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INDUCED MATCHINGS IN SUBCUBIC PLANAR GRAPHS∗
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Abstract. We present a linear-time algorithm that, given a planar graph with m edges and
maximum degree 3, finds an induced matching of size at least m/9. This is best possible.
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1. Introduction. For a graph G = (V,E), an induced matching is a set M ⊆ E
of edges such that the graph induced by the endpoints of M is a disjoint union of
edges. In other words, a shortest path in G between any two edges in M has length
at least 2. In this article, we prove that every planar graph with maximum degree
3 has an induced matching of size at least |E(G)|/9 (which is best possible), and we
give a linear-time algorithm that finds such an induced matching.

The problem of computing the size of a largest induced matching was introduced
in 1982 by Stockmeyer and Vazirani [15] as a variant of the maximum matching
problem. They proposed it as the “risk-free” marriage problem: find the maximum
number of married couples such that no married person is compatible with a married
person other than her/his spouse. Recently, the induced matching problem has been
used to model the capacity of packet transmission in wireless ad hoc networks, under
interference constraints [2].

In contrast to the maximum matching problem, as shown by Stockmeyer and
Vazirani, the maximum induced matching problem is NP-hard even for quite a re-
stricted class of graphs: bipartite graphs of maximum degree 4. Other classes in
which this problem is NP-hard include planar bipartite graphs and line graphs. De-
spite these discouraging negative findings, there is a large body of work showing that
the maximum induced matching number can be computed in polynomial time in other
classes of graphs, e.g., chordal graphs, cocomparability graphs, asteroidal-triple free
graphs, and graphs of bounded cliquewidth. Consult the survey article of Duckworth,
Manlove, and Zito [4] for references to these results.

Since our main focus in this paper is the class of planar graphs of maximum degree
3, we point out that Lozin [10] showed the maximum induced matching problem to
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be NP-hard for this class; on the other hand, the problem admits a polynomial-time
approximation scheme for this class [4].

There have been recent efforts to determine the parameterized complexity of the
maximum induced matching problem. In general, the problem of deciding whether
there is an induced matching of size k is W[1]-hard with respect to k [13]. It is even
W[1]-hard for the class of bipartite graphs, as shown by Moser and Sikdar [12]. There-
fore, the maximum induced matching problem is unlikely to be in the class of fixed-
parameter tractable problems (FPT). Consult the monograph of Niedermeier [14] for
a recent detailed account of fixed-parameter algorithms. On the positive side, Moser
and Sikdar showed that the problem is in FPT (and even has a linear kernel) for
the class of planar graphs as well as for the class of bounded degree graphs. No-
tably, by examining a greedy algorithm, they showed that for subcubic graphs (that
is, graphs of maximum degree at most 3), the maximum induced matching problem
has a problem kernel of size at most 26k [12]. Furthermore, Kanj et al. [9], using
combinatorial methods to bound the size of a largest induced matching in twinless
planar graphs, contributed an explicit bound of 40k on kernel size for the general
planar maximum induced matching problem; this was subsequently improved to 28k
by Erman et al. [5]. (A graph is twinless if it contains no pair of vertices both having
the same neighborhood.)

We provide a result similar in spirit to the last-mentioned results. In particular,
we promote the use of a structural approach to derive explicit kernel size bounds
for planar graph classes. Our main result relies on graph properties proved using
a discharging procedure. The discharging method was developed to establish the
famous Four Color Theorem.

Theorem 1. There is a linear-time algorithm that, given as input a planar graph
of maximum degree 3 with m edges, outputs an induced matching of size at least m/9.

Let us note two direct corollaries before justifying a corollary concerning explicit
kernel size bounds.

Corollary 2. Every planar graph of maximum degree 3 with m edges has an
induced matching of size at least m/9.

Corollary 3. Every 3-regular planar graph with n vertices has an induced
matching of size at least n/6.

Corollary 4. The problem of determining whether a subcubic planar graph has
an induced matching of size at least k has a problem kernel of size at most 9k. The
problem of determining whether a 3-regular planar graph has an induced matching of
size at least k has a problem kernel of size at most 6k.

Proof. Here is the kernelization: take as input G = (V,E); if k ≤ |E|/9, then
answer “yes” and produce an appropriate matching by way of the algorithm guaran-
teed by Theorem 1; otherwise, |E| < 9k, and we have obtained a problem kernel with
fewer than 9k edges. A similar argument demonstrates a problem kernel of size at
most 6k for 3-regular planar graphs.

In Corollaries 2 and 3, our result gives lower bounds on the maximum induced
matching number for subcubic or 3-regular planar graphs that are best possible: con-
sider the disjoint union of multiple copies of the triangular prism. See Figure 1.

The condition on maximum degree in Corollary 2 cannot be weakened: the disjoint
union of multiple copies of the octahedron is a 4-regular planar graph with m edges
that has no induced matching with more than m/12 edges. See Figure 2. Also, the
condition on planarity cannot be dropped: the disjoint union of multiple copies of the
graph in Figure 3 is a subcubic graph with m edges that has no induced matching
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. . .

Fig. 1. A 3-regular planar graph with n vertices, m = 3n/2 edges, and no induced matching of
size more than n/6 = m/9.

. . .

Fig. 2. A 4-regular planar graph with m edges (and n = m/2 vertices) and no induced matching
of size more than m/12 (= n/6).

Fig. 3. A subcubic graph with no induced matching of size 2.

with more than m/10 edges.

There has been considerable interest in the induced matching problem due to its
connection with the strong chromatic index. A strong edge k-coloring of G is a proper
k-coloring of the edges such that no edge is adjacent to two edges of the same color,
i.e., a partition of the edge set into k induced matchings. If G has m edges and admits
a strong edge k-coloring, then a largest induced matching in G has size at least m/k.
Thus, Theorem 1 is related to problems surrounding the long-standing Erdős–Nešetřil
conjecture, which concerns the extremal behavior of the strong chromatic index for
bounded degree graphs (cf. Faudree et al. [6, 7], Chung et al. [3]).

In particular, our work lends support to a conjecture of Faudree et al. [7] that every
planar graph of maximum degree 3 is strongly edge 9-colorable. This conjecture has an
earlier origin: it is implied by one case of a thirty-year-old conjecture of Wegner [16],
asserting that the square of a planar graph with maximum degree 4 can be 9-colored.
(Observe that the line graph of a planar graph with maximum degree 3 is a planar
graph with maximum degree 4.) Independently, Andersen [1] and Horák, He, and
Trotter [8] demonstrated that every subcubic graph has a strong edge 10-coloring,
which implies that every subcubic graph with m edges has an induced matching of
size at least m/10.

For graphs with larger maximum degree, Faudree et al. [7, Theorem 10] observed
using the Four Color Theorem that every planar graph of maximum degree Δ with m
edges admits a strong edge (4Δ+ 4)-coloring and thus contains an induced matching
of size at least m/(4Δ + 4). They also observed that the disjoint union of multiple
copies of the graph in Figure 4 is a planar graph of maximum degree Δ with m edges
that has no induced matching with more than m/(4Δ− 4) edges. Narrowing the gap
between these bounds for induced matchings in graphs of maximum degree Δ ≥ 4 is
left for future work.

The remainder of this paper is organized as follows. We describe the linear-
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. . ....

Fig. 4. A planar graph of maximum degree Δ with no induced matching of size 2.

time algorithm in section 3. The main structural result on which this algorithm
relies is provided in section 4: the details of the discharging procedure are given
in subsection 4.1, and we analyze the structures guaranteed by this procedure in
subsection 4.2. Before continuing, we introduce some necessary terminology.

2. Notation and preliminaries. We remind the reader that a plane graph is
a planar graph for which an embedding in the plane is fixed. The algorithm that
we shall present in section 3 does not need any information about the embedding of
the input graph. However, later on, Lemmas 9 and 10 do make use of any particular
embedding of the graph under consideration. Throughout this paper, G will be a
subcubic planar graph with vertex set V and edge set E, with |V | = n and |E| = m.
In cases when we have also fixed the embedding, we will denote the set of faces by F .

We assume the standard convention that a vertex and face (respectively, cycle)
are called incident if the vertex lies on the face (respectively, cycle).

A vertex of degree d is called a d-vertex. A vertex is an (�d)-vertex if its degree
is at most d and an (�d)-vertex if its degree is at least d. The notions of d-face,
(�d)-face, (�d)-face, d-cycle, (�d)-cycle, and (�d)-cycle are defined analogously as
for the vertices, where the degree of a face or cycle is the number of edges along it,
with the exception that a cut-edge on a face is counted twice. Let deg(v), respectively,
deg(f), denote the degree of vertex v, respectively, face f .

Given u, v ∈ V , the distance dist(u, v) between u and v in G is the length (in
edges) of a shortest path from u to v. Given two subgraphs G1, G2 ⊆ G, the distance
dist(G1, G2) between G1 and G2 is defined as the minimum distance dist(v1, v2) over
all vertex pairs (v1, v2) ∈ V (G1)× V (G2).

Note that another way to say that M ⊆ E is an induced matching is that

dist(e, f) ≥ 2 for all distinct e, f ∈ M.

For a set E′ ⊆ E of edges we will set

(1) Ψ(E′) := {e ∈ E : dist(e, E′) < 2}.
Given v ∈ V , let N(v) denote the set of vertices adjacent to v, and for k ∈ N let

Nk(v) denote the set of vertices at distance at most k from v. For a subgraph H ⊆ G,
we will set Nk(H) :=

⋃
v∈V (H) N

k(v).

For a subgraph H ⊆ G, we will also use the notation ΨH , NH , Nk
H to refer to the

analogous sets restricted to H .
Two distinct cycles or faces are adjacent if they share at least one edge. Let

C1, . . . , Ck be a collection of cycles or faces. We say that C1 and C2 are in sequence
(through e1) if there exists a path eAe1eB (ei are edges) along C1 such that only
e1 is also part of C2. We say that C1, . . . , Ck are in sequence if there are vertices
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v1
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Fig. 5. Three faces in sequences and a double 4-face.

Fig. 6. An edge subset (in bold) that is good, but not minimally good.

v0, . . . , vk and edges e1, . . . , ek−1 such that v0 · · · vk is a path, vi is an endpoint of ei
for i ∈ {1, . . . , k−1}, and Ci and Ci+1 are in sequence through ei for i ∈ {1, . . . , k−1}.
A double 4-face refers to two 4-faces in sequence. See Figure 5.

3. The algorithm. Our result will rely on building up the desired induced
matching by augmenting it iteratively each time by up to five edges. We say that
a set of edges E′ ⊆ E is good if E′ is an induced matching, 1 ≤ |E′| ≤ 5, and
|Ψ(E′)| ≤ 9|E′|, with Ψ as defined by (1). We will want E′ to be minimally good, i.e.,
so that it is good and no proper subset of E′ is good. See Figure 6.

Theorem 5. Every subcubic planar graph with at least one edge contains a good
set of edges.

Theorem 5 follows immediately from Lemmas 9 and 10 in section 4 below, which
are proved using structural arguments. It will be illustrative to give the main approach
for the algorithm in a direct proof of Corollary 2, using Theorem 5, before justifying
the linear running time claimed in Theorem 1.

Proof of Corollary 2. Theorem 5 allows us to adopt a greedy approach for building
up the induced matching. We start from M = ∅ and H = G. At each iteration, we
find a minimally good E′ in H and then augment M by E′ and delete ΨH(E′) from
H . Removing ΨH(E′) from H ensures that any edge moved from H to M at a
later iteration is compatible with the edges of E′, i.e., that M is maintained as an
induced matching. Since we delete only edges, H is subcubic and planar throughout
the process. The theorem then guarantees that we may iterate until H is the edgeless
graph. By the definition of a good set of edges—in particular, that Ψ is at most nine
times the number of edges in the set—the matching M at the end of the process must
have size at least |E|/9.

The algorithm uses exactly the above approach; however, we need to be more
careful to ensure that the running time is linear. For this, we require the following
brief observation.

Lemma 6. If E′ ⊆ E is minimally good, then 2 ≤ dist(e, f) ≤ 15 for all distinct
e, f ∈ E′.

Proof. That dist(e, f) ≥ 2 for all distinct e, f ∈ E′ follows from the fact that E′ is
an induced matching. Let us now note that no E′′ ⊆ E′ can exist with dist(e, f) ≥ 4
for all e ∈ E′′, f ∈ E′ \ E′′. This is because otherwise Ψ(E′′) ∩ Ψ(E′ \ E′′) = ∅,
which implies that |Ψ(E′)| = |Ψ(E′′)| + |Ψ(E′ \ E′′)| and at least one of E′′ and
E′ \ E′′ must be good, contradicting that E′ is minimally good. We can then write
E′ = {e1, e2, e3, e4, e5} with dist(ei, {e1, . . . , ei−1}) ≤ 3 for all i. This shows that for
any e, f ∈ E′ there is a path of length at most 15 between an endpoint of e and an
endpoint of f . (Note that the distance is not necessarily at most 12, because we may
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Initialize as follows.

Q := V (in some arbitrary order), M := ∅, and H := G.

While Q is nonempty, iterate the following.

Letting v0 denote the beginning element of Q,

1. if v0 is isolated, then remove it from Q;

2. else, check for a minimally good set of edges E′ such that v0 is the endpoint
of some edge of E′, and

2a. if such an E′ does not exist, then move v0 to the end of Q,

2b. else, remove the vertices of N20
H (E′) from Q and replace them at the

beginning of Q in some arbitrary order, then set M := M ∪ E′ and
H := H \ΨH(E′).

Fig. 7. An algorithm that, given a subcubic planar graph G = (V, E), generates an induced
matching M in G of size at least |E|/9.

need to use up to three of the edges ei in a shortest path between e and f .)
We now present our algorithm formally and then argue that its time complexity

is linear. For convenience, we adopt the random access machine (RAM) model of
computation. (See, for instance, section 2.2 of [11] for a detailed description of the
RAM model.) We may assume that the algorithm takes as input an adjacency list
for G = (V,E), i.e., an array with an entry for each vertex v, each of which contains
a list of pointers to the (up to three) neighbors of v. If G is instead given as a list
of edges or in a |V | × |V | adjacency matrix (which is a rather inefficient means of
storing a bounded degree graph), then we can first perform a routine conversion to
an adjacency list in time that is linear in the size of the input, and thus the overall
time complexity to output the desired induced matching remains linear in the input
size.

The algorithm examines the vertices of H (i.e., of G) one at a time according to
a queue Q. We store Q by means of a doubly linked list each element of which is
doubly linked to its corresponding vertex in H . Each element of Q stores a pointer to
the corresponding vertex in H as well as pointers to the next and previous elements
in Q, and we maintain two special pointers to the beginning and end elements of
Q; the graph H is stored in an adjacency list, except that each entry stores an extra
pointer to its corresponding element in Q. This ensures that the operations of deleting
arbitrary elements of H or Q and inserting such elements at the beginning or the end
of Q all take constant time. Our algorithm is described in Figure 7 and uses a more
refined version of the greedy approach taken in the proof of Corollary 2. Theorem 1
follows immediately from the following.

Theorem 7. Given as input a subcubic planar graph G = (V,E), the algorithm
described in Figure 7 outputs in M an induced matching of G of size at least |E|/9 in
linear time.

Proof. As shown in the proof of Corollary 2, Theorem 5 implies that the greedy
approach produces a matching of the promised size. And so the algorithm must
terminate. It remains only to show that the running time of the algorithm is linear.

Let us first show that each of steps 1, 2, 2a, and 2b of the algorithm can be
performed in constant time. (Steps 1 and 2a are obvious.)

The check for a suitable E′ at the beginning of step 2 can be done in constant
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time: by Lemma 6, we need only consider sets E′ of up to five edges such that each
edge e ∈ E′ has at least one endpoint at distance at most 16 from v0. Hence, all
vertices incident to edges of ΨH(E′) will be within distance 18 from v0. Thus, to find
a minimally good E′ with at least one edge incident to v0, we need only examine the
subgraph H [N18

H (v0)]. Now, this subgraph has fewer than 3 · 218 = O(1) vertices, and
it can be determined in constant time from the adjacency list data structure for H .
(We can read in constant time which are the neighbors of v0, then in constant time
which are the neighbors of the neighbors, and so on, until depth 18.) Since H [N18

H (v0)]
has constant size, we can clearly search for a set E′ of the required form in constant
time.

For step 2b, since the set N20
H (E′) has constant size, we can in constant time

determine the vertices of N20
H (E′) and move them to the beginning of Q. Similarly,

we can remove an edge uv from the adjacency list for H in constant time, since we
need only update the entries for u and v (and each entry contains a list of constant
size). Thus, removing ΨH(E′) from H can also be done in constant time.

For the rest of the proof, it will be convenient to index the different iterations
of the while loop by a “time parameter” t ∈ {1, 2, . . .}. Let H(t), respectively, Q(t),
denote the state of H , respectively, Q, at the start of iteration t.

It suffices to show that there are only O(|V |) iterations. We do this by showing
that each vertex u may be the beginning element of Q a bounded number of times.
To this end, fix an arbitrary vertex u ∈ V (G) and let t1 < t2 < · · · < tN be those iter-
ations in which u is at the beginning of the queue Q(t). (Observe that the algorithm
deletes u from H in iteration tN .) We assert that the following holds.

Claim 8. For each i ∈ {1, . . . , N − 2}, there is an iteration t ∈ {ti, . . . , ti+1 − 1}
in which at least one edge of N21

H(t)(u) is deleted from H(t).

Proof of Claim 8. If in iteration ti a minimally good E′ is found (one of whose
edges is incident to u), then step 2b is taken and the statement is clearly satisfied.
So we may assume that in iteration ti no such minimally good E′ is found. Thus, in
iteration ti we move u to the end of Q by step 2a.

Next observe that, if in some iteration t ∈ {ti+1, . . . , ti+1 − 1} a minimally good
E′ is found with u ∈ N20

H(t)(E
′), then at least one edge of N21

H(t)(u) is removed. So we
may assume that this is not the case so that, in particular, u is not replaced at the
beginning of Q by step 2b during any iteration t ∈ {ti, . . . , ti+1 − 1}.

Let us write Q(ti+1) = (v0 = u, v1, . . . , vk), and let us consider an arbitrary index
� ∈ {1, . . . , k}. Since u was not replaced at the beginning of the queue during any
iteration in {ti, . . . , ti+1 − 1} and v� is behind u in iteration ti+1, there must be at
least one iteration t ∈ {ti, . . . , ti+1 − 1} in which v� was first in the queue and was
moved to the end by step 2a. Let s ∈ {ti, . . . , ti+1 − 1} be the last iteration before
ti+1 in which v� was moved to the end of the queue. Since v� remained behind u in
the queue during each iteration in {s + 1, . . . , ti+1 − 1}, in none of these iterations
was a minimally good E′ found with v� ∈ N20

H(t)(E
′). So, in particular, no edges of

N18
H(s)(v�) were deleted in the iterations t ∈ {s, . . . , ti+1 − 1}. This implies that

N18
H(ti+1)

(v�) = N18
H(s)(v�).

As noted previously, we can determine from H [N18
H (v�)] whether there is a min-

imally good E′ with one edge incident to v�. It thus follows that there is no such
minimally good E′ incident to v� in H(ti+1); otherwise, step 2a would not have been
taken in iteration s. Since � ∈ {1, . . . , k} was arbitrary, there is in fact no minimally
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good E′ in H(ti+1) at all. But this contradicts Theorem 5! (Since i + 1 ≤ N − 1,
there is at least one iteration after ti+1 in which u occurs at the beginning of the
queue. Hence u is not isolated at time ti+1—otherwise it would get deleted—and in
particular H(ti+1) has at least one edge.)

It follows that either step 2b was taken in iteration ti, or there was an iteration
t ∈ {ti + 1, . . . , ti+1 − 1} in which step 2b was taken and some edge of N21

H(t)(u) was

deleted from H(t). This concludes the proof of Claim 8.

By Claim 8, the vertex u occurs as the first element of the queue Q in at most

N ≤ |E(N21
G (u))|+ 2 ≤ 3 · 221 + 2 = O(1)

iterations of the while loop. Since u was arbitrary, the while loop is iterated at most
|V | · (3 · 221 + 2) = O(|V |) times, which concludes the proof of Theorem 7.

We comment here that our distance estimate in Lemma 6 is sufficient for arguing
that the time complexity is linear without knowing the full details of Theorem 5.
As we have just seen, the upper bound 15 in Lemma 6 leads to a bound on the
number of iterations of the while loop of at most (3 · 221 + 2) · |V |. However, a closer
examination of the proof of Theorem 5 (and the claims used to prove Lemma 9 in
particular) demonstrates that we are in fact guaranteed a good set such that no two
of its edges are at distance greater than 6. This implies that indeed the number of
iterations is at most (3 · 212 + 2) · |V |, an improvement of a factor approximately 29.
Furthermore, if we consider only neighborhoods at smaller distances, we will obtain
a similar improvement on the number of computations within each iteration. This
suggests that our algorithm could reasonably be implemented.

4. The proof of Theorem 5. Theorem 5 is a direct consequence of the following
two lemmas. Recall that a plane graph is a planar graph with a fixed embedding in
the plane. Fixing an embedding has the advantage that we can speak unambiguously
of the faces of the graph. Although it was difficult to develop, we do not claim that
the following collection of twelve structures is optimal. As is often the case with
discharging methods, later improvements may be found. Roughly speaking, what is
most important about this collection for induced matchings is that the structures are
locally sparse.

Lemma 9. Let G be a subcubic plane graph. If G contains one of the following
structures, then G contains a good set of edges:

(C1) a 1-vertex;
(C2) a 2-vertex incident to an (�6)-cycle or 7-face;
(C3) a 2-vertex at distance at most 2 from another 2-vertex;
(C4) a 2-vertex at distance at most 2 from an (�5)-cycle;
(C5) a 3-cycle adjacent to an (�7)-cycle;
(C6) a 4- or 5-cycle in sequence with a 5- or 6-cycle;
(C7) a 3-cycle at distance 1 from an (�5)-cycle;
(C8) a double 4-face adjacent to an (�7)-cycle;
(C9) a 4-cycle, (�8)-cycle, and 4-cycle in sequence;
(C10) a 4-cycle, 7-cycle, and 5-cycle in sequence;
(C11) a 3-cycle or double 4-face at distance at most 2 from a 3-cycle

or double 4-face; and
(C12) a double 4-face at distance 1 from a 5-cycle.

Lemma 10. Every subcubic plane graph with at least one edge contains one of
the structures (C1)–(C12) listed in Lemma 9.
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The proof of Lemma 9 is a rather lengthy case analysis, which we postpone to
subsection 4.2. We now prove Lemma 10 by means of a discharging procedure.

4.1. The proof of Lemma 10. Suppose that G is a subcubic plane graph with
at least one edge, and that G does not contain any of the structures (C1)–(C12).
Without loss of generality, we may assume that G has no isolated vertices. (Note also
that the removal of isolated vertices does not affect whether a graph has a good set
or not.)

We will obtain a contradiction by using the discharging method, which is com-
monly used in graph coloring. The rough idea of this method is as follows: each
vertex and face of G is assigned an initial “charge.” Here the charges are chosen
such that their total sum is negative. We then apply certain redistribution rules (the
discharging procedure) for exchanging charge between the vertices and faces. These
redistribution rules are chosen such that the total sum of charges is invariant. How-
ever, we will prove by a case analysis that if G contains none of (C1)–(C12), then each
vertex and each face will have nonnegative charge after the discharging procedure has
finished. This contradicts that the total sum of the charges is negative. Hence, G
must have at least one of (C1)–(C12).

Initial charge. For every vertex v ∈ V , we define the initial charge ch(v) to
be 2 deg(v) − 6, while for every face f ∈ F , we define the initial charge ch(f) to be
deg(f) − 6. We claim that this way the total sum of initial charges is negative. To
see this, note that by Euler’s formula 6|E| − 6|V | − 6|F | = −12. It follows from∑

v∈V deg(v) = 2|E| = ∑
f∈F deg(f) that

−12 = (4|E| − 6|V |) + (2|E| − 6|F |) =
∑

v∈V

(2 deg(v)− 6) +
∑

f∈F

(deg(f)− 6).

Discharging procedure. To describe a discharging procedure, it suffices to fix
how much each vertex or face sends to each of the other vertices and faces. In our
case, vertices and (�6)-faces do not send any charge. The (�7)-faces redistribute
their charge as follows:

Each (�7)-face f sends
(R1) 1 to each incident 2-vertex,
(R2) 1 to each adjacent 3-face,
(R3) 1 to each adjacent 4-face in a double 4-face if f and the two 4-faces are in

sequence,
(R4) 1/2 to each other adjacent 4-face, and
(R5) 1/5 to each adjacent 5-face.

When we say that an (�7)-face sends a charge to an adjacent face or incident vertex,
we mean that the charge is sent as many times as these elements are adjacent or
incident to each other. For v ∈ V and f ∈ F , we denote their final charges—that is,
the charges after the redistribution—by ch∗(v) and ch∗(f), respectively.

In the following analysis of the final charges of vertices and faces, we will often
say that something holds “by (Cx)” for some x ∈ {1, . . . , 12}. By this we of course
mean “by the absence of (Cx).”

Final charge of 2-vertices. The initial charge of a 2-vertex is −2. By (C2) it
is adjacent to two (�8)-faces. Hence, it receives 2 by (R1), so that its final charge is
0.

Final charge of (�3)-vertices. An (�3)-vertex has nonnegative initial charge.
Since it sends no charge, its final charge is nonnegative.



1392 ROSS J. KANG, MATTHIAS MNICH, AND TOBIAS MÜLLER

Final charge of 3-faces. A 3-face has initial charge −3. By (C5) it is adjacent
only to (�8)-faces. Hence, it receives a charge of 3 by (R2), and its final charge is 0.

Final charge of 4-faces. Let f be a 4-face; then its initial charge is ch(f) = −2.
If f is not in a double 4-face, then by (C5) and (C6) f is adjacent only to (�7)-faces
and receives a charge of 1/2 from each by (R4); thus, ch∗(f) = 0. Otherwise, if f is
in a double 4-face, then f is adjacent to exactly one 4-face and three (�8)-faces by
(C8). Thus, f receives a charge of 1 from an (�8)-face by (R3) and charges of 1/2
from the other two by (R4), and so ch∗(f) = 0.

Final charge of 5-faces. Let f be a 5-face; then its initial charge is ch(f) = −1.
Since f is not adjacent to any (�6)-faces by (C5) and (C6), it receives a charge of
1/5 from each adjacent face by (R5), and so ch∗(f) = 0.

Final charge of 6-faces. The initial charge of a 6-face is 0, and it sends no
charge, so its final charge is 0.

Final charge of 7-faces. Let f be a 7-face; then its initial charge is ch(f) = 1.
By (C5), (C8), (C9), and (C10), f is adjacent to no 3-faces, no double 4-faces, and
at most two 4- or 5-faces. Thus, f sends a charge of at most 2 · 1/2 by (R4) or (R5),
and so ch∗(f) ≥ 0.

Final charge of 8-faces. Let f be an 8-face; then its initial charge is ch(f) = 2.
We consider several cases.

First, suppose that f is incident to a 2-vertex. By (C3), f is incident to at most
two 2-vertices. However, if f is incident to exactly two 2-vertices (and hence by (R1)
sends a charge of 1 to each), then by (C2) and (C4) f is adjacent only to (�6)-faces;
thus, ch∗(f) = 0. So assume that f is incident to exactly one 2-vertex v to which f
sends charge 1 by (R1). By (C4), faces that are adjacent to f but at distance at most
2 from v must be (�6)-faces. There remain two other faces adjacent to f , which are
adjacent to each other. If one of these is a 3-face (sent charge 1 by (R2)), then the
other is an (�8)-face by (C5) so that ch∗(f) = 0. If both are 4-faces, then neither is
in sequence with f and some other 4-face by (C8), and so both receive 1/2 from f by
(R4) so that ch∗(f) = 0. If one is a 4-face and the other is a 5-face, then by (C8) the
4-face is not in a double 4-face, and each is sent charge at most 1/2 by (R4) and (R5)
so that again ch∗(f) ≥ 0. If one is a 4-face (sent charge at most 1 by (R3) or (R4))
and the other is an (�6)-face, then ch∗(f) ≥ 0. Finally, if both are (�5)-faces, then
f sends to each a charge of at most 1/5 by (R5), and ch∗(f) > 0. We may hereafter
assume that f is not incident to a 2-vertex.

Second, suppose that f is adjacent to a 3-face f ′. By (C5) and (C7), faces that
are adjacent to f but at distance at most 1 from f ′ must be (�6)-faces. There remain
three other faces adjacent to f , call them f1, f2, f3, in sequence. By (C7), (C8), (C9),
(C11), and (C12), if one of these is sent charge 1 by (R2) or (R3), then the others are
(�6)-faces so that ch∗(f) ≥ 0. Furthermore, if two of these are in the same double
4-face (each sent 1/2 by (R4)), say f1 and f2, then f3 is an (�6)-face and ch∗(f) ≥ 0.
We can thus suppose that none of f1, f2, f3 is a 3-face or part of a double 4-face. By
(C9), at most one of f1, f2, f3 is a 4-face, and by (C6) at most two are 5-faces. Hence,
f sends total charge at most 1 + 1/2 + 2/5 < 2 by (R4) and (R5), and ch∗(f) > 0.
We may hereafter assume that f is not adjacent to a 3-face.

Third, suppose that f is adjacent to a 4-face f ′. Assume that f ′ is part of a
double 4-face and f ′′ is its 4-face partner. By (C6), (C8), (C9), (C11), and (C12),
all faces, with the possible exception of f ′′, that are adjacent to f but at distance at
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most 1 from f ′ must be (�6)-faces. There remain at most three other faces adjacent
to f , and we can proceed as in the previous case. Thus f ′ is not part of a double
4-face. It follows by (C9) that, of the faces that are adjacent to f but at distance
at most 1 from f ′, none is a 4-face; furthermore, by (C6), at most two of these are
5-faces. Thus, by (R4) and (R5), in total at most 1/2 + 2/5 < 1 charge is sent to f ′

and these four faces. Again, there remain at most three other faces adjacent to f ,
and we proceed as in the previous paragraph. We may hereafter assume that f is not
adjacent to an (�4)-face.

Finally, by (C6), f is adjacent to at most four 5-faces, and so by (R5) f sends a
total charge of at most 4/5 < 2, and ch∗(f) > 0.

Final charge of (�9)-faces. Let f be an (�9)-face, and let v1e1v2e2v3e3v4e4v5
be a path of four edges along f . Denote by fi the face adjacent to f via the edge ei.
We first show that the combined charge sent through these four edges (counting half
of the charge contributed to the end-vertices v1, v5) is at most 3/2.

First, suppose that at least one of the vi is a 2-vertex. By (C3), at most two are
2-vertices. If two are, then, without loss of generality, either v1 and v4 are 2-vertices,
or v1 and v5 are 2-vertices. In both cases, f1, . . . , f4 are all (�6)-faces by (C4) and
the total charge sent is at most 3/2 (by (R1), except that one contribution is halved).
If exactly one of the vi is a 2-vertex, then without loss of generality, either v1 is a
2-vertex, or one of v2 or v3 is. In the former case, we have by (C4) that f1, f2, and f3
are (�6)-faces and the total charge sent is at most 3/2 (since the (R1) contribution to
v1 is halved and f4 is sent charge at most 1). In the latter case, we have by (C4) that
all four faces are (�6)-faces and the total charge sent is 1 by (R1). We may hereafter
assume that none of the vi is a 2-vertex.

Second, suppose that some fi is a 3-face. By symmetry, there are two cases to
consider: i = 1 or i = 2. In the former case, we have by (C5), (C7), and (C11) that f2
and f3 are both (�6)-faces and f4 is forbidden from being a 3-face or part of a double
4-face, in which case the total charge sent is at most 3/2 (by (R2) and (R4) or (R5)).
In the latter case, we have by (C5) and (C7) that f1, f3, and f4 are (�6)-faces, in
which case the total charge sent is 1 (to f2 by (R2)).

Third, suppose that some fi is part of a double 4-face. Without loss of generality,
there are four subcases to consider: (a) f1 is part of a double 4-face, but f2 is not,
(b) f1 and f2 are part of the same double 4-face, (c) f2 is part of a double 4-face, but
neither f1 nor f3 is, and (d) f2 and f3 are part of the same double 4-face. In case
(a), f1 is sent charge 1 by (R3). By (C6), (C8), and (C11), at most one of f2, f3, f4
is a 4- or 5-face and none is part of a double 4-face, in which case, by (R4) or (R5),
the total charge sent is at most 3/2. In (b), we have by (C8) and (C11) that f3 is
an (�6)-face and f4 is not part of a double 4-face; thus, by (R4) and (R5), the total
charge sent is at most 3/2. In case (c), we have by (C8) that f1, f3 are (�6)-faces
and by (C11) that f4 is not part of a double 4-face (and hence sent charge at most
1/2 by (R4) or (R5)), so that the total charge sent is at most 3/2. In (d), we have by
(C8) that f1, f4 are (�6)-faces, so that by (R4) the total charge sent is 1. In all four
subcases, the total charge sent is at most 3/2.

We now have that none of the vi is a 2-vertex, and none of the fi is a 3-face or
part of a double 4-face. By (C6), not every fi is a 4- or 5-face. Thus, there is one
face sent no charge while each of the others is by (R4) or (R5) sent at most 1/2; the
total charge sent is at most 3/2, completing our proof of the claim.

It remains to complete the analysis of the final charge for f using this claim.
Let us denote the facial cycle by v1e1v2e2v3 · · · vkekv1 and denote by fi the face
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adjacent to f via the edge ei. By “rotating” the labelling, we may assume without
loss of generality that deg(v1) = deg(v2) = 3 and f1 is an (�6)-face, so f1 is sent
no charge. By the claim, halving the contribution to v10, the total charge sent to
f2, . . . , f9 is at most 3. Every face fi, i > 9, receives a charge of at most 1 from f
(including half the charge sent to vi and vi+1). Hence, f sends total charge at most
3 + deg(f)− 9 = deg(f)− 6 = ch(f), and so ch∗(f) ≥ 0.

We have seen that every vertex and every face of G have nonnegative final charge,
which gives the required contradiction and completes the proof.

4.2. The proof of Lemma 9. In this section, we prove Lemma 9 by analyzing
the structures in order, including some intermediate structures. The order of our
analysis is significant. The proofs for the presence of later structures rely in part on
the absence of earlier structures.

We give a figure for each structure. We employ a visual code: a square represents
an (�2)-vertex, a circle represents an (�3)-vertex, a thin solid line represents a present
edge, and a bold solid line indicates membership in a good set. In Table 1, we provide
for convenience a key for matching the claims and figures with the structures.

Throughout this section, we assume G to be a subcubic plane graph.
Claim 11. If G has a 1-vertex, then it contains a good set of edges.

Fig. 8. A 1-vertex.

Proof. If u is a 1-vertex with neighbor v, then E′ = {uv} is a good set as
|Ψ(E′)| ≤ 7. See Figure 8.

Claim 12. If G has two adjacent 2-vertices, then it contains a good set of edges.

Fig. 9. Adjacent 2-vertices.

Proof. If u, v are adjacent 2-vertices, then E′ = {uv} is a good set as |Ψ(E′)| ≤ 7.
See Figure 9.

Claim 13. If G has a 2-vertex on a 3-cycle, then it contains a good set of edges.

Fig. 10. A 2-vertex on a 3-cycle.

Proof. If u is a 2-vertex on 3-cycle uvw, then E′ = {uw} is a good set as
|Ψ(E′)| ≤ 7. See Figure 10.

Claim 14. If G has a 2-vertex on a 4-cycle, then it contains a good set of edges.
Proof. If u is a 2-vertex on 4-cycle uvwx, then E′ = {ux} is a good set as

|Ψ(E′)| ≤ 9. See Figure 11.
Claim 15. If G has two 2-vertices at distance 2, then it contains a good set of

edges.
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Table 1

A key to cross-referencing the claims and figures with the structures.

Claim 11 Figure 8 A 1-vertex. (C1)
Claim 12 Figure 9 Adjacent 2-vertices. (C3)
Claim 13 Figure 10 A 2-vertex on a 3-cycle. (C2)
Claim 14 Figure 11 A 2-vertex on a 4-cycle. (C2)
Claim 15 Figure 12 Two 2-vertices at distance 2. (C3)
Claim 16 Figure 13 A 2-vertex on a 5-cycle. (C2)
Claim 17 Figure 14 A 2-vertex on a 6-cycle. (C2)
Claim 18 Figure 15 A 2-vertex at distance 1 from a 3-cycle. (C4)
Claim 19 Figure 16 A 2-vertex at distance 1 from a 4-cycle. (C4)
Claim 20 Figure 17 A 2-vertex at distance 1 from a 5-cycle. (C4)
Claim 21 Figure 18 A 2-vertex on a 7-face. (C2)
Claim 22 Figure 19 Adjacent 3-cycles. (C5), (C11)
Claim 23 Figure 20 A 3-cycle adjacent to a 4-cycle. (C5), (C8), (C11)
Claim 24 Figure 21 A 3-cycle adjacent to a 5-cycle. (C5)
Claim 25 Figure 22 A 3-cycle adjacent to a 6-cycle. (C5)
Claim 26 Figure 23 A 3-cycle adjacent to a 7-cycle. (C5)
Claim 27 Figure 24 A pair of 4-cycles adjacent along two incident

edges.
Claim 28 Figure 25 A 5-cycle adjacent to a 4-cycle along two inci-

dent edges.
Claim 29 Figure 26 Three 4-cycles in sequence. (C8)
Claim 30 Figure 27 Three 4-cycles that are pairwise in sequence. (C8)
Claim 31 Figure 28 Two 4-cycles and a 5-cycle that are pairwise

in sequence.
Claim 32 Figure 29 Two 4-cycles and a 6-cycle that are pairwise

in sequence.
(C8)

Claim 33 Figure 30 Two 4-cycles and a 7-cycle that are pairwise
in sequence.

(C8)

Claim 34 Figure 31 Two 5-cycles and a 4-cycle that are pairwise
in sequence.

Claim 35 Figure 32 A 4-cycle adjacent to a 5-cycle. (C6), (C8)
Claim 36 Figure 33 Two adjacent 5-cycles. (C6)
Claim 37 Figure 34 A 4-cycle adjacent to a 6-cycle along two inci-

dent edges.
Claim 38 Figure 35 A 4-cycle in sequence with a 6-cycle. (C6), (C8)
Claim 39 Figure 36 A 5-cycle in sequence with a 6-cycle. (C6)
Claim 40 Figure 37 A 2-vertex at distance 2 from a 3-cycle. (C4)
Claim 41 Figure 38 A 2-vertex at distance 2 from a 4-cycle. (C4)
Claim 42 Figure 39 A 2-vertex at distance 2 from a 5-cycle. (C4)
Claim 43 Figure 40 Two 3-cycles at distance 1. (C7), (C11)
Claim 44 Figure 41 A 3-cycle at distance 1 from a 4-cycle. (C7), (C11)
Claim 45 Figure 42 A 3-cycle at distance 1 from a 5-cycle. (C7)
Claim 46 Figure 43 A 5-cycle at distance 1 from a double 4-face. (C12)
Claim 47 Figure 44 A pair of double 4-faces at distance 1. (C11)
Claim 48 Figure 45 A 4-cycle, (�8)-cycle, and 4-cycle in sequence. (C9)
Claim 49 Figure 46 A sequence of 4-cycles such that one of the 4-

cycles is adjacent to a 7-cycle.
(C8)

Claim 50 Figure 47 A 4-cycle, 7-cycle, and 5-cycle in sequence. (C10)
Claim 51 Figure 48 Two 3-cycles at distance 2. (C11)
Claim 52 Figure 49 A 3-cycle at distance 2 from a double 4-face. (C11)
Claim 53 Figure 50 A pair of double 4-faces at distance 2. (C11)

Proof. Let u,w be 2-vertices at distance 2. Let N(u) ∩ N(w) = {v}, and let
N(u) \ {v} = {u′} and N(w) \ {v} = {w′}. Notice that by Claims 13 and 14, vertices
u, u′, w, w′ are distinct. Since v is a 3-vertex by Claim 12, it has a neighbor v′ /∈ {u,w}.
Because G has no 2-vertex on an (�4)-cycle by Claims 13 and 14, v′ is distinct from u′

and w′, and neither u′v′ nor w′v′ is an edge. If u′w′ is an edge, then E′ = {u′w′, vv′}



1396 ROSS J. KANG, MATTHIAS MNICH, AND TOBIAS MÜLLER

Fig. 11. A 2-vertex on a 4-cycle.

Fig. 12. Two 2-vertices at distance 2.

is a good set since |Ψ(E′)| ≤ 18. Otherwise, E′ = {uu′, ww′} is a good set since
|Ψ(E′)| ≤ 17. See Figure 12.

Claim 16. If G has a 2-vertex on a 5-cycle, then it contains a good set of edges.

Fig. 13. A 2-vertex on a 5-cycle.

Proof. Let u be a 2-vertex on a 5-cycle C = uv1v2v3v4. Observe that v1, v2, v3, v4
are 3-vertices, by Claims 12 and 15. By Claims 13 and 14, C has no chords. For
i = 1, 2, 3, let N(vi) \ {u, v1, . . . , v4} = {vi′}. By Claim 14, v1

′ �= v4
′.

(1) If v2
′ = v4

′ and v1
′ = v3

′, then E′ = {v1v1′, v4v4′} is a good set since
|Ψ(E′)| ≤ 15.

(2) Suppose that v2
′ �= v4

′. Then E′ = {uv4, v2v2′} is a good set since |Ψ(E′)| ≤
17. The case that v1

′ �= v3
′ is handled symmetrically.

See Figure 13.
Claim 17. If G has a 2-vertex on a 6-cycle, then it contains a good set of edges.

Fig. 14. A 2-vertex on a 6-cycle.

Proof. Let u be a 2-vertex on a 6-cycle uv1v2v3v4v5. By Claims 14 and 16, neither
v1v3 nor v1v4 can be an edge. Then E′ = {uv1, v3v4} is a good set since |Ψ(E′)| ≤ 17.
See Figure 14.
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Claim 18. If G has a 2-vertex at distance 1 from a 3-cycle, then it contains a
good set of edges.

Fig. 15. A 2-vertex at distance 1 from a 3-cycle.

Proof. Let u be a 2-vertex at distance 1 from a 3-cycle xyz, where ux is an edge.
Then E′ = {ux} is a good set since |Ψ(E′)| ≤ 9. See Figure 15.

Claim 19. If G has a 2-vertex at distance 1 from a 4-cycle, then it contains a
good set of edges.

Fig. 16. A 2-vertex at distance 1 from a 4-cycle.

Proof. Let u be a 2-vertex at distance 1 from a 4-cycle x0x1x2x3, where ux0 is an
edge. By Claim 14, ux2 is not an edge and x2 is a 3-vertex. Let N(x2) \ {x1, x3} =
{x2

′}. By Claim 16, ux2
′ is not an edge. So E′ = {ux0, x2x2

′} is a good set as
|Ψ(E′)| ≤ 17. See Figure 16.

Claim 20. If G has a 2-vertex at distance 1 from a 5-cycle, then it contains a
good set of edges.

Fig. 17. A 2-vertex at distance 1 from a 5-cycle.

Proof. Let u be a 2-vertex at distance 1 from a 5-cycle x0x1x2x3x4, where ux0 is
an edge. By Claim 14, neither ux2 nor ux3 is an edge. Then E′ = {ux0, x2x3} is a
good set since |Ψ(E′)| ≤ 17. See Figure 17.

Claim 21. If G has a 2-vertex on a 7-face, then it contains a good set of edges.

Proof. Let u be a 2-vertex on a 7-face C = uv1v2v3v4v5v6. By Claims 12 and 15,
v1, v2, v5, v6 are 3-vertices. By Claims 13, 14, 16, and 17, C has no chords. For
i = 1, 2, 5, 6, let N(vi) \ {u, v1, . . . , v6} = {vi′}.

(1) If v3 or v4 is a 2-vertex, say v4, by symmetry, then E′ = {uv1, v4v5} is a good
set since |Ψ(E′)| ≤ 16.

For i = 3, 4, let N(vi) \ {v2, . . . , v5} = {vi′}. By Claims 16 and 19, v1
′ �= v5

′ and
v1

′ �= v3
′.

(2) If v2
′v4′ is an edge or v2

′ = v4
′, then since C is a 7-face, it follows from

the Jordan Curve Theorem that v3
′ �= v5

′ and v3
′v5′ is not an edge. Then

E′ = {uv1, v3v3′, v5v5′} is a good set since |Ψ(E′)| ≤ 27. The case in which
v3

′v5′ is an edge or v3
′ = v5

′ is handled similarly.
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Fig. 18. A 2-vertex on a 7-face.

Otherwise, E′ = {uv1, v3v3′, v5v5′} is a good set since |Ψ(E′)| ≤ 27. See Fig-
ure 18.

Claim 22. If G has a pair of adjacent 3-cycles, then it contains a good set of
edges.

Fig. 19. Adjacent 3-cycles.

Proof. If xyz and xyz′ are adjacent 3-cycles, then E′ = {xy} is a good set as
|Ψ(E′)| ≤ 7. See Figure 19.

Claim 23. If G has a 3-cycle adjacent to a 4-cycle, then it contains a good set
of edges.

Fig. 20. A 3-cycle adjacent to a 4-cycle.

Proof. Let xyz be a 3-cycle sharing the edge xy with 4-cycle xuvy. Observe that
the two cycles have no other edges in common by Claim 22. Then E′ = {xy} is a
good set as |Ψ(E′)| ≤ 9. See Figure 20.

Claim 24. If G has a 3-cycle adjacent to a 5-cycle, then it contains a good set
of edges.

Fig. 21. A 3-cycle adjacent to a 5-cycle.

Proof. By Claim 23, the 3-cycle and 5-cycle share at most one edge. So let xyz be
the 3-cycle, and let xuvwy be the 5-cycle. Observe that v is a 3-vertex by Claim 16.
Let N(v) \ {u,w} = {v′}. Then E′ = {xy, vv′} is a good set since |Ψ(E′)| ≤ 17. See
Figure 21.
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Claim 25. If G has a 3-cycle adjacent to a 6-cycle, then it contains a good set
of edges.

Fig. 22. A 3-cycle adjacent to a 6-cycle.

Proof. By Claim 24, the 3-cycle and 6-cycle share at most one edge. So let xyz
be the 3-cycle, and let xv1v2v3v4y be the 6-cycle. Then E′ = {xy, v2v3} is a good set
since |Ψ(E′)| ≤ 17. See Figure 22.

Claim 26. If G has a 3-cycle adjacent to a 7-cycle, then it contains a good set
of edges.

Fig. 23. A 3-cycle adjacent to a 7-cycle.

Proof. By Claim 25, the 3-cycle and 7-cycle share at most one edge. So let xyz
be the 3-cycle, and let C = xv1v2v3v4v5y be the 7-cycle. By Claims 23 and 24, C has
no chords.

(1) If v2 or v4 is a 2-vertex, say v2, by symmetry, then E′ = {xy, v2v3} is a good
set as |Ψ(E′)| ≤ 16.

For i = 2, 4, let N(vi) \ {vi−1, vi+1} = {vi′}.
(2) Suppose v2

′v4′ is an edge. By Claim 25, v1v4
′ is not an edge. Then E′ =

{yz, v1v2, v4v4′} is a good set since |Ψ(E′)| ≤ 24.
(3) Suppose v2

′ = v4
′. Then E′ = {xy, v3v4} is a good set since |Ψ(E′)| ≤ 18.

Otherwise, E′ = {xy, v2v2′, v4v4′} is a good set since |Ψ(E′)| ≤ 27. See Figure 23.

Claim 27. If G has a pair of 4-cycles adjacent along two incident edges, then it
contains a good set of edges.

Proof. Let x0x1x2x3 and x0x1x2x4 be the two 4-cycles. Furthermore, suppose
that in the embedding of the graph, the vertex x1 is in the interior of the curve
formed by the cycle x0x3x2x4. Observe that x1, x3, x4 are 3-vertices by Claim 14. For
i = 1, 3, 4, let N(xi) \ {x0, x2} = {xi

′}.
(1) If x3

′ = x4, then E′ = {x1x1
′, x3x4} is a good set since |Ψ(E′)| ≤ 14.

(2) Suppose x3
′ = x4

′. Since G is a plane graph, the embedding of x3x3
′ is

necessarily exterior to the curve formed by the cycle x0x4x2x4. By the Jordan
Curve Theorem, x1

′x3
′ is not an edge. Then E′ = {x1x1

′, x3x3
′} is a good

set since |Ψ(E′)| ≤ 18.
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Fig. 24. A pair of 4-cycles adjacent along two incident edges.

(3) Suppose x3
′x4

′ is an edge. Since G is a plane graph, the embedding of x3
′x4

′

is necessarily exterior to the curve formed by the cycle x0x4x2x4. By the
Jordan Curve Theorem, x1

′ �= x3
′ and x1

′ �= x4
′. Then E′ = {x0x1, x3

′x4
′}

is a good set since |Ψ(E′)| ≤ 18.

All of the above cases may be repeated with the roles of x3 and x4 played instead by,
respectively, x1 and x3, or, respectively, x1 and x4. Then E′ = {x1x1

′, x3x3
′, x4x4

′}
is a good set since |Ψ(E′)| ≤ 27. See Figure 24.

Claim 28. If G has a 5-cycle adjacent to a 4-cycle along two incident edges, then
it contains a good set of edges.

Proof. Let v1v2v3v4v5 be the 5-cycle, and let uv4v5v1 be the 4-cycle. Furthermore,
suppose that in the embedding of the graph, the vertex v5 is in the interior of the
curve formed by the cycle uv1v2v3v4. By Claims 14 and 16, u, v2, v3, v5 are 3-vertices.
Let N(u) \ {v1, v4} = {u′} and, for i = 2, 3, 5, let N(vi) \ {v1, . . . , v5} = {vi′}. By
Claims 23 and 24, uv2, uv3, uv5, v2v5, v3v5 are not edges. By Claim 27, u′ �= v5

′.
(1) Suppose u′v5′ is an edge. By Claim 16, u′ is a 3-vertex, so letN(u′)\{u, v5′} =

{u′′}. Note that v5
′, u′, u′′ must be in the interior of the curve formed

by the cycle uv4v5v1, whereas v3 and v3
′ are exterior to this curve. By

the Jordan Curve Theorem, v3u
′, v3u

′′, v3
′u′, v3

′u′′ are not edges. Then
E′ = {v1v5, v3v3′, u′u′′} is a good set since |Ψ(E′)| ≤ 26.

(2) Suppose v3
′ = v5

′.
(a) If v2

′ and v3
′ have a common neighbor p, then E′ = {v3v3′, uv1} is a

good set since |Ψ(E′)| ≤ 16.
(b) If u′ = v2

′, then E′ = {v3v3′, uv1} is a good set since |Ψ(E′)| ≤ 15.
(c) Suppose we are in neither of the last two subcases. By Claim 14, v3

′

is a 3-vertex. Let N(v3
′) \ {v3, v5} = {v3′′}. Note that v3

′ and hence
v3

′′ must be in the interior of the curve formed by the embedding of the
cycle v1v2v3v4v5, whereas u is exterior to this curve; thus, by the Jordan
Curve Theorem, uv3

′′ is not an edge. Then E′ = {v2v2′, v3′v3′′, uv4} is
a good set since |Ψ(E′)| ≤ 26.

The case for which v2
′ = v5

′ is handled similarly.
(3) Suppose u′ = v3

′. Then it must be that u′ is exterior to the curve formed
by the cycle uv1v2v3v4, and in particular u′v5 is not an edge by the Jordan
Curve Theorem. Then E′ = {u′v3, v5v5′} is a good set since |Ψ(E′)| ≤ 16.
The case for which u′ = v2

′ is handled similarly.

Otherwise, E′ = {uu′, v2v3, v5v5′} is a good set since |Ψ(E′)| ≤ 27. See Figure 25.
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Fig. 25. A 5-cycle adjacent to a 4-cycle along two incident edges.

Claim 29. If G has three 4-cycles in sequence, then it contains a good set of
edges.

Fig. 26. Three 4-cycles in sequence.

Proof. Let u1u2u3u4, u3u5u6u4, u5u7u8u6 be three 4-cycles that are in sequence.
Then E′ = {u1u2, u5u6} is a good set since |Ψ(E′)| ≤ 18. See Figure 26.

Claim 30. If G has three 4-cycles that are pairwise in sequence, then it contains
a good set of edges.

Fig. 27. Three 4-cycles that are pairwise in sequence.

Proof. Let u1u2u3u4, u3u5u6u4, and v1u5u3u2 be the 4-cycles. By Claim 14, v1
is a 3-vertex, so let N(v1) \ {u2, u5} = v1

′. By Claim 22, v1
′ �= u1 and v1

′ �= u6. Then
E′ = {u3u4, v1v1

′} is a good set since |Ψ(E′)| ≤ 18. See Figure 27.
Claim 31. If G has two 4-cycles and a 5-cycle that are pairwise in sequence,

then it contains a good set of edges.
Proof. Let u1u2u3u4, u3u5u6u4 be the 4-cycles, and let v1v2u5u3u2 be the 5-cycle.

Then E′ = {u3u4, v1v2} is a good set since |Ψ(E′)| ≤ 18. See Figure 28.
Claim 32. If G has two 4-cycles and a 6-cycle that are pairwise in sequence,

then it contains a good set of edges.
Proof. Let u1u2u3u4, u3u5u6u4 be the 4-cycles, and let v1v2v3u5u3u2 be the 6-

cycle. By Claim 23, u1v1 is not an edge. By Claim 24, v1v3 is not an edge. By
Claim 28, u1v3 is not an edge. By Claim 16, v1 is a 3-vertex, so let N(v1)\ {u2, v2} =
{v1′}. By Claim 29, u1v1

′ is not an edge. If v1
′v3 is an edge, then E′ = {v1u2, v3u5}
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Fig. 28. Two 4-cycles and a 5-cycle that are pairwise in sequence.

Fig. 29. Two 4-cycles and a 6-cycle that are pairwise in sequence.

is a good set since |Ψ(E′)| ≤ 17. Otherwise, E′ = {u1u4, v1v1
′, v3u5} is a good set

since |Ψ(E′)| ≤ 26. See Figure 29.
Claim 33. If G has two 4-cycles and a 7-cycle that are pairwise in sequence,

then it contains a good set of edges.

Fig. 30. Two 4-cycles and a 7-cycle that are pairwise in sequence.

Proof. Let u1u2u3u4, u3u5u6u4 be the 4-cycles, and let v1v2v3v4u5u3u2 be the
7-cycle. By Claim 23, u1v1 is not an edge. By Claim 29, u1v2 is not an edge. By
Claim 28, u1v4 is not an edge. By Claim 31, v1v4 is not an edge. By Claim 32, v2v4
is not an edge. Then E′ = {u1u4, v1v2, v4u5} is a good set since |Ψ(E′)| ≤ 26. See
Figure 30.

Claim 34. If G has two 5-cycles and a 4-cycle that are pairwise in sequence,
then it contains a good set of edges.

Proof. Let v1v2v3v4v5, v2v1v6v7v8 be the 5-cycles, and let v3v2v8v9 be the 4-
cycle. Notice that v4, v5, v6, and v7 are 3-vertices by Claim 16, and v9 is a 3-vertex
by Claim 14. By Claim 23, v4v9 and v7v9 are not edges. By Claim 24, v5v6 is not an
edge. By Claim 28, v4v6, v4v7, v5v7, v5v9, v6v9 are not edges. For i = 4, 5, 6, 7, 9, let
N(vi) \ {v1, . . . , v9} = {vi′}.

(1) Suppose v5
′ = v6

′. By Claim 14, v5
′ is a 3-vertex, so let N(v5

′) \ {v5, v6} =
{v5′′}. Then set E′

1 = {v1v2, v9v9′, v5′v5′′} and E′
2 = {v1v2, v4v4′, v7v7′}, so

that both |Ψ(E′
1)| ≤ 27 and |Ψ(E′

2)| ≤ 27. By planarity and the Jordan
Curve Theorem, one of E′

1 or E′
2 is an induced matching and hence a good

set.
(2) Suppose v4

′ = v6
′. Observe that, by the Jordan Curve Theorem, v5

′ �= v7
′.

Then E′ = {v2v3, v5v5′, v6v7} is a good set since |Ψ(E′)| ≤ 25.
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Fig. 31. Two 5-cycles and a 4-cycle that are pairwise in sequence.

Otherwise, E′ = {v2v8, v4v5, v6v6′} is a good set since |Ψ(E′)| ≤ 26. See Fig-
ure 31.

Claim 35. If G has a 4-cycle adjacent to a 5-cycle, then it contains a good set
of edges.

Fig. 32. A 4-cycle adjacent to a 5-cycle.

Proof. The 4-cycle and 5-cycle share at most one edge, due to Claims 23 and 28.
So let u1u2u3u4 be the 4-cycle, and let u4u3v1v2v3 be the 5-cycle. By Claim 14, u1

is a 3-vertex, so let N(u1) \ {u2, u4} = {u1
′}. By Claim 16, v3 is a 3-vertex, so let

N(v3) \ {u4, v2} = {v3′}. By Claim 27, u1v1 is not an edge. By Claim 28, u1
′v1

is not an edge. By Claim 23, u1v3 is not an edge. By Claim 31, u1
′ �= v3

′. By
Claim 34, u1

′v3′ is not an edge. By Claim 23, v1v3 is not an edge. By Claim 28, v1v3
′

is not an edge. Then E′ = {u1u1
′, u3v1, v3v3

′} is a good set since |Ψ(E′)| ≤ 27. See
Figure 32.

Claim 36. If G has a pair of adjacent 5-cycles, then it contains a good set of
edges.

Proof. By Claim 28, the cycles have at most two edges in common. Suppose they
have two. Let v1v2v3v4v5 and v5v4v6v7v1 be the two 5-cycles. (The case in which the
two common edges are not incident is excluded by Claim 23.) By Claim 35, v2v6 is
not an edge. Then E′ = {v1v2, v4v8} is a good set since |Ψ(E′)| ≤ 17.

Otherwise, let v1v2v3v4v5 and v5v4v6v7v8 be the two 5-cycles. By Claim 16, v8
is a 3-vertex, so let N(v8) \ {v5, v7} = {v8′}. By Claim 28, v1v6 is not an edge. By
Claim 24, v1 �= v8

′. By Claim 34, v1v8
′ is not an edge. By Claim 28, v2v6 is not

an edge. By Claim 28, v2 �= v8
′. If v2v8

′ is an edge, then we may identify two 5-
cycles with exactly two common edges, handled in the paragraph above. By Claim 23,
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v6 �= v8
′. By Claim 28, v6v8

′ is not an edge. Then E′ = {v1v2, v4v6, v8v8′} is a good
set since |Ψ(E′)| ≤ 27. See Figure 33.

Fig. 33. Two adjacent 5-cycles.

Claim 37. If G has a 4-cycle adjacent to a 6-cycle along two incident edges, then
it contains a good set of edges.

Fig. 34. A 4-cycle adjacent to a 6-cycle along two incident edges.

Proof. Let v1v2v3v4v5v6 be the 6-cycle, and let v3v2v1v7 be the 4-cycle. By
Claim 28, v4v6 is not an edge. Then E′ = {v1v6, v3v4} is a good set since |Ψ(E′)| ≤ 17.
See Figure 34.

Claim 38. If G has a 4-cycle in sequence with a 6-cycle, then it contains a good
set of edges.

Fig. 35. A 4-cycle in sequence with a 6-cycle.

Proof. Let u1u2u3u4 be the 4-cycle, and let u4u3v1v2v3v4 be the 6-cycle. By
Claim 27, u1v1 is not an edge. By Claim 37, u1v3 is not an edge. By Claim 23, u1v4
is not an edge. By Claim 28, u1

′v1 is not an edge. By Claim 35, u1
′v3 is not an edge.

By Claim 32, u1
′v4 is not an edge. By Claim 24, v1v3 is not an edge. By Claim 29,

v1v4 is not an edge. Then E′ = {u1u1
′, u3v1, v3v4} is a good set since |Ψ(E′)| ≤ 27.

See Figure 35.
Claim 39. If G has a 5-cycle in sequence with a 6-cycle, then it contains a good

set of edges.
Proof. Let v1v2v3v4v5 be the 5-cycle, and let v5v4v6v7v8v9 be the 6-cycle. By

Claim 16, v2 is a 3-vertex; let N(v2) \ {v1, v3} = {v2′}. Note that v2
′ �= v6 and

v2
′ �= v9 by Claim 28.
(1) If v2

′ = v7, then E′ = {v2v7, v4v5} is a good set as |Ψ(E′)| ≤ 16. The case
v2

′ = v8 is handled similarly.
(2) Suppose v2

′v7 is an edge. By Claim 28, v1v6 is not an edge. By Claim 35,
v1v8 is not an edge. By Claim 24, v1v9 is not an edge. By Claim 24, v6v8 is
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Fig. 36. A 5-cycle in sequence with a 6-cycle.

not an edge. By Claim 35, v6v9 is not an edge. Then E′ = {v1v2, v4v6, v8v9}
is a good set since |Ψ(E′)| ≤ 26. The case that v2

′v8 is an edge is handled
similarly.

Otherwise, E′ = {v2v2′, v4v5, v7v8} is a good set since |Ψ(E′)| ≤ 27. See Fig-
ure 36.

Claim 40. If G has a 2-vertex at distance 2 from a 3-cycle, then it contains a
good set of edges.

Fig. 37. A 2-vertex at distance 2 from a 3-cycle.

Proof. Let u be a 2-vertex at distance 2 from a 3-cycle xyz, where u and x have
a common neighbor q. By Claim 18, qy and qz are not edges. Then E′ = {uq, yz} is
a good set since |Ψ(E′)| ≤ 17. See Figure 37.

Claim 41. If G has a 2-vertex at distance 2 from a 4-cycle, then it contains a
good set of edges.

Fig. 38. A 2-vertex at distance 2 from a 4-cycle.

Proof. Let u be a 2-vertex at distance 2 from a 4-cycle wxyz, where u and w have
a common neighbor q. By Claim 18, qx and qz are not edges. By Claim 22, xz is not
an edge. By Claim 14, ux and uz are not edges, and both x and z are 3-vertices. Let
N(x) \ {w, y} = {x′} and N(z) \ {w, y} = {z′}. By Claim 16, ux′ and uz′ are not
edges. By Claim 19, qx′ and qz′ are not edges. By Claim 27, x′ �= z′. By Claim 28,
x′z′ is not an edge. Then E′ = {uq, xx′, zz′} is a good set since |Ψ(E′)| ≤ 27. See
Figure 38.

Claim 42. If G has a 2-vertex at distance 2 from a 5-cycle, then it contains a
good set of edges.

Proof. Let u be a 2-vertex at distance 2 from a 5-cycle x0x1x2x3x4, where u and
x0 have a common neighbor q. By Claim 16, x1 is a 3-vertex, so let N(x1)\{x0, x2} =
{x1

′}. By Claim 14, ux1 and ux4 are not edges. By Claim 16, ux1
′ and ux3 are not

edges. By Claim 18, qx1 and qx4 are not edges. By Claim 19, qx1
′ and qx3 are

not edges. By Claim 23, x1
′ �= x3 and x1

′ �= x4. By Claim 28, x1
′x3 and x1

′x4
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Fig. 39. A 2-vertex at distance 2 from a 5-cycle.

are not edges. Then E′ = {uq, x1x1
′, x3x4} is a good set since |Ψ(E′)| ≤ 27. See

Figure 39.
Claim 43. If G has two 3-cycles at distance 1, then it contains a good set of

edges.

Fig. 40. Two 3-cycles at distance 1.

Proof. Let uvw and xyz be 3-cycles at distance 1, with ux being an edge. By
Claim 23, vy and wy are not edges. Then E′ = {vw, xy} is a good set since |Ψ(E′)| ≤
17. See Figure 40.

Claim 44. If G has a 3-cycle at distance 1 from a 4-cycle, then it contains a
good set of edges.

Fig. 41. A 3-cycle at distance 1 from a 4-cycle.

Proof. Let xyz be a 3-cycle at distance 1 to a 4-cycle v1v2v3v4, with xv1 being
an edge. Observe that v2, v4 are 3-vertices by Claim 14. Let N(vi) \ {v1, v3} = {vi′}
for i = 2, 4. By Claim 23, zv2 and zv4 are not edges. By Claim 24, zv2

′ and zv4
′ are

not edges. By Claim 22, v2v4 is not an edge. By Claim 27, v2
′ �= v4

′. By Claim 28,
v2

′v4′ is not an edge. Then E′ = {xz, v2v2′, v4v4′} is a good set since |Ψ(E′)| ≤ 27.
See Figure 41.

Claim 45. If G has a 3-cycle at distance 1 from a 5-cycle, then it contains a
good set of edges.

Proof. Let xyz be a 3-cycle at distance 1 to a 5-cycle v1v2v3v4v5, with xv1 being
an edge. Observe that v2 is a 3-vertex by Claim 16, so let N(v2) \ {v1, v3} = {v2′}.
By Claim 23, zv2 and zv5 are not edges. By Claim 24, zv2

′ and zv4 are not edges. By
Claim 23, v2v4 and v2v5 are not edges. By Claim 28, v2

′v4 and v2
′v5 are not edges.

Then E′ = {xz, v2v2′, v4v5} is a good set since |Ψ(E′)| ≤ 27. See Figure 42.
Claim 46. If G has a 5-cycle at distance 1 from a double 4-face, then it contains

a good set of edges.
Proof. Let u1u2u3u4u5 be a 5-cycle at distance 1 from a double 4-face v1v2v3v4,

v3v2v5v6, with u1v1 being an edge. Observe that u5 is a 3-vertex by Claim 16, so let
N(u5) \ {u1, u4} = {u5

′}.
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Fig. 42. A 3-cycle at distance 1 from a 5-cycle.

Fig. 43. A 5-cycle at distance 1 from a double 4-face.

Suppose u4v6 is an edge. By Claim 23, u2 �= u5
′ and u3 �= u5

′. By Claim 28,
u2u5

′ and u3u5
′ are not edges. By Claim 27, v4v5 is not an edge. By Claim 29, u2v4

and u3v5 are not edges. By Claim 35, u3v4, u2v5, u5
′v4 are not edges, and u5

′ �= v4,
u5

′ �= v5. By Claim 38, u5
′v5 is not an edge. Then E′ = {u2u3, u5u5

′, v1v4, v5v6} is a
good set since |Ψ(E′)| ≤ 33. The case in which u3v6 is an edge is treated similarly.

Otherwise, E′ = {u3u4, u1v1, v3v6} is a good set since |Ψ(E′)| ≤ 26. See Fig-
ure 43.

Claim 47. If G has a pair of double 4-faces at distance 1, then it contains a good
set of edges.

Fig. 44. A pair of double 4-faces at distance 1.

Proof. Let u1u2u3u4, u3u2u5u6 and v1v2v3v4, v4v3v5v6 be double 4-faces at dis-
tance 1, with u1v1 being an edge. By Claim 23, v2v5 is not an edge. By Claim 27,
v2v6 is not an edge. Then E′ = {u2u3, v1v2, v5v6} is a good set since |Ψ(E′)| ≤ 27.
See Figure 44.

Claim 48. If G has a 4-cycle, (�8)-cycle, and 4-cycle in sequence, then it con-
tains a good set of edges.

Proof. Let u1u2u3u4, v1v2v3v4 be 4-cycles at distance 1, with u1v1 being an
edge, and C the adjacent (�8)-cycle. Suppose without loss of generality that C
contains both u4 and v2. By Claim 14, u2, u3, u4 and v2, v3, v4 are 3-vertices. By
Claims 22 and 29, there are no edges among u2, u4, v2, v4. For i = 2, 3, 4, let
N(ui) \ {u1, u2, u3, u4} = {ui

′} and N(vi) \ {v1, v2, v3, v4} = {vi′}. By Claim 35,
|{u2

′, u4
′, v2′, v4′}| = 4. Also, by Claim 38, there are no edges among u2

′, u4
′, v2′, v4′.

Note now that C is either a 7- or an 8-cycle.
(1) Suppose u3

′v3′ is an edge.
(a) If v2

′v3′ is an edge, then E′ = {u2u3, v1v4, v2
′v3′} is a good set as

|Ψ(E′)| ≤ 25. The subcases in which v3
′v4′, u2

′u3
′, or u3

′u4
′ is an

edge are handled similarly.
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Fig. 45. A 4-cycle, (�8)-cycle, and 4-cycle in sequence.

(b) Otherwise, let E′ = {u2u2
′, u4u4

′, v2v2′, v4v4′, u3
′v3′}. By Claim 23,

u2u3
′, u4u3

′, v2v3
′, v4v3

′ are not edges. By Claim 38, u2v3
′, u4v3

′,
u3

′v2, u3
′v4 are not edges. By Claim 35, u2

′v3′, u4
′v3′, u3

′v2′, u3
′v4′

are not edges. Since C is an (�8)-cycle, |Ψ(E′)| ≤ 45 and hence E′ is a
good set.

(2) If u3
′ = v3

′, then E′ = {u1v1, u3u3
′} is a good set as |Ψ(E′)| ≤ 18.

Otherwise, E′ = {u1v1, u3u3
′, v3v3′} is a good set since |Ψ(E′)| ≤ 27. See Fig-

ure 45.
Claim 49. If G has a 4-cycle, 4-cycle, and 7-cycle in sequence, then it contains

a good set of edges.
Proof. Let u1u2u3u4, u4u3u5u6, and u6u5v1v2v3v4v5 be the sequence of cycles.

By Claim 14, u1 and u2 are 3-vertices, so let N(ui) \ {u1, u2, u3, u4} = {ui
′} for

i = 1, 2. By Claims 25 and 35, note that the 7-cycle does not have any chords. By
Claim 41, v2 and v4 are 3-vertices, so let N(vi) \ {v1, v3, v5} = {vi′} for i = 2, 4.

(1) If v2
′ = v4

′, then E′ = {u3u4, v1v2, v4v5} is a good set as |Ψ(E′)| ≤ 25.
(2) If v2

′v4′ is an edge, then E′ = {u3u4, v1v2, v4v5} is a good set as |Ψ(E′)| ≤ 27.
(3) If u2

′ = v4
′, then E′ = {u3u4, v1v2, v4v5} is a good set as |Ψ(E′)| ≤ 27. The

case for which u1
′ = v2

′ is treated similarly.
Otherwise, note that, by Claim 35, u1 �= v4

′ and u2 �= v2
′. By Claim 38, u1

′ �= v4
′ and

u2
′ �= v2

′, and u1v2, u2v4 are not edges. Then it follows that E′ = {u1u2, u5u6, v2v2
′,

v4v4
′} is a good set since |Ψ(E′)| ≤ 36. See Figure 46.
Claim 50. If G has a 4-cycle, 7-cycle, and 5-cycle in sequence, then it contains

a good set of edges.
Proof. Let u1u2u3u4 be the 4-cycle, let v1v2v3v4v5 be the 5-cycle, and let

u1u4w1w2w3v2v1 be the 7-cycle. By Claim 14, u2 and u3 are 3-vertices, so let
N(ui) \ {u1, u2, u3, u4} = {ui

′} for i = 2, 3. Also, v3, v4 are 3-vertices by Claim 16, so
let N(vi) \ {v2, v3, v4, v5} = {vi′} for i = 3, 4.

(1) Suppose u3
′ = v4

′. Note that u2w1 and u2
′w1 are not edges by the Jor-

dan Curve Theorem. By Claim 23, u2v4
′ is not an edge. By Claim 49,

u2
′v4′ is not an edge. By Claim 33, v4

′w1 is not an edge. Then E′ =
{u2u2

′, u4w1, v1v2, v4v4
′} is a good set since |Ψ(E′)| ≤ 33.

(2) Suppose u3
′ = v3

′. By the Jordan Curve Theorem, w1u2, w1u2
′, and w1v5 are

not edges. By Claim 23, u2v3
′ is not an edge. By Claim 35, u2v5 and u2

′v5
are not edges. By Claim 33, u2

′v3′ is not an edge. By Claim 28, v3v5 is not an
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Fig. 46. A sequence of 4-cycles such that one of the 4-cycles is adjacent to a 7-cycle.

Fig. 47. A 4-cycle, 7-cycle, and 5-cycle in sequence.

edge. By Claim 33, v3w1 is not an edge. Then E′ = {u2u2
′, u4w1, v1v5, v3v3

′}
is a good set since |Ψ(E′)| ≤ 35.

Otherwise, note that, by Claim 37, u3
′ �= v3 and u3

′ �= v4. It therefore follows that
E′ = {u3u3

′, u1v1, v3v4} is a good set since |Ψ(E′)| ≤ 27. See Figure 47.
Claim 51. If G has a pair of 3-cycles at distance 2, then it contains a good set

of edges.

Fig. 48. Two 3-cycles at distance 2.

Proof. Let uvw and xyz be 3-cycles at distance 2, where u and x have a common
neighbor p. By Claim 24, vz is not an edge. Then E′ = {uv, xz} is a good set since
|Ψ(E′)| ≤ 17. See Figure 48.

Claim 52. If G has a 3-cycle at distance 2 from a double 4-face, then it contains
a good set of edges.

Proof. Let xyz be a 3-cycle, and let v1v2v3v4, v3v2v5v6 be a double 4-face at
distance 2, with x and v1 having a common neighbor p. By Claim 22, yp and zp are
not edges. By Claim 26, yv6 and zv6 are not edges. By Claim 28, pv6 is not an edge.
Then E′ = {yz, pv1, v3v6} is a good set since |Ψ(E′)| ≤ 26. See Figure 49.

Claim 53. If G has a pair of double 4-faces at distance 2, then it has a good set
of edges.
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Fig. 49. A 3-cycle at distance 2 from a double 4-face.

Fig. 50. A pair of double 4-faces at distance 2.

Proof. Let u1u2u3u4, u4u3u5u6 and v1v2v3v4, v3v5v6v4 be two double 4-faces at
distance 2, such that u1 and v2 have a common neighbor p. Now, the following are not
edges by Claim 47: u2v1, u2v5, u2v6, u5v1, u5v5, u5v6, u6v1, u6v5, and u6v6. Then
E′ = {u1u2, u5u6, v1v2, v5v6} is a good set since |Ψ(E′)| ≤ 35. See Figure 50.

To wrap up the proof of Lemma 9, we list the specific claims which certify the
presence of a good set, given the presence of one of the structures (C1)–(C12).

(C1) Claim 11.
(C2) Claims 13, 14, 16, 17, and 21.
(C3) Claims 12 and 15.
(C4) Claims 18, 19, 20, 40, 41, and 42.
(C5) Claims 22, 23, 24, 25, and 26.
(C6) Claims 35, 38, 36, and 39.
(C7) Claims 43, 44, and 45.
(C8) Claims 23, 29, 30, 35, 38, 32, 33, and 49.
(C9) Claim 48.
(C10) Claim 50.
(C11) Claims 22, 23, 43, 44, 47, 51, 52, and 53.
(C12) Claim 46.

This concludes the proof of Lemma 9.
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