Circular choosability of planar graphs

F. Havet1 R.J. Kang2 T. Müller2 J.-S. Sereni1

1MASCOTTE, I3S-CNRS/INRIA/UNSA
2Department of Statistics, Oxford University

21 July 2006
Horizons of Combinatorics
Balatonalmádi
circular chromatic number

Introduced by Vince (1988).

Optimises over all \((p, q)\)-colourings:
circular chromatic number

Introduced by Vince (1988).

Optimises over all \((p, q)\)-colourings:

\[
V(G) \rightarrow \tau(k)
\]
circular chromatic number

Introduced by Vince (1988).

Optimises over all \((p, q)\)-colourings:

\[V(G) \rightarrow \]
circular chromatic number

Introduced by Vince (1988).

Optimises over all \((p, q)\)-colourings:

\[
\chi_c(G) := \inf \left\{ \frac{p}{q} : G \text{ admits a } (p, q)\text{-colouring} \right\}
\]
circular chromatic number

Introduced by Vince (1988).

Optimises over all \(r \)-circular colourings:
circular chromatic number

Introduced by Vince (1988).

Optimises over all \(r \)-circular colourings:

\[
\chi_c(G) = \inf \{ r : G \text{ admits an } r \text{-circular colouring} \}
\]
circular chromatic number

Close connections to homomorphisms, fractional chromatic number, traffic lights, . . .
circular chromatic number

Close connections to homomorphisms, fractional chromatic number, traffic lights, . . .

\[\chi - 1 < \chi_c \leq \chi \]
circular chromatic number

Close connections to homomorphisms, fractional chromatic number, traffic lights, ...

\[\chi - 1 < \chi_c \leq \chi \]

always rational
circular chromatic number

Close connections to homomorphisms, fractional chromatic number, traffic lights, . . .

\[\chi - 1 < \chi_c \leq \chi \]
\[\uparrow \]
always rational

Many interesting questions; consult survey by Zhu (2001).
A natural list variant for χ_c was introduced by Mohar (2003) and Zhu (2005).
A natural list variant for χ_c was introduced by Mohar (2003) and Zhu (2005).

Fix t.
circular choosability

A natural list variant for χ_c was introduced by Mohar (2003) and Zhu (2005).

Fix t. Each vertex v is assigned a list $L(v) \subset \{0, \ldots, p - 1\}$ satisfying $|L(v)| \geq t \cdot q$.
A natural list variant for χ_c was introduced by Mohar (2003) and Zhu (2005).

Fix t. Each vertex v is assigned a list $L(v) \subset \{0, \ldots, p - 1\}$ satisfying $|L(v)| \geq t \cdot q$. If, $\forall (p, q)$, every such assignment admits a (p, q)-colouring, colours chosen only from the lists, then we say G is circularly t-choosable.
A natural list variant for χ_c was introduced by Mohar (2003) and Zhu (2005).

Fix t. Each vertex v is assigned a list $L(v) \subset \{0, \ldots, p - 1\}$ satisfying $|L(v)| \geq t \cdot q$. If, $\forall (p, q)$, every such assignment admits a (p, q)-colouring, colours chosen only from the lists, then we say G is circularly t-choosable.

$$cch(G) := \inf\{ t \geq 1 : G \text{ is circularly } t\text{-choosable} \}$$
circular chromatic number

Optimises over all \((p, q)\)-colourings:

\[
\chi_c(G) := \inf \left\{ \frac{p}{q} : G \text{ admits a (p, q)-colouring} \right\}
\]
circular choosability: Zhu (2005)

\[\text{cch} \geq \chi_c \text{ and } \text{cch} \geq \text{ch} - 1 \]
circular choosability: Zhu (2005)

\[c_{\text{ch}} \geq \chi_c \text{ and } c_{\text{ch}} \geq \chi - 1 \]

\textbf{but} \; c_{\text{ch}} \not\leq \chi
<table>
<thead>
<tr>
<th>χ_c</th>
<th>cch</th>
<th>$6 \leq \tau \leq 8$</th>
<th>$\tau(k)$</th>
<th>$\tau_0(k)$</th>
</tr>
</thead>
</table>

Circular Choosability: Zhu (2005)

\[
cch \geq \chi_c \text{ and } cch \geq ch - 1
\]

but \(cch \nsubseteq ch \)

In particular, \(cch(K_{k,m^k}) \geq (2 - 2k/m)k \)
circular choosability: Zhu (2005)

\[\text{cch} \geq \chi_c \text{ and } \text{cch} \geq \text{ch} - 1 \]

\[\text{but } \text{cch} \not\leq \text{ch} \]

in particular, \(\text{cch}(K_{k,m^k}) \geq (2 - 2k/m)k \)

\[\text{cch} \leq 2 \cdot \delta^* \]
| χ_c | cch $| 6 \leq \tau \leq 8$ | $\tau(k)$ | $\tau_o(k)$ |
|---------|----------------|----------|------------|

circular choosability: Zhu (2005)

cch $\geq \chi_c$ and cch $\geq \chi - 1$

but cch $\not\leq \chi$

in particular, cch(K_k,m^k) $\geq (2 - 2k/m)k$

$cch \leq 2 \cdot \delta^*$

$cch \leq 2 \chi$???
circular choosability: Zhu (2005)

\[cch \geq \chi_c \quad \text{and} \quad cch \geq \text{ch} - 1 \]

\textbf{but} \quad cch \ngeq \text{ch}

in particular, \[cch(K_{k,m^k}) \geq (2 - 2k/m)k \]

\[cch \leq 2 \cdot \delta^* \]

\[cch \leq 2 \text{ch} \quad ??? \quad \text{cch attained} ??? \]
upper bound for planar graphs

Define

\[\tau := \sup\{ \text{cch}(G) : G \text{ is planar} \} \]
upper bound for planar graphs

Define

\[\tau := \sup\{ \text{cch}(G) : G \text{ is planar} \} \]

Mohar asked the following: is \(4 \leq \tau \leq 5 \)?
Recall the (now) classical theorem of Thomassen (1994).

Theorem

Every planar graph is 5-choosable.
upper bound for planar graphs

Recall the (now) classical theorem of Thomassen (1994).

Theorem
Every planar graph is 5-choosable.

Proposition
Let G be a near triangulation with outer face C. Let L be a list-assignment such that

$$|L(v)| \geq \begin{cases}
3 & \text{if } v \in C \\
5 & \text{otherwise}
\end{cases}.$$

Then any precolouring of two adjacent vertices of C can be extended to a colouring of G.
Recall the (now) classical theorem of Thomassen (1994).

Theorem

Every planar graph is 5-choosable.

Proposition

Let G be a near triangulation with outer face C. Let L be a list-assignment such that

$$|L(v)| \geq \begin{cases}
3 & \text{if } v \in C \\
5 & \text{otherwise}
\end{cases}.$$

Then any precolouring of two adjacent vertices of C can be extended to a colouring of G.

Proposition

Let G be a near triangulation with outer face C. Let L be a (p, q)-list-assignment such that

$$|L(v)| \geq \begin{cases} 4q - 1 & \text{if } v \in C \\ 8q - 3 & \text{otherwise} \end{cases}.$$

Then any L-(p, q)-precolouring of two adjacent vertices of C can be extended to a L-(p, q)-colouring of G.

upper bound for planar graphs
upper bound for planar graphs

Theorem
Every planar graph is circularly 8-choosable, i.e. $\tau \leq 8$.

Proposition
Let G be a near triangulation with outer face C. Let L be a (p, q)-list-assignment such that

$$|L(v)| \geq \begin{cases} 4q - 1 & \text{if } v \in C \\ 8q - 3 & \text{otherwise} \end{cases}.$$

Then any L-(p, q)-precolouring of two adjacent vertices of C can be extended to a L-(p, q)-colouring of G.

Voigt (1993) described a non-4-choosable planar graph. We show that there exist *circularly* non-$(6 - \varepsilon)$-choosable graphs.
Voigt (1993) described a non-4-choosable planar graph. We show that there exist *circularly* non-$(6 - \varepsilon)$-choosable graphs.

Theorem

*For any $n \geq 2$, there exists planar G_n with $cch(G_n) \geq 6 - \frac{1}{n}$.***
Voigt (1993) described a non-4-choosable planar graph. We show that there exist *circularly* non-\((6 - \varepsilon)\)-choosable graphs.

Theorem

For any \(n \geq 2 \), *there exists planar* \(G_n \) *with* \(\text{cch}(G_n) \geq 6 - \frac{1}{n} \).

Our examples are relatively simple.

In the next frames, we denote \(t = 6 - \frac{1}{n} \).
\begin{tabular}{|c|c|c|c|}
\hline
χ_c & cch & $6 \leq \tau \leq 8$ & $\tau(k)$ & $\tau_0(k)$ \\
\hline
\end{tabular}

planar graphs with high cch

\[[r, r + tq - 1] \]

\[[s, s + tq - 1] \]
planar graphs with high cch

\[\chi_c \quad \text{cch} \quad 6 \leq \tau \leq 8 \quad \tau(k) \quad \tau_0(k) \]
planar graphs with high cch
planar graphs of prescribed girth

\(\tau(k) := \sup\{\text{cch}(G) : G \text{ is planar and has girth } \geq k\} \).
planar graphs of prescribed girth

\[\tau(k) := \sup \{ \text{cch}(G) : G \text{ is planar and has girth } \geq k \}. \]

<table>
<thead>
<tr>
<th>girth</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>(k \geq 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>upper</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>(2 + \frac{4}{2 \lceil (k-2)/4 \rceil})</td>
</tr>
<tr>
<td>lower</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(2 + \frac{4}{k-2})</td>
</tr>
</tbody>
</table>

Table: Bounds for \(\tau(k) \).
<table>
<thead>
<tr>
<th>χ_c</th>
<th>cch</th>
<th>$6 \leq \tau \leq 8$</th>
<th>$\tau(k)$</th>
<th>$\tau_o(k)$</th>
</tr>
</thead>
</table>

planar graphs of prescribed girth with high cch
planar graphs of prescribed girth with high cch
Theorem

\[\tau_0(k) \geq 2 + \frac{4}{k-2} \text{ for all integers } k \geq 3. \]
<table>
<thead>
<tr>
<th>λ_c</th>
<th>cch</th>
<th>$6 \leq \tau \leq 8$</th>
<th>$\tau(k)$</th>
<th>$\tau_o(k)$</th>
</tr>
</thead>
</table>

planar graphs of prescribed girth with high cch

Theorem

$\tau_o(k) \geq 2 + \frac{4}{k-2}$ for all integers $k \geq 3$.

Recall

$$\text{Mad}(G) := \max \left\{ \frac{2|E(H)|}{|V(G)|} : H \subset G \right\}$$
planar graphs of prescribed girth with high cch

Theorem
\[\tau_o(k) \geq 2 + \frac{4}{k-2} \quad \text{for all integers } k \geq 3. \]

Recall
\[
\text{Mad}(G) := \max \left\{ \frac{2|E(H)|}{|V(G)|} : H \subset G \right\}
\]

Euler’s formula and girth \(k \) \(\implies \) \(\text{Mad} < 2 + \frac{4}{k-2} \)
\(\chi_c \)	cch	6 \(\leq \tau \leq 8 \)	\(\tau(k) \)	\(\tau_0(k) \)
planar graphs of prescribed girth

\[\tau(k) := \sup \{ \text{cch}(G) : G \text{ is planar and has girth} \geq k \}. \]

<table>
<thead>
<tr>
<th>girth</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>(k \geq 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>upper</td>
<td>8</td>
<td>6</td>
<td>(4 \frac{1}{2})</td>
<td>4</td>
<td>4</td>
<td>(3 \frac{1}{3})</td>
<td>3</td>
<td>3</td>
<td>(2 + \frac{4}{2 \lfloor (k-2)/4 \rfloor})</td>
</tr>
<tr>
<td>lower</td>
<td>6</td>
<td>4</td>
<td>(3 \frac{1}{3})</td>
<td>3</td>
<td>2 (\frac{4}{5})</td>
<td>(2 \frac{2}{3})</td>
<td>(2 \frac{4}{7})</td>
<td>(2 \frac{1}{2})</td>
<td>(2 + \frac{4}{k-2})</td>
</tr>
</tbody>
</table>

Table: Bounds for \(\tau(k) \).
Define

$$\tau_o(k) := \sup\{\text{cch}(G) : G \text{ is outerplanar and has girth } \geq k\}.$$

Theorem

$$\tau_o(k) = 2 + \frac{2}{k-2} \text{ for all integers } k \geq 3.$$
<table>
<thead>
<tr>
<th>χ_c</th>
<th>cch</th>
<th>$6 \leq \tau \leq 8$</th>
<th>$\tau(k)$</th>
<th>$\tau_0(k)$</th>
</tr>
</thead>
</table>

outerplanar graphs with prescribed girth
<table>
<thead>
<tr>
<th>χ_c</th>
<th>cch</th>
<th>$6 \leq \tau \leq 8$</th>
<th>$\tau(k)$</th>
<th>$\tau_0(k)$</th>
</tr>
</thead>
</table>

