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Introduction Improper colouring

Improper colouring

We consider a generalisation of proper vertex colouring:

Definition
G is k-improper l-colourable if V (G ) can be partitioned into
at most l colour classes each of which induces
a graph with max degree at most k.

χk(G ) ≡ smallest l such that G is k-improper l-colourable
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Introduction Improper colouring

Background for improper colouring

1. Cowen, Cowen and Woodall (1986)
I introduced concept
I characterisation for planar graphs

2. Cowen, Goddard and Jeserum (1997)
I studied complexity
I higher surfaces

3. Eaton and Hull (1999) and Škrekovski (1999)
I near characterisation of improper choosability for planar graphs
I Q: Is every planar graph 1-improper 4-choosable?
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Introduction Unit disk graphs

Unit disk graphs

d

Definition
Given n points (in R2) and d > 0, we centre disks of diameter d at each
point and connect two points if their disks intersect.
Such graphs are called unit disk graphs (or UDGs).
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Introduction Unit disk graphs

Background for (colouring) unit disk graphs

1. Hale (1980)
I linked radio channel assignment and colouring of UDGs

2. Clark, Colbourn and Johnson (1990)
I tabulated complexity of classical problems

(e.g. INDEP SET, DOM SET, CLIQUE)
I observed links between PLANAR and UD

3. Gräf, Stumpf and Weißenfels (1998)
I showed that UD l-COLOURABILITY (l ≥ 3) is NP-C
I alternative approximation algorithm for colouring UDGs
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Introduction Unit disk graphs

Summary of complexity for planar v. UD graphs

planar graphs UDGs

HAMILTONIAN CIRCUIT NP-complete NP-complete
DOMINATING SET NP-complete NP-complete
INDEPENDENT SET NP-complete NP-complete
MAX CLIQUE Polynomial Polynomial
CHROMATIC NUMBER NP-complete NP-complete
k-IMPROPER CHROMATIC

NP-complete NP-complete
NUMBER
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Improper colouring of UDGs is hard

Improper colouring of UDGs is hard

UD k-IMPROPER CHROMATIC NUMBER
Input: integer l and unit disk graph G
Question: is G k-improper l-colourable?

This problem is NP-complete

I “Easy proof” considers k-improper 3-colourability of
weighted induced subgraphs of triangular lattice

I “Hard proof” considers k-improper l-colourability
for all possible values k, l
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Improper colouring of UDGs is hard “Easy proof”

“Easy proof”
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Figure: An example of a weighted induced subgraph of the triangular lattice
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Improper colouring of UDGs is hard “Easy proof”

“Easy proof”

I McDiarmid and Reed (2000)
I proper 3-colourability of such graphs is NP-complete
I reduction from 3-colourability of planar graphs of max degree 4

I For k-improper 3-colourability, multiply each node by k + 1
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Improper colouring of UDGs is hard “Easy proof”

“Easy proof”
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Figure: Gadgets used for “easy proof”
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Improper colouring of UDGs is hard “Hard proof”

“Hard proof”

The “easy proof” does not give the complete picture:

I k-improper 2-colourability (k ≥ 1) of UDGs?
I reduction from planar k-improper 2-colourability
I box-orthogonal embeddings

I k-improper l-colourability (k ≥ 0, l ≥ 4) of UDGs?
I reduction from l-colourability
I generalisation of Gräf et al

For both of these, the answer is NP-complete.
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Improper colouring of UDGs is hard “Hard proof”

Figure: Gadget for k-improper l-colourability reduction
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Further work

Further work

Distinct weighted improper colouring

I Given a weighted UDG, suppose that the colours assigned to each
vertex must all be distinct?

Unit interval graphs

I Restriction of UDGs to R
I Complexity unknown

Approximation algorithms?

I Best known approximation ratio for χk is 6
(by taking vertex of max degree)
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