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circular chromatic number

Close connections to homomorphisms, fractional chromatic
number, traffic lights, ...

X—1<xc<x
f

always rational

Many interesting questions; consult survey by Zhu (2001).
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circular choosability

A natural list variant for x. was introduced by Mohar (2003) and
Zhu (2005).

Fix t. Each vertex v is assigned a list L(v) C {0,...,p— 1}
satisfying [L(v)| > t- q. If, ¥(p, q), every such assignment admits

a (p, g)-colouring, colours chosen only from the lists, then we say
G is circularly t-choosable.

cch(G) :=inf{t > 1: G is circularly t-choosable}
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Optimises over all (p, g)-colourings:

Xc(G) = inf{g : G admits a (p, q)—colouring}
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circular choosability: Zhu (2005)

cch > xc and cch > ch -1
but cch £ ch
in particular, cch(Ky ,«) > (2 —2k/m)k
cch <2.6*

cch <2ch?77? cch attained???
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upper bound for planar graphs

Define
7 :=sup{cch(G) : G is planar }

Mohar asked the following: is 4 < 7 <57
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upper bound for planar graphs

Proposition
Let G be a near triangulation with outer face C. Let L be a
(p, q)-list-assignment such that

4g—1 ifveC
>
(Lv)l = { 8qg — 3 otherwise

Then any L-(p, q)-precolouring of two adjacent vertices of C can
be extended to a L-(p, q)-colouring of G.
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upper bound for planar graphs

Theorem
Every planar graph is circularly 8-choosable, i.e. T < 8.

Proposition

Let G be a near triangulation with outer face C. Let L be a
(p, q)-list-assignment such that

4g—1 ifveC
>
(V) = { 8qg — 3 otherwise

Then any L-(p, q)-precolouring of two adjacent vertices of C can
be extended to a L-(p, q)-colouring of G.
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planar graphs with high cch

Voigt (1993) described a non-4-choosable planar graph.
We show that there exist *circularly* non-(6 — £)-choosable graphs.

Theorem
For any n > 2, there exists planar G, with cch(G,) > 6 — %

Our examples are relatively simple.

In the next frames, we denote t = 6 — %
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planar graphs of prescribed girth

7(k) := sup{cch(G) : G is planar and has girth > k}.

7]8]9]10] k>11 |
upper [ 8 |6 |45 4] 4 [33] 3] 3
lower | 6 | 4|31 3|22 |2

Table: Bounds for 7(k).
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planar graphs of prescribed girth with high cch

Theorem
To(k) > 2+ %5 for all integers k > 3.

Recall

Mad(G) = max{2||\l/_:((g))| tHC G}

Euler's formula and girth k = Mad < 2 + ﬁ
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planar graphs of prescribed girth

7(k) := sup{cch(G) : G is planar and has girth > k}.

7]8]9]10] k>11 |
upper [ 8 |6 |45 4] 4 [33] 3] 3
lower | 6 | 4|31 3|22 |2

Table: Bounds for 7(k).
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outerplanar graphs with prescribed girth

Define

To(k) := sup{cch(G) : G is outerplanar and has girth > k}.

Theorem
To(k) = 2+ 25 for all integers k > 3.
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