ d}

and, in particular, what is the smallest constant K ≥ 1 such that ϕtplanar(d) ≤ Kd/t + o(d). That such a
constant K exists is implied by work of Amini, Esperet and van den Heuvel [6].

Another interesting line of inquiry is to determine the threshold for t above which ϕt(d) is asymptotically
smaller than χt(d), or ϕta(d) (respectively, ϕts(d)) is asymptotically smaller than χta(d) (respectively, χts(d)).
Theorem 3.6 implies that the answer in the former case is in the range t = Θ(ln d/ ln ln d). Theorems 4.6
and 4.8 suggest that t, for the latter question, is in the range such that d − t = Ω(d1/3/(ln d)1/3) and
d− t = o(d) (respectively, d− t = Ω(d1/2/(ln d)1/2) and d− t = o(d)).
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