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χc(G ) = inf {r : G admits an r -circular colouring}
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A natural list variant for χc was introduced by Mohar (2003) and
Zhu (2005).

Fix t. Each vertex v is assigned a list L(v) ⊂ {0, . . . , p − 1}
satisfying |L(v)| ≥ t · q. If, ∀(p, q), every such assignment admits

a (p, q)-colouring, colours chosen only from the lists, then we say
G is circularly t-choosable.

cch(G ) := inf{t ≥ 1 : G is circularly t-choosable}
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upper bound for planar graphs

Recall the (now) classical theorem of Thomassen (1994).

Theorem
Every planar graph is 5-choosable.

Proposition

Let G be a near triangulation with outer face C. Let L be a

(p, q)-

list-assignment such that

|L(v)| ≥
{

3 if v ∈ C
5 otherwise

.

Then any

L-(p, q)-

precolouring of two adjacent vertices of C can
be extended to a

L-(p, q)-

colouring of G.
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Recall the (now) classical theorem of Thomassen (1994).

Theorem
Every planar graph is circularly 8-choosable, i.e. τ ≤ 8.

Proposition

Let G be a near triangulation with outer face C. Let L be a
(p, q)-list-assignment such that

|L(v)| ≥
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8q − 3 otherwise
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planar graphs with high cch

Voigt (1993) described a non-4-choosable planar graph.
We show that there exist *circularly* non-(6− ε)-choosable graphs.

Theorem
For any n ≥ 2, there exists planar Gn with cch(Gn) ≥ 6− 1

n .

Our examples are relatively simple.

In the next frames, we denote t = 6− 1
n .
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planar graphs of prescribed girth

τ(k) := sup{cch(G ) : G is planar and has girth ≥ k}.

girth 3 4 5 6 7 8 9 10 k ≥ 11

upper 8 6 41
2 4 4 31

3 3 3 2 + 4
2b(k−2)/4c

lower 6 4 31
3 3 24

5 22
3 24

7 21
2 2 + 4

k−2

Table: Bounds for τ(k).
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Theorem
τo(k) ≥ 2 + 4

k−2 for all integers k ≥ 3.

Recall

Mad(G ) := max

{
2|E (H)|
|V (G )|

: H ⊂ G

}

Euler’s formula and girth k =⇒ Mad < 2 + 4
k−2
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outerplanar graphs with prescribed girth

Define

τo(k) := sup{cch(G ) : G is outerplanar and has girth ≥ k}.

Theorem
τo(k) = 2 + 2

k−2 for all integers k ≥ 3.
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