

χς	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

circular chromatic number

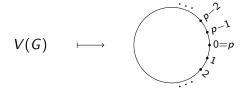
Introduced by Vince (1988).

Optimises over all (p, q)-colourings:

χc	cch	$6 \le au \le 8$	au(k)	$\tau_o(k)$

Introduced by Vince (1988).

Optimises over all (p, q)-colourings:

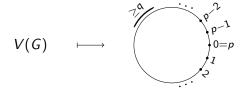


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

χc	cch	$6 \le au \le 8$	au(k)	$\tau_o(k)$

Introduced by Vince (1988).

Optimises over all (p, q)-colourings:



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

χς	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

Introduced by Vince (1988).

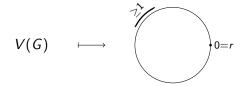
Optimises over all (p, q)-colourings:

$$\chi_c(G) := \inf \left\{ rac{p}{q} : G \text{ admits a } (p,q) \text{-colouring}
ight\}$$

χς	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

Introduced by Vince (1988).

Optimises over all *r*-circular colourings:



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

χc	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

Introduced by Vince (1988).

Optimises over all r-circular colourings:

 $\chi_c(G) = \inf \{r : G \text{ admits an } r \text{-circular colouring} \}$

Close connections to homomorphisms, fractional chromatic number, traffic lights, ...

Close connections to homomorphisms, fractional chromatic number, traffic lights, ...

$$\chi - 1 < \chi_c \le \chi$$

Close connections to homomorphisms, fractional chromatic number, traffic lights, ...

$$\chi - 1 < \chi_c \leq \chi$$
 \uparrow
always rational

Close connections to homomorphisms, fractional chromatic number, traffic lights, ...

$$\begin{array}{c} \chi-1 < \chi_c \leq \chi \\ \Uparrow \\ \text{always rational} \end{array}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Many interesting questions; consult survey by Zhu (2001).

χc	cch	$6 \leq au \leq 8$	au(k)	$ au_o(k)$
circular	choosability			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

χς	cch	$6 \le au \le 8$	au(k)	$ au_o(k)$
circular	[·] choosability			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fix t.

χς	cch	$6 \leq au \leq 8$	au(k)	$ au_o(k)$
circular	^c choosability			

(日) (日) (日) (日) (日) (日) (日) (日)

Fix t. Each vertex v is assigned a list $L(v) \subset \{0, \dots, p-1\}$ satisfying $|L(v)| \ge \underline{t \cdot q}$.

χς	cch	$6 \le au \le 8$	au(k)	$ au_o(k)$
circular	choosability			

Fix t. Each vertex v is assigned a list $L(v) \subset \{0, \ldots, p-1\}$ satisfying $|L(v)| \ge \underline{t \cdot q}$. If, $\forall (p, q)$, every such assignment admits a (p, q)-colouring, colours chosen only from the lists, then we say G is circularly t-choosable.

χς	cch	$6 \le au \le 8$	au(k)	$\tau_o(k)$
	 1.11.			

circular choosability

A natural list variant for χ_c was introduced by Mohar (2003) and Zhu (2005).

Fix t. Each vertex v is assigned a list $L(v) \subset \{0, \ldots, p-1\}$ satisfying $|L(v)| \ge \underline{t \cdot q}$. If, $\forall (p, q)$, every such assignment admits a (p, q)-colouring, colours chosen only from the lists, then we say G is circularly t-choosable.

 $\operatorname{cch}(G) := \inf\{t \ge 1 : G \text{ is circularly } t\text{-choosable}\}$

χc	cch	$6 \le au \le 8$	au(k)	$ au_o(k)$

Optimises over all (p, q)-colourings:

$$\chi_c(G) := \inf \left\{ rac{p}{q} : G \text{ admits a } (p,q) \text{-colouring}
ight\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 χ_c

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

circular choosability: Zhu (2005)

 $\operatorname{cch} \geq \chi_c$ and $\operatorname{cch} \geq \operatorname{ch} -1$

 χ_c

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

circular choosability: Zhu (2005)

$\mathsf{cch} \geq \chi_{\mathsf{c}} \text{ and } \mathsf{cch} \geq \mathsf{ch} - 1$

$\textbf{but} \hspace{0.1 cch} \texttt{cch} \not\leq \texttt{ch}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

circular choosability: Zhu (2005)

 $\operatorname{cch} \geq \chi_c$ and $\operatorname{cch} \geq \operatorname{ch} -1$

 $\textbf{but} \hspace{0.1 cch} \texttt{cch} \not\leq \texttt{ch}$

in particular, $\operatorname{cch}(K_{k,m^k}) \ge (2 - 2k/m)k$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

circular choosability: Zhu (2005)

 $\operatorname{cch} \geq \chi_c$ and $\operatorname{cch} \geq \operatorname{ch} -1$

but cch $\not\leq$ ch

in particular, $\operatorname{cch}(K_{k,m^k}) \ge (2 - 2k/m)k$

 $\mathsf{cch} \leq 2 \cdot \delta^*$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

circular choosability: Zhu (2005)

 $\operatorname{cch} \geq \chi_c$ and $\operatorname{cch} \geq \operatorname{ch} -1$

but cch $\not\leq$ ch

in particular, $\operatorname{cch}(K_{k,m^k}) \geq (2 - 2k/m)k$

 $\mathsf{cch} \leq 2 \cdot \delta^*$

 $\operatorname{cch} \leq 2 \operatorname{ch} ???$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

circular choosability: Zhu (2005)

$$\mathsf{cch} \geq \chi_{m{c}}$$
 and $\mathsf{cch} \geq \mathsf{ch} - 1$

but cch $\not\leq$ ch

in particular, $\operatorname{cch}(K_{k,m^k}) \geq (2 - 2k/m)k$

$$\mathsf{cch} \leq 2 \cdot \delta^*$$

 $cch \le 2 ch ???$ cch attained???

Define

$$\tau := \sup{\operatorname{cch}(G) : G \text{ is planar }}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Define

$$\tau := \sup\{\operatorname{cch}(G) : G \text{ is planar } \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mohar asked the following: is $4 \le \tau \le 5$?

χε	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

upper bound for planar graphs

Recall the (now) classical theorem of Thomassen (1994). Theorem Every planar graph is 5-choosable.

χς	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

Recall the (now) classical theorem of Thomassen (1994).

Theorem Every planar graph is 5-choosable.

Proposition

Let G be a near triangulation with outer face C. Let L be a list-assignment such that

$$|L(v)| \ge \begin{cases} 3 & \text{if } v \in C \\ 5 & \text{otherwise} \end{cases}$$

Then any
be extended to aprecolouring of two adjacent vertices of C can
colouring of G.

.

Proposition

Let G be a near triangulation with outer face C. Let L be a list-assignment such that

$$|L(v)| \ge \begin{cases} 3 & \text{if } v \in C \\ 5 & \text{otherwise} \end{cases}$$

Then any
be extended to aprecolouring of two adjacent vertices of C can
colouring of G.

•

Proposition

Let G be a near triangulation with outer face C. Let L be a (p,q)-list-assignment such that

$$|L(v)| \ge \begin{cases} 4q-1 & \text{if } v \in C \\ 8q-3 & \text{otherwise} \end{cases}$$

Then any L-(p, q)-precolouring of two adjacent vertices of C can be extended to a L-(p, q)-colouring of G.

.

Theorem

Every planar graph is circularly 8-choosable, i.e. $\tau \leq 8$.

Proposition

Let G be a near triangulation with outer face C. Let L be a (p,q)-list-assignment such that

$$|L(v)| \ge \begin{cases} 4q-1 & \text{if } v \in C \\ 8q-3 & \text{otherwise} \end{cases}$$

Then any L-(p, q)-precolouring of two adjacent vertices of C can be extended to a L-(p, q)-colouring of G.

٠

χς	cch	$6 \leq au \leq 8$	$\tau(k)$	$\tau_o(k)$

Voigt (1993) described a non-4-choosable planar graph. We show that there exist *circularly* non- $(6 - \varepsilon)$ -choosable graphs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

χc	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

Voigt (1993) described a non-4-choosable planar graph. We show that there exist *circularly* non- $(6 - \varepsilon)$ -choosable graphs.

Theorem

For any $n \ge 2$, there exists planar G_n with $\operatorname{cch}(G_n) \ge 6 - \frac{1}{n}$.

χς	cch	$6 \le au \le 8$	au(k)	$\tau_o(k)$

Voigt (1993) described a non-4-choosable planar graph. We show that there exist *circularly* non- $(6 - \varepsilon)$ -choosable graphs.

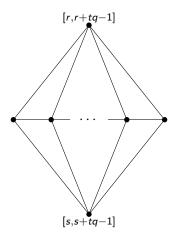
Theorem

For any $n \ge 2$, there exists planar G_n with $\operatorname{cch}(G_n) \ge 6 - \frac{1}{n}$.

Our examples are relatively simple.

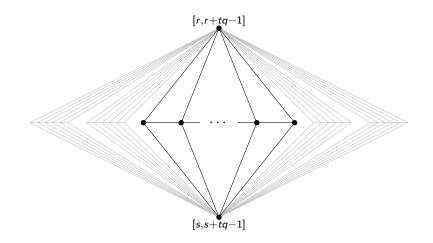
In the next frames, we denote $t = 6 - \frac{1}{n}$.

χc	cch	$6 \leq au \leq 8$	au(k)	$ au_o(k)$

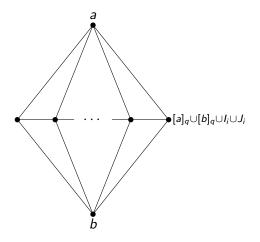


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

χς	cch	$6 \leq au \leq 8$	au(k)	$ au_o(k)$



χς	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$



χc	cch	$6 \leq au \leq 8$	au(k)	$ au_o(k)$

planar graphs of prescribed girth

 $\tau(k) := \sup{\operatorname{cch}(G) : G \text{ is planar and has girth } \geq k}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

χς	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

planar graphs of prescribed girth

 $\tau(k) := \sup{\operatorname{cch}(G) : G \text{ is planar and has girth } \geq k}.$

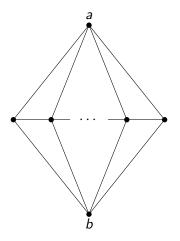
girth	3	4	5	6	7	8	9	10	$k \ge 11$
upper	8	6	$4\frac{1}{2}$	4	4	$3\frac{1}{3}$	3	3	$2 + \frac{4}{2 (k-2)/4 }$
lower	6	4	$3\frac{1}{3}$	3	$2\frac{4}{5}$	$2\frac{2}{3}$	$2\frac{4}{7}$	$2\frac{1}{2}$	$2 + \frac{4}{k-2}$

Table: Bounds for $\tau(k)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

χς	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

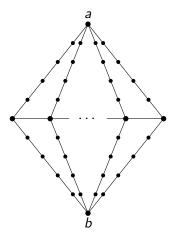
planar graphs of prescribed girth with high cch



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

χς	cch	$6 \le au \le 8$	au(k)	$\tau_o(k)$
				1

planar graphs of prescribed girth with high cch



・ロト ・聞ト ・ヨト ・ヨト

3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

planar graphs of prescribed girth with high cch

Theorem $\tau_o(k) \ge 2 + \frac{4}{k-2}$ for all integers $k \ge 3$.

χς	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

planar graphs of prescribed girth with high cch

Theorem $\tau_o(k) \ge 2 + \frac{4}{k-2}$ for all integers $k \ge 3$.

$$\mathsf{Mad}(G) := \max\left\{ \frac{2|E(H)|}{|V(G)|} : H \subset G \right\}$$

planar graphs of prescribed girth with high cch

Theorem $\tau_o(k) \ge 2 + \frac{4}{k-2}$ for all integers $k \ge 3$.

$$\mathsf{Mad}(G) := \max\left\{ rac{2|E(H)|}{|V(G)|} : H \subset G
ight\}$$

Euler's formula and girth $k \Longrightarrow Mad < 2 + \frac{4}{k-2}$

χς	cch	$6 \leq au \leq 8$	au(k)	$\tau_o(k)$

planar graphs of prescribed girth

 $\tau(k) := \sup{\operatorname{cch}(G) : G \text{ is planar and has girth } \geq k}.$

girth	3	4	5	6	7	8	9	10	$k \ge 11$
upper	8	6	$4\frac{1}{2}$	4	4	$3\frac{1}{3}$	3	3	$2 + \frac{4}{2 (k-2)/4 }$
lower	6	4	$3\frac{1}{3}$	3	$2\frac{4}{5}$	$2\frac{2}{3}$	$2\frac{4}{7}$	$2\frac{1}{2}$	$2 + \frac{4}{k-2}$

Table: Bounds for $\tau(k)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

outerplanar graphs with prescribed girth

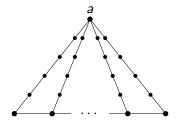
Define

 $\tau_o(k) := \sup{\operatorname{cch}(G) : G \text{ is outerplanar and has girth } \geq k}.$

Theorem $\tau_o(k) = 2 + \frac{2}{k-2}$ for all integers $k \ge 3$.

χc	cch	$6 \leq au \leq 8$	au(k)	$ au_o(k)$

outerplanar graphs with prescribed girth



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

χς	cch	$6 \le au \le 8$	au(k)	$ au_o(k)$

- Havet, F., R.J. Kang, T. Müller, and J.-S. Sereni, *Circular choosability*, submitted yesterday.
- Mohar, B., Choosability for the circular chromatic number, 2003. http://www.fmf.unilj.si/mohar/Problems/P0201ChoosabilityCircular.html
- Thomassen, C., *Every planar graph is* 5-*choosable*, J. Combin. Theory Ser. B **62**:180–181, 1994.
- Vince, A., *Star chromatic number*, J. Graph Theory **12**:551–559, 1988.
- Voigt, M., *List colourings of planar graphs*, Discrete Math. **120**:215-219, 1993.
- Zhu, X., Circular chromatic number: a survey, Discrete Math. 229:371–410, 2001.
- Zhu, X., Circular choosability of graphs, J. Graph Theory
 48:210–218 2005.