Improper colouring of unit disk graphs

Frédéric Havet¹ Ross Kang² Jean-Sébastien Sereni¹

¹MASCOTTE, I3S-CNRS/INRIA/UNSA

²Department of Statistics, Oxford University

15 September 2005, ICGT '05

Outline

Introduction

Improper colouring Unit disk graphs

Improper colouring of UDGs is hard "Easy proof" "Hard proof"

Further work

Distinct weighted improper colouring Unit interval graphs Approximation algorithms?

```
Improper colouring
```

We consider a generalisation of proper vertex colouring:

Definition

G is *k*-improper *I*-colourable if V(G) can be partitioned into at most *I* colour classes each of which induces a graph with max degree at most *k*.

 $\chi^k(G) \equiv$ smallest *I* such that *G* is *k*-improper *I*-colourable

Background for improper colouring

1. Cowen, Cowen and Woodall (1986)

- introduced concept
- characterisation for planar graphs
- 2. Cowen, Goddard and Jeserum (1997)
 - studied complexity
 - higher surfaces
- 3. Eaton and Hull (1999) and Škrekovski (1999)
 - near characterisation of improper choosability for planar graphs
 - Q: Is every planar graph 1-improper 4-choosable?

Unit disk graphs

Definition

Given *n* points (in \mathbb{R}^2) and d > 0, we centre disks of diameter *d* at each point and connect two points if their disks intersect. Such graphs are called unit disk graphs (or UDGs).

Background for (colouring) unit disk graphs

1. Hale (1980)

- Iinked radio channel assignment and colouring of UDGs
- 2. Clark, Colbourn and Johnson (1990)
 - tabulated complexity of classical problems (e.g. INDEP SET, DOM SET, CLIQUE)
 - observed links between PLANAR and UD
- 3. Gräf, Stumpf and Weißenfels (1998)
 - ▶ showed that UD *I*-COLOURABILITY ($I \ge 3$) is NP-C
 - alternative approximation algorithm for colouring UDGs

Summary of complexity for planar v. UD graphs

	planar graphs	UDGs
HAMILTONIAN CIRCUIT	NP-complete	NP-complete
DOMINATING SET	NP-complete	NP-complete
INDEPENDENT SET	NP-complete	NP-complete
MAX CLIQUE	Polynomial	Polynomial
CHROMATIC NUMBER	NP-complete	NP-complete
k-IMPROPER CHROMATIC NUMBER	NP-complete	NP-complete

Improper colouring of UDGs is hard

UD *k*-IMPROPER CHROMATIC NUMBER Input: integer *I* and unit disk graph *G* Question: is *G k*-improper *I*-colourable?

This problem is NP-complete

- "Easy proof" considers k-improper 3-colourability of weighted induced subgraphs of triangular lattice
- "Hard proof" considers k-improper l-colourability for all possible values k, l

"Easy proof"

Figure: An example of a weighted induced subgraph of the triangular lattice

"Easy proof"

- McDiarmid and Reed (2000)
 - proper 3-colourability of such graphs is NP-complete
 - reduction from 3-colourability of planar graphs of max degree 4
- For k-improper 3-colourability, multiply each node by k + 1

"Easy proof"

Figure: Gadgets used for "easy proof"

"Hard proof"

The "easy proof" does not give the complete picture:

- k-improper 2-colourability $(k \ge 1)$ of UDGs?
 - reduction from planar k-improper 2-colourability
 - box-orthogonal embeddings
- ▶ k-improper *l*-colourability ($k \ge 0$, $l \ge 4$) of UDGs?
 - reduction from *I*-colourability
 - generalisation of Gräf et al

For both of these, the answer is NP-complete.

Figure: Gadget for k-improper I-colourability reduction

Further work

Distinct weighted improper colouring

Given a weighted UDG, suppose that the colours assigned to each vertex must all be distinct?

Unit interval graphs

- Restriction of UDGs to \mathbb{R}
- Complexity unknown

Approximation algorithms?

 Best known approximation ratio for χ^k is 6 (by taking vertex of max degree)

References

In GoogleTM, enter "Ross Kang" and hit "I'm Feeling Lucky"
Download "transfer paper" (or, if I was diligent, a preprint)