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Abstract

Given a graph G = (V,E), let P be a partition of V . We say that
P is dominating if, for each part P of P, the set V \P is a dominating
set in G (equivalently, if every vertex has a neighbour of a different
part from its own). We say that P is acyclic if for any parts P,P ′

of P, the bipartite subgraph G[P,P ′] consisting of the edges between
P and P ′ in P contains no cycles. The acyclic dominating number
ad(G) of G is the least number of parts in any partition of V that
is both acyclic and dominating; and we shall denote by ad(d) the
maximum over all graphs G of maximum degree at most d of ad(G).
In this paper, we prove that ad(3) = 2, which establishes a conjecture
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of Boiron, Sopena and Vignal [4]. For general d, we prove the upper
bound ad(d) = O(d ln d) and a lower bound of ad(d) = Ω(d).

1 Introduction

Given a graph G = (V, E), let P be a partition (or colouring) of V . We
say that P is dominating if, for each part (or colour) P of P, the set V \ P
is a dominating set in G. (Recall that a set S ⊂ V is a dominating set if
every vertex of V \ S has a neighbour belonging to S.) We may equivalently
define the partition P to be dominating if every vertex has a neighbour of a
different colour from its own. We say that P is acyclic if for any parts P, P ′

of P, the bipartite subgraph G[P, P ′] consisting of the edges between P and
P ′ in P contains no cycles. We call any cycle in G[P, P ′] an alternating cycle;
thus, P is acyclic if it contains no alternating cycle. The acyclic dominating

number ad(G) of G is the least number of parts in any partition of V that is
both acyclic and dominating.

By the definition of a dominating partition, the parameter ad(·) is only
well-defined on graphs with no isolated vertices, and we hereafter assume
this to be true for any graph under consideration, unless specified otherwise.
Note that ad(G) ≥ 2 for any graph G, since any dominating partition has at
least two parts.

The quantity ad(G) is closely related to the acyclic t-improper chromatic

number χt
a(G) of the graph G. In this graph colouring variant, first intro-

duced by Boiron et al. [4, 5] and further investigated in Addario et al. [1]
one seeks to colour G with the minimum number of colours subject to the
constraints that each colour class has maximum degree at most t and that
the colouring is acyclic in the sense described above. Clearly, the acyclic
0-improper chromatic number is just the acyclic (proper) chromatic num-
ber χa(G) — the subject of many works: inter alia, [2, 3, 6, 8]. Observe that
ad(G) ≤ χa(G) for any graph G, as any acyclic colouring is also an acyclic
dominating partition.

It is easily seen that if G is a regular graph of degree ∆(G) then ad(G) is

precisely the acyclic (∆(G)−1)-improper chromatic number χ
∆(G)−1
a (G) of G.

If G is a graph of maximum degree ∆(G), then ad(G) is at least χ
∆(G)−1
a (G);

however, these two quantities do not necessarily coincide as the latter allows
partitions in which vertices of degree strictly less than the maximum degree
may receive the same colour as all of their neighbours.

Given a positive integer d, we let ad(d) be the maximum possible value
of ad(G) over all graphs with maximum degree at most d. In this paper,
we settle the case d = 3. In Boiron et al. [4] it was conjectured that for
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any graph G of maximum degree at most three, the acyclic 2-improper chro-
matic number of G is at most two. We prove this conjecture by showing the
following.

Theorem 1. ad(3) = 2.

In other words, any graph G of maximum degree three may be partitioned

into two dominating sets D1, D2 such that G[D1, D2] is a forest. The latter
formulation of Theorem 1 suggests another question: given a graph G =
(V, E), does there always exist an integer k > 1 and a partition of V into
dominating sets V1, . . . , Vk such that for distinct i, j ∈ {1, . . . , k}, G[Vi, Vj] is
a forest? It turns out that such a partition does not necessarily exist, as the
following example shows.

v0

v1

v2v3

v4

w1

x1

w2

x2

x3

w3

x4

w4

w0

x0

Figure 1: An example of a graph which does not admit an acyclic partition
into dominating sets.

Let G have vertex set V =
⋃4

i=0{vi, wi, xi}, and for each i ∈ {0, . . . , 4} let
vi be joined to each of wi, xi, wi+1, xi+1 (where the subscripts are interpreted
modulo 5). The graph G is illustrated in Figure 1. Given any 2-colouring of
V , there must be i ∈ {0, . . . , 4} such that vi and vi+1 receive the same colour.
In this case, for the colouring to be dominating it must be the case that both
wi+1 and xi+1 receive the opposite colour from vi; but then viwi+1vi+1xi+1

forms an alternating cycle. In any colouring with four or more colours, some
colour class is not a dominating set as G contains vertices of degree two.
Finally, consider any 3-colouring of G. If, for some i, both vi and vi+1 receive
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the same colour, say, 1, then either viwi+1vi+1xi+1 forms an alternating cycle
or both wi+1 and vi+1 are not dominated by one of the colours other than
1. But then it must be the case that, for some i, vi and vi+2 receive the
same colour, say, vi and vi+2 are coloured 1 and vi+1 is coloured 2. In this
case, all of wi+1, xi+1, wi+2, xi+2 must have colour 3, for otherwise they are
not dominated by colour 3; however, now vi+1 is not dominated by colour
1. This shows that there is no acyclic colouring of G such that each colour
class is a dominating set. We remark that since the graph G has maximum
degree four, this example also shows that ad(4) ≥ 3.

The fact that acyclic partitions into dominating sets do not always exist
lends credence to the idea that the acyclic dominating number and ad(d) are
natural objects of study. Given that a partition of V into two dominating
sets is extremely easy to find (any bipartition that maximises the number
of edges in the cut is such a partition), it seems prima facie plausible that
ad(d) can be bounded independently of d. However, this turns out not to
be the case. It was shown in Addario et al. [1] that χd−1

a (d) = Ω(d2/3). In
particular, this shows that ad(d) ≥ χd−1

a (d) tends to infinity as d → ∞. We
improve upon this result by showing the following.

Theorem 2. χd−1
a (d) = Ω(d).

It immediately follows that ad(d) = Ω(d). Our lower bound is within a
logarithmic factor of optimal as we also give the following upper bound on
ad(d).

Theorem 3. ad(d) = O(d lnd).

This extends one case of a result in Addario et al. [1], which stated that
χd−1

a (d) = O(d ln d). It seems plausible that ad(d) = Θ(d), but proving the
requisite upper bound seems to require a more refined analysis.

1.1 Notation

For a vertex v ∈ V , we denote the neighbourhood N(v) of v to be the set {w :
vw ∈ E} and the degree deg(v) of v to be |N(v)|; the closed neighbourhood

N [v] of v is the set {v} ∪ N(v), the second neighbourhood N2(v) of v is
⋃

u∈N(v) N(u) \ {v}, and the closed second neighbourhood N2[v] of v is {v} ∪

N2(v). The square of a graph G = (V, E) has vertex set V and edge set
{uv : u ∈ N2(v)}. For a given partition P of V , and v ∈ V , the colour cP(v)
of v with respect to P is the part of P to which v belongs. We write c(v) in
place of cP(v) when the partition P is clear from context. Given sets A and
S, the symmetric difference A⊖S between A and S is the set (A\S)∪(S\A).
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2 Graphs of maximum degree three

The primary ingredient in proving Theorem 1 is the following lemma.

Lemma 4. If G = (V, E) is 2-connected, ∆(G) = 3 and P = {A, B} is a

dominating partition of V such that G possesses a unique alternating cycle

C1 then ad(G) = 2.

We first provide the straightforward proof of Theorem 1 assuming that the
lemma holds, then prove the lemma.

Proof of Theorem 1. Consider an arbitrary graph G = (V, E) of maximum
degree three. We proceed by induction on m = |E|; clearly if |E| ≤ 3 then
ad(G) = 2 as G has no even cycles. We may presume G is connected; if not,
we consider each connected component of G separately. We may also assume
G has no vertex of degree one, for if deg(v) = 1 then G \ v is connected
and by induction there is an acyclic dominating partition of G \ v; such a
partition easily extends to an acyclic dominating partition of G.

Now if G contains a cutedge uv and G \ uv has connected components
G1, G2 (each of which contains no isolated vertices), then by induction there
is an acyclic dominating partition {A1, B1} (resp. {A2, B2}) of G1 (resp. G2);
we may assume, perhaps by switching the names of the parts, that u ∈ A1,
v ∈ B2. Then {A1 ∪ A2, B1 ∪ B2} forms an acyclic dominating partition of
G.

If G contains no cutedge then G is necessarily 2-connected. Now let uv be
any edge of G; by induction G \ uv permits an acyclic dominating partition
P = {A, B}. Since P is a dominating partition in the entire graph G, either
P is an acyclic dominating partition for G or G possesses a unique alternating
cycle C1 with respect to P. In the latter case it follows by Lemma 4 that
ad(G) = 2; thus ad(G) = 2 in both cases and so ad(3) = 2, as claimed.

We shall prove Lemma 4 by producing a sequence of local alterations that
transform P into an acyclic dominating partition P ′ = {A′, B′}. In order to
do so, we first introduce a structure that is at the heart of the proof and
some basic conditions that allow us to immediately “fix alternating cycles”.

We say C is an almost alternating cycle with respect to partition P =
{A, B} if there exists a vertex u ∈ C such that C is an alternating cycle with
respect to the partition {A ⊖ {u}, B ⊖ {u}}; in other words, if switching u
from A to B (or from B to A) yields that C is an alternating cycle. Given an
almost alternating cycle C, the unique u ∈ C such that C is an alternating
cycle with respect to the partition {A ⊖ {u}, B ⊖ {u}} is called the crucial

vertex of C.
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We now define three basic local conditions to check for (almost) alternat-
ing cycles. These conditions are illustrated in Figure 2, with the convention
that black and white represent the two parts of the partition. Suppose we are
given an alternating or almost alternating cycle C and non-crucial vertices
v, w of C adjacent along C; if deg(v) = 3 (resp. deg(w) = 3) then denote the
neighbour of v (resp w) not along C by x (resp. y). We remark that possibly
x ∈ C, in which case vx is a chord of C. We say that v is flippable (with
respect to C and P) if deg(v) = 3 and c(v) = c(x). We say v and w are
switchable (with respect to C and P) if neither v nor w is flippable and

(i) either deg(v) = 2 or (deg(v) = 3 and there is z1 ∈ N(x) \ {v} with
c(z1) = c(v)); and

(ii) either deg(w) = 2 or (deg(w) = 3 and there is z2 ∈ N(y) \ {w} with
c(z2) = c(w)).

Finally, v and x are exchangeable (with respect to C and P) if deg(v) = 3, v
is not flippable and

(i) x is not the crucial vertex of an almost alternating cycle, and

(ii) for any z1 ∈ N(x) \ {v} with c(z1) = c(v), there exists z′ ∈ N(z1) \ {x}
such that c(z′) 6= c(v).

We define exchangeability for w and y symmetrically.
The key properties of flippable vertices and of switchable and exchange-

able pairs are the following.

Fact 5. If P1 = {A1, B1} is a dominating partition for G, G[A1, B1] contains

a unique alternating cycle C, and v is a flippable vertex with respect to C
and P1, then, letting A2 = A1 ⊖ {v}, B2 = B1 ⊖ {v}, P2 = {A2, B2} is an

acyclic dominating partition for G.

Fact 6. If P1 = {A1, B1} is a dominating partition for G, G[A1, B1] contains

a unique alternating cycle C, and v and w are switchable with respect to C
and P1, then, letting A2 = A1 ⊖ {v, w}, B2 = B1 ⊖ {v, w}, P2 = {A2, B2} is

an acyclic dominating partition for G.

Fact 7. If P1 = {A1, B1} is a dominating partition for G, G[A1, B1] contains

a unique alternating cycle C, and there are vertices v ∈ C and x such that

v and x are exchangeable with respect to C and P1, then, letting A2 = A1 ⊖
{v, x}, B2 = B1 ⊖ {v, x}, P2 = {A2, B2} is an acyclic dominating partition

for G.

6



v′ w v′
v

z1

x

wv

x

(a) Examples of a flippable vertex (v, left) and of a switchable pair of vertices
(v and w, right).

z1

v v

x x

(b) Two situations where v and x are not exchangeable. On the left, v and
x are not exchangeable because x is the crucial vertex of an almost alter-
nating cycle. On the right, v and x are not exchangeable because all of z1’s
neighbours (aside from x) have the same colour as v.

Figure 2: Illustrations of fixable vertices.
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In the proofs of all three facts, we denote the neighbours of v along C by w
and v′. If v has a neighbour not along C we denote this neighbour x.

Proof of Fact 5. We show that (a) P2 contains no alternating cycles, and (b)
P2 is dominating. Any cycle C ′ that does not pass through v has C ′ ∩ A2 =
C ′∩A1 and C ′∩B2 = C ′∩B1; therefore, to prove (a) it suffices to show that
no cycle containing v is alternating with respect to P2. Similarly, to prove
(b) we need only check that each vertex u ∈ N [v] is dominated under P2.

To prove (a), observe that under P2, v has the same colour as both w and
v′; thus no alternating cycle passes through v under P2. To prove (b), note
that since v′ is in C, the neighbour of v′ along C that is not v dominates v′

under P2; symmetrically, w is dominated under P2. Finally, under P2, x is
dominated by v, which establishes (b).

Proof of Fact 6. As in the proof of Fact 5, it suffices to prove that (a) no
cycle containing either v or w is alternating with respect to P2, and (b) each
vertex u ∈ N [v] ∪ N [w] is dominated under P2. Let w′ be the neighbour of
w along C that is not v; if deg(w) = 3 then denote by y the neighbour of w
not along C.

Under P2, v has the same colour as v′ and w has the same colour as w′;
thus, no new alternating cycles pass through the edges vv′ or ww′. Further-
more, if x and y both exist, then under P2, v and x have the same colour
so no cycle through xvwy is alternating. This establishes (a). To prove (b),
first note that v′ and w′ are dominated by their neighbours along C (other
than v and w), and v and w dominate each other under P2. If x exists, then,
by condition (i) in the definition of switchable pairs, x must be dominated
under P2. Symmetrically, if y exists it is dominated under P2. Thus (b)
holds.

Proof of Fact 7. As in the proof of Fact 5, it suffices to prove that (a) no
cycle containing either v or x is alternating with respect to P2, and (b) each
vertex u ∈ N [v] ∪ N [x] is dominated under P2.

Under P2, v has the same colour as both v′ and w; thus, no new alter-
nating cycles pass through v. Since x is not the crucial vertex of an almost
alternating cycle, no new alternating cycles pass through x and (a) holds.
To prove (b), note that v′ and w are dominated by their neighbours along
C (other than v), and v and x are dominated by each other under P2. Let
z1 ∈ N(x) \ {v}. If z1 and x were in the same part of P1, then they are in
different parts of P2, in which case z1 is dominated under P2; otherwise, we
know from condition (ii) of exchangeability that z1 is dominated under P2

by some z′ ∈ N(z1) \ {x}, which establishes (b).
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Motivated by these facts, we say that an alternating cycle C is fixable

(with respect to P), if it has either a flippable vertex or an exchangeable or
switchable pair. The proof of Lemma 4 proceeds by first finding a sequence
of local alterations to P resulting in a dominating partition {A1, B1} such
that G[A1, B1] contains a unique alternating cycle C that is fixable, then
applying one of Facts 5, 6 and 7. We now turn to the details.

Proof of Lemma 4. Let C1, . . . , Ck be a sequence of cycles with C1 the alter-
nating cycle in the statement of the lemma, and such that for i ∈ {2, . . . , k}

(a) Ci is an almost alternating cycle and

(b) denoting the crucial vertex of Ci by ui and its neighbours along Ci by
xi, yi, we have {ui, xi, yi} ∩

⋃i−1
j=1 Cj = ∅.

For i ∈ {1, . . . , k}, let C∗
i be the largest vertex subset of Ci such that C∗

i ∩
⋃i−1

j=1 Cj = ∅ (so, trivially, C∗
1 = C1 and, by (b), C∗

i contains {ui, xi, yi}); we
additionally require that for i ∈ {1, . . . , k − 1}

(c) C∗
i \ {ui} contains no flippable or exchangeable vertices and no switch-

able pairs and

(d) ui+1 has a neighbour vi in C∗
i \ {ui}, and vi 6= ui if i > 1.

Note that ui+1 has the same colour as both its neighbours in Ci+1 and so it
has the opposite colour from vi. See Figure 3. Choose C1, . . . , Ck to maximize
k subject to the constraints (a)–(d). It is of course possible that k = 1. Let
S =

⋃k−1
i=1 {vi, ui+1} — if k = 1 then S = ∅ — and let P ′ = {A′, B′} =

{A ⊖ S, B ⊖ S}. In what follows, we write c(·) in place of cP(·) and c′(·) in
place of cP ′(·).

The lemma follows immediately from Facts 5, 6 and 7 together with the
following claims.

Claim 8. P ′ is a dominating partition for G. Furthermore, either ad(G) = 2
or Ck is the unique alternating cycle in G[A′, B′].

Claim 9. Ck is fixable with respect to P ′.

Proof of Claim 8. Let us consider the sequence of partitions defined by P1 =
P, and, for j ∈ {2, . . . , k}, Sj =

⋃j−1
i=1{vi, ui+1} and Pj = {Aj , Bj} = {A ⊖

Sj , B ⊖ Sj}. We write cj(·) in place of cPj
(·). We show by induction that

Pj is a dominating partition for G and, furthermore, either ad(G) = 2 or
Cj is the unique alternating cycle in G[Aj, Bj ]; this proves the claim since
Pk = P ′. The case j = 1 holds by assumption, so let j ∈ {2, . . . , k}. Note
that Aj = Aj−1 ⊖ {vj−1, uj} and Bj = Bj−1 ⊖ {vj−1, uj}.
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v2

v1

u2

v3
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C1
C2

C4

C3

C5

Figure 3: A diagram of an example set of cycles {C1, C2, C3, C4, C5}.

We first show that Pj is dominating. Observe that if v 6∈ N [vj−1]∪N [uj ]
then none of its neighbours change colour in the transition from Pj−1 to Pj .
Thus, since, by induction, v is dominated under Pj−1, it is also dominated
under Pj . Also, cj−1(vj−1) 6= cj−1(uj), so cj(vj−1) 6= cj(uj) and both vj−1

and uj are dominated under Pj. If v ∈ N(uj) \ {vj−1}, say v = xj , then
xj , uj /∈ Sj−1 by condition (b) in the definition of the cycles C1, . . . , Ck and
so cj−1(xj) = cj−1(uj). Then necessarily cj(xj) 6= cj(uj) and v is dominated
under Pj . If v ∈ N(vj−1) \ {uj}, then let v′ denote the neighbour of v along
Cj−1 that is not vj−1. Since Cj−1 is an alternating cycle in G[Aj−1, Bj−1] by
induction, it follows that cj−1(v) 6= cj−1(v

′). Since v′ ∈ Cj−1, it follows by
condition (b) in the definition of the cycles C1, . . . , Ck that v′ 6= uj . Thus,
cj(v) 6= cj(v

′) and v is dominated under Pj . This completes the proof that
Pj is dominating.

Next, we show that Cj is the only possible alternating cycle in G[Aj , Bj].
Since Aj = Aj−1⊖{vj−1, uj} and Bj = Bj−1⊖{vj−1, uj}, it follows that Cj−1

is not an alternating cycle under Pj . We shall show that we have created no
alternating cycles other than Cj in the transition from Pj−1 to Pj . Under
Pj , the two members of N(vj−1)\{uj} have the same colour as vj−1; thus, no
new alternating cycle passes through vj−1. This means any new alternating
cycle must pass through xjujyj . If some C 6= Cj is alternating under Pj ,
then the subgraph C ∪ Cj \ {uj} contains an alternating cycle C ′ 6= Cj−1.
As C ′ contains neither vj−1 nor uj, C ′ is alternating under Pj−1, but this
contradicts the uniqueness of Cj−1 in G[Aj−1, Bj−1]. Now to complete the
inductive step and the proof we note that if Cj is not alternating in G[Aj , Bj]
then Pj is acyclic, so ad(G) = 2.
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To prove that Ck is fixable with respect to P ′ we first show that Ck is fixable
with respect to P. In fact, we show the following stronger statement.

Claim 10. One of the following holds:

(A) C∗
k \ {uk} contains a vertex that is flippable with respect to Ck and P;

(B) C∗
k \ {uk} contains a pair of vertices that are switchable with respect to

Ck and P;

(C) there are vertices v and x with v ∈ C∗
k \ {uk} such that v and x are

exchangeable with respect to Ck and P and such that

∀ z1 ∈ N(x) \ {v}, c(z1) = c(x) 6= c(v); (1)

(D) there are vertices v and x with v ∈ C∗
k \ {uk} such that v and x are

exchangeable with respect to Ck and P, and such that there exists z1 ∈
N(x) \ {v} with c(z1) = c(v).

Note that ((C) or (D)) is equivalent to the condition that there are vertices
v and x with v ∈ C∗

k \ {uk} such that v and x are exchangeable with respect
to Ck and P. Thus, Claim 10 is equivalent to the condition that Ck is fixable
with respect to P within C∗

k \{uk}. We have separated (C) and (D) because
they require different treatments not only in this proof but also later in the
proof of Claim 9.

Proof of Claim 10. As a first step, we prove the following.

(⋆) If none of (A), (B), (C) holds, then there exists a vertex v̂ ∈ C∗
k with a

neighbour x̂ /∈ Ck that is crucial for some almost alternating cycle Ĉ.

We break the proof of (⋆) into two main cases.
In the first case, suppose there are two adjacent vertices v̂, ŵ ∈ C∗

k \{uk}.
If it exists, denote by x̂ (resp. ŷ) the neighbour not along Ck of v̂ (resp. ŵ).
If v̂ or ŵ is flippable with respect to Ck and P, then (A) holds; otherwise,
it follows that either deg(v̂) = 2 or (deg(v̂) = 3 and c(x̂) 6= c(v̂)), and either
deg(ŵ) = 2 or (deg(ŵ) = 3 and c(ŷ) 6= c(ŵ)). If v̂ and ŵ are switchable with
respect to Ck and P, then (B) holds; otherwise, either v̂ or ŵ has degree three
— without loss of generality, we may presume v̂ — and by the definition of
switchability (1) holds with v = v̂, x = x̂. Clearly, x̂ /∈ Ck. We note that
since (1) holds with v = v̂, x = x̂, no vertex in N(x̂) \ {v̂} has the same
colour as v̂, so that condition (ii) in the definition of exchangeable vertices
holds vacuously. Therefore, if (C) does not hold then it must be the case
that x̂ is the crucial vertex of an almost alternating cycle Ĉ.
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In the second case, suppose there are two adjacent vertices v̂, ŵ ∈ Ck with
v̂ ∈ C∗

k \ {uk} and ŵ /∈ C∗
k . Since ŵ /∈ C∗

k , choose j < k as small as possible
such that ŵ ∈ Cj; necessarily, ŵ ∈ C∗

j . By the definition of C∗
k , v̂ /∈ Cj and

so the other two neighbours of ŵ are in Cj. Since Ck is an almost alternating
cycle and ŵ /∈ {uk, xk, yk}, it follows that c(v̂) 6= c(ŵ). Therefore, if ŵ = vj ,
then it must be that v̂ = uj+1, but this contradicts either that v̂ ∈ C∗

k or
that v̂ 6= uk. Similarly, if ŵ = uj, then it must be that v̂ = vj−1, again a
contradiction.

Next, we consider the assumption — by condition (c) in the definition of
the cycles C1, . . . , Ck — that ŵ and v̂ are not exchangeable with respect to
Cj and P. If condition (i) of exchangeability does not hold, then v̂ is the
crucial vertex of some almost alternating cycle. This implies that the two
neighbours of v̂ other than ŵ have the same colour as v̂. Then it must be the
case that v̂ is flippable with respect to Ck and P, in which case (A) holds.
If (A) does not hold and additionally condition (ii) of exchangeability fails,
then v̂ has a neighbour x̂ 6= ŵ for which c(x̂) = c(ŵ) and such that every
element of N(x̂) \ {v̂} has the same colour as ŵ. If x̂ ∈ Ck, then it must be
that x̂ ∈ {xk, yk} and x̂ is flippable with respect to Ck and P, so that (A)
holds. Otherwise, (1) holds with v = v̂ and x = x̂. Furthermore, in this case
condition (ii) for the exchangeability of v̂ and x̂ with respect to Ck and P
is vacuously satisfied. Thus, either (C) holds or x̂ is crucial for some almost
alternating cycle Ĉ.

z1 ∈ Ĉ

v̂ ŵ

x ∈ Ĉ
z2 ∈ Ĉ

Figure 4: The situation (⋆) in Claim 10.

In both main cases, we found that (⋆) holds; we hereafter assume that (A),
(B), and (C) do not hold and let x̂, v̂, and Ĉ be as in (⋆). Let N(x̂) \ {v̂} =
{z1, z2} and note that c(z1) = c(z2) = c(x̂). See Figure 4. Since v̂ ∈ C∗

k ,
it follows that if x̂ ∈ Ci for some i < k, then {x̂, z1, z2} ⊂ Ci, which then
implies that x̂ = ui and v̂ = vi−1, an impossibility. If z1 = ui for some i ≤ k,
then x̂ ∈ {xi, yi} and x̂ is flippable with respect to Ci and P, a contradiction.
Also, if z1 is some non-crucial vertex in Ci (take i minimum so that z1 ∈ C∗

i ),
then, since c(z1) = c(x̂) and x̂ /∈ Ci, z1 is flippable with respect to Ci, which
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contradicts either the condition (c) in the definition of the cycles C1, . . . , Ck

(if i < k), or the assumption that (A) does not hold (if i = k). Symmetrically,
we can show that z2 /∈ Ci for any i ≤ k. If furthermore (D) does not hold,
then it follows that conditions (a)–(d) in the definition of the cycles hold for
C1, . . . , Ck+1 by letting Ck+1 = Ĉ, uk+1 = x̂, xk+1 = z1, yk+1 = z2. This
would contradict the maximality of k.

Finally, to conclude that Ck is fixable with respect to P ′ and complete
the proof of Claim 9, we show that in fact Ck is fixable with respect to P ′

at “the same place” that it is fixable with respect to P. In doing so, we use
the following easy observation, which guarantees that P ′ and P are not very
different near to C∗

k .

Fact 11. If v ∈ C∗
k \ {uk}, then (N(v) \ {uk}) ∩ S is empty.

Proof. Fix j ∈ {1, . . . , k−2}, and let w ∈ N(v)\{uk}. If w ∈ {vj, uj+1} then
N(w) ⊂ Cj ∪Cj+1, so v ∈ Cj ∪Cj+1, which contradicts the fact that v ∈ C∗

k .
Likewise, if vk−1 is adjacent to v then v is in Ck−1, a contradiction.

Proof of Claim 9. We split the proof up according to which of (A), (B), (C),
and (D) in Claim 10 holds.

(A): Suppose v ∈ C∗
k \ {uk} is flippable with respect to Ck and P, and

denote by x the neighbour not along Ck of v. Since v ∈ C∗
k \ {uk}, v /∈ S.

Furthermore, x /∈ S by Fact 11, so c′(x) = c(x) = c(v) = c′(v) and v is
flippable with respect to P ′.

(B): Next, suppose v and w in C∗
k \ {uk} are switchable with respect to

Ck and P. If v (resp. w) has degree three then denote the neighbour of
v (resp. w) not along Ck by x (resp. y). Since neither v nor w is in S,
c′(v) = c(v) 6= c(w) = c′(w). If deg(v) = 3 then since v and w are switchable,
c(x) 6= c(v), and furthermore there exists z1 ∈ N(x) \ {v} with c(z1) = c(v).
Since x has two neighbours with the opposite colour under P, x 6= uk, and
so x /∈ S by Fact 11. Thus, c′(x) = c(x) 6= c(v) = c′(v).

Suppose that z1 ∈ S. Note that if z1 = ui+1 for some i ∈ {1, . . . , k − 1},
then x must be vi (and the other two neighbours of z1 have the same colour
as z1 under P), but this contradicts that x /∈ S. So it must be that z1 = vi

for some i ∈ {1, . . . , k − 1}. Then, as x 6= ui+1 and Ci does not intersect
v, necessarily x ∈ Ci and also x must have another neighbour z2 /∈ {z1, v}
with z2 ∈ Ci. See Figure 5. If c(z2) 6= c(x), it follows, as we showed for z1,
that z2 /∈ {u2, . . . , uk}. If z2 = vj for some j 6= i, then, as x 6= uj+1 and Cj

does not intersect v, it must be that x and z1 are both in Cj . In particular,
vj = z2 ∈ Ci and vi = z1 ∈ Cj, but this contradicts either that vi ∈ C∗

i or

13



vi = z1 z2 ∈ Ci

x ∈ Ci

v w

Figure 5: A situation in case (B) in Claim 9. (Half-fill indicates that the
colour of the vertex under P is not yet determined.)

that vj ∈ C∗
j . So if c(z2) 6= c(x), then c′(z2) = c′(v). If c(z2) = c(x), then

necessarily z2 = ui, so that c′(z2) 6= c(z2) = c(x) and c′(z2) = c′(v).
So we have just shown that if deg(v) = 3 then c′(x) 6= c′(v) and x has a

neighbour that is not v with the same colour as v under P ′. Symmetrically,
if deg(w) = 3 then c′(y) 6= c′(w) and y has a neighbour that is not w with the
same colour as w under P ′. Therefore, v and w are switchable with respect
to Ck and P ′.

(C): Next, suppose that there are vertices v and x with v ∈ C∗
k \ {uk} such

that v and x are exchangeable with respect to Ck and P and such that (1)
holds. If x = uk, then it must be that v = vk−1 which contradicts that
v ∈ C∗

k ; thus, x /∈ S by Fact 11. Let z1 be an element of N(x) \ {v}
and suppose z1 ∈ S. If z1 = vi for some i ∈ {1, . . . , k − 1}, then necessarily
x = ui since c(z1) = c(x), contradicting that x /∈ S. Thus, z1 = ui+1 for some
i ∈ {1, . . . , k−2}, in which case x ∈ Ci+1 (as c(x) = c(z1)). Since v /∈ Ci+1, x
has another neighbour z2 with z2 ∈ Ci+1\{v, z1}. Howevever, it must be that
c(z2) 6= c(x), contradicting (1). Thus, z1 /∈ S so c′(z1) = c(z1) = c(x) = c′(x).
As z1 was arbitrary in N(x) \ {v}, it follows that (1) holds with respect to
P ′.

We now must show that x does not become the crucial vertex of an
almost alternating cycle C under P ′. If it does, then C contains none of the
vertices vi. (If vi ∈ C for some i, then, since no element of N(x) \ {v} is
in {v1, . . . , vk−1}, C would contain two consecutive vertices, one of them vi,
with the same colour in P ′ and so would not be alternating under P ′.) Also,
C contains at least one of the vertices ui, or else C was already an alternating
cycle under P. If ui ∈ C, then since vi−1 /∈ C, it must be that xi ∈ C and
yi ∈ C. Let I = {i : ui ∈ C} and let

H =
⋃

i∈I

Ci ∪ (C \ {x}) \
⋃

i∈I

{ui}.

All of the edges between vertices in H cross the partition P; also, H is
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connected and there is a path P in H between the two neighbours of x other
than v. But then V (P )∪{x} induces an almost alternating cycle under P for
which x is the crucial vertex, contradicting that v and x are an exchangeable
pair with respect to Ck and P. Therefore, v and x are exchangeable with
respect to Ck and P ′.

(D): Finally, suppose there are vertices v and x with v ∈ C∗
k \ {uk} such that

v and x are exchangeable with respect to Ck and P, and such that there
exists z1 ∈ N(x) \ {v} with c(z1) = c(v). If it exists, denote the vertex in
N(x)\{v, z1} by z2. By condition (ii) for the exchangeability of v and x with
respect to Ck and P, there exists z′ ∈ N(z1) \ {x} such that c(z′) 6= c(v).
Denote the vertex in N(z1) \ {x, z′} (if it exists) by z′′. By condition (i) of
exchangeability, x 6= uk; thus, x /∈ S by Fact 11.

First, assume that z1 ∈ S. Now, z1 /∈ {u2, . . . , uk} since it has two
neighbours, z′ and x, with the opposite colour under P. Thus z1 = vi for
some i ∈ {1, . . . , k − 1}. Since x /∈ S, x 6= ui+1 and x ∈ Ci. Pick j to
be the smallest such that x ∈ Cj, so that x ∈ C∗

j . Since v ∈ C∗
k , v /∈ Cj,

so z1 and z2 are both in Cj . Since c(z1) 6= c(x), x 6= uj. We now claim
that x and v are exchangeable with respect to Cj and P, which contradicts
condition (c) in the definition of the cycles C1, . . . , Ck. Since v 6= uk and Ck

is an almost alternating cycle, one of the neighbours of v along Ck has the
opposite colour from v under P. See Figure 6(a). This verifies condition (i)
for the exchangeability of x and v with respect to Cj and P. If w ∈ N(v)\{x}
and c(w) = c(x)( 6= c(v)), then either the neighbour w′( 6= v) of w along Ck

satisfies c(w′) 6= c(x) or w′ = uk. In the latter case, w ∈ C∗
k \ {uk} and,

since we are not in case (A) or (B), w is not flippable and w and x are not
switchable with respect to Ck and P; thus, we must have deg(w) = 3 and the
neighbour y of w not along Ck must satisfy c(y) 6= c(x). As w was arbitrary
in N(v) \ {x}, this verifies condition (ii) for the exchangeability of x and v
with respect to Cj and P.

We hereafter assume that z1 /∈ S. Then c′(z1) = c′(v), so x is not the cru-
cial vertex of an alternating cycle with respect to P ′, which verifies condition
(i) for the exchangeability of v and x with respect to Ck and P ′. In order
to verify condition (ii) with respect to z1 for the exchangeability of v and x
with respect to Ck and P ′, we must show that there exists z ∈ N(z1) \ {x}
such that c′(z) 6= c′(v). (With respect to condition (ii), the situation for z2,
if it exists, will be handled separately.) Suppose otherwise; in other words,
assume both of the following:

(I) if z ∈ N(z1) \ {x} and c(z) 6= c(v), then z ∈ S; and,

(II) if z ∈ N(z1) \ {x} and c(z) = c(v), then z /∈ S.
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z1 ∈ Cj

v w

z′

x ∈ Cj

z2 ∈ Cj

w′

(a)

vi = z′

v

z1 ∈ Ci

z′′ ∈ Ci

x

(b)

Figure 6: Illustrations of situations in case (D) in Claim 9. (Half-fill indicates
that the colour of the vertex under P is not yet determined.)

In particular, by (I), z′ ∈ S. Note that z′ /∈ {u2 . . . , uk} since z1 is a neighbour
of z′ with the opposite colour and z1 /∈ S, so we may suppose that z′ = vi

for some i ∈ {1, . . . , k − 1}. Since z1 6= ui−1, z1 ∈ Ci. We now show that
x ∈ Cj for some j < k. If not, then z′′ exists and z′′ ∈ Ci. It must be
that c(z′′) = c(z) 6= c(v), for otherwise, by (II), z′′ /∈ S and then Ci contains
two consecutive vertices, z1 and z′′, that are both not ui and both the same
colour, a contradiction. So c(z′′) 6= c(v) and, by (I), z′′ ∈ S. See Figure 6(b).
Then, as we argued for z′, z′′ = vi′ for some i′ ∈ {1, . . . , k − 1}, i 6= i′.
However, it cannot be that both x /∈ Ci and x /∈ Ci′, as otherwise there is a
contradiction either with vi ∈ C∗

i or with vi′ ∈ C∗
i′ . We now have that x ∈ Cj

for some j < k, and may pick j smallest, so that x ∈ C∗
j . However, we can

argue, as we did in the case z1 ∈ S, that v /∈ Cj, x 6= uj and, ultimately, that
x and v are exchangeable with respect to Cj and P, a contradiction.

We have just shown that, under the assumption that z1 /∈ S, there exists
z ∈ N(z1) \ {x} such that c′(z) 6= c′(v). As we argued above for z1, if z2

exists, c(z2) = c(v) and z2 /∈ S, then there exists z ∈ N(z2) \ {x} such
that c′(z) 6= c′(v); therefore, in this case condition (ii) with respect to z2

is satisfied and v and x are exchangeable with respect to Ck and P ′. If z2

does not exist, then we need not check condition (ii) with respect to z2. We
also need not check condition (ii) with respect to z2 if we assume that z2

exists, c(z2) 6= c(v) and z2 /∈ S. If z2 exists, c(z2) 6= c(v) and z2 ∈ S, then,
since x /∈ S, there is some element z′′ ∈ N(z2) \ {x} such that c(z′′) 6= c(z2)
and z′′ ∈ S; thus, in this case, c′(z2) = c′(v) and c′(z′′) 6= c′(v) so that
condition (ii) with respect to z2 holds. Note that the case in which z2 exists,
c(z2) = c(v) and z2 ∈ S reduces to the case z1 ∈ S, by exchanging the labels
z1 and z2. We conclude that, if z1 /∈ S, then v and x are exchangeable with
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respect to Ck and P ′. This also concludes the analysis of case (D).

This establishes that in all cases, Ck is fixable with respect to P ′, which
completes the proof of Claim 9.

This also completes the proof of Lemma 4.

3 Graphs of arbitrary maximum degree

3.1 Proof of Theorem 3

We make use of the following result, which may also be of independent in-
terest.

Theorem 12. There exists a universal constant c > 0 such that every graph

G = (V, E) with maximum degree d has a dominating set D satisfying |N2[v]∩
D| ≤ cd ln d for all v ∈ V .

The proof of Theorem 3 is straightforward given Theorem 12.

Proof of Theorem 3. Given a graph G = (V, E) of maximum degree d, let
D be the dominating set that is guaranteed by Theorem 12. We first assign
colours to the members of D by greedily colouring the vertices of D in the
square of G; this requires at most k = ⌊cd ln d⌋ colours, since vertices of D
are adjacent at most cd ln d − 1 other vertices of D in the square of G. To
extend this colouring to the entire graph, we use one new colour for members
of the set V \ D. It can be checked that this assignment of colours gives an
acyclic dominating partition with k + 1 = O(d ln d) parts.

The following lemma is a crucial element in the proof of Theorem 12 and
we show it using a linear programming approach.

Lemma 13. For any graph G = (V, E) with maximum degree d, there exist

nonnegative reals (wv)v∈V such that
∑

u∈N [v] wu ≥ 1 and
∑

u∈N2[v] wu ≤ d + 1
for all v ∈ V .

Proof. Without loss of generality, let us assume V = {1, . . . , n}. We shall
consider the optimisation problem of minimising

max
i∈{1,...,n}

∑

j∈N2[i]

wj
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subject to the constraints
∑

j∈N [i] wj ≥ 1 for all i ∈ {1, . . . , n}, over all
w1, . . . , wn ≥ 0. This optimisation problem can be written as a linear pro-
gram as follows:

minimise z

subject to
∑

j∈N2[i]

wj ≤ z (i ∈ {1, . . . , n}),

∑

j∈N [i]

wj ≥ 1 (i ∈ {1, . . . , n}),

w1, . . . , wn ≥ 0.

(2)

Let us write

A =

(

−N2[G] 1
N [G] 0

)

, b =

(

0
1

)

,

y = (w1, . . . , wn, z)T , c = (0, . . . , 0, 1)T .

Here, 1 (resp. 0) denotes the all-ones (resp. all-zeros) vector of length n,
and N [G] (resp. N2[G]) denotes the (n × n)-matrix whose rows are the in-
cidence vectors of the closed neighbourhoods N [i] (resp. N2[i]). With these
definitions we can write (2) in the standard form as follows:

minimise cT y

subject to Ay ≥ b,
y ≥ 0.

The dual linear program is the following:

maximise bT x

subject to AT x ≤ c,
x ≥ 0.

Equivalently, writing x = (θ1, . . . , θn, ξ1, . . . , ξn)T we see that this dual pro-
gram can be written as follows:

maximise ξ1 + · · · + ξn

subject to
∑

j∈N [i]

ξj ≤
∑

j∈N2[i]

θj (i ∈ {1, . . . , n}),

θ1 + · · · + θn ≤ 1,
θ, ξ ≥ 0.

(3)
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We shall now show that the optimum of (3) is bounded above by d+1, which
proves the result.

First notice that we may add the constraints

ξi ≤
∑

j∈N2[i]

θj (i ∈ {1, . . . , n}), (4)

without altering the value of the optimum, since they are trivially satisfied
by any choice of θ, ξ that is feasible for (3).

Given a vector θ = (θ1, . . . , θn) of nonnegative numbers, let P (θ) de-
note the set of all ξ = (ξ1, . . . , ξn) ∈ R

n that satisfy ξi ≤
∑

j∈N2[i] θj and
∑

j∈N [i] ξj ≤
∑

j∈N2[i] θj for all i ∈ {1, . . . , n} — notice we are no longer

requiring ξ to be nonnegative — and let f(θ) denote the supremum over
all ξ ∈ P (θ) of ξ1 + · · · + ξn. To finish the proof, it suffices to show that
f(θ) ≤ (d + 1)(

∑n
i=1 θi) for all nonnegative θ with θ1 + · · · + θn ≤ 1. We

in fact prove that, letting k = max{i : θi > 0} (which we interpret as 0 if
θi = 0 for all i), f(θ) ≤ (d + 1)(

∑k
i=1 θi); we prove this stronger statement

by induction on k.
By the constraints in (4), the claim trivially holds when k = 0, so consider

0 < k ≤ n and suppose the claim holds for all k′ < k. Pick ξ ∈ P (θ)
arbitrarily and denote ξ′ = ξ − θk1N [k] (where 1N [k] denotes the incidence
vector of N [k]). Note that ξ′ ∈ P (θ1, . . . , θk−1, 0, . . . , 0), because (ξ′)k =
ξk −θk and any i with k ∈ N2[i] satisfies

∑

j∈N [i](ξ
′)j ≤

∑

j∈N [i] ξj −θk as i is

incident to at least one j ∈ N [k]. This gives that f(θ1, . . . , θk−1, 0, . . . , 0) ≥
∑k

j=1 ξ′j =
∑k

j=1 ξj − θk(deg(k) + 1). Taking the supremum over all ξ ∈ P (θ)
and applying induction, we thus have

f(θ) − θk(deg(k) + 1) ≤ f(θ1, . . . , θk−1, 0, . . . , 0) ≤ (d + 1)(

k−1
∑

i=1

θi),

which completes the inductive step and the proof.

Now, for the proof of Theorem 12, we also need two standard probabilistic
tools. One is a symmetric version of the Lovász Local Lemma. The other is
a Chernoff-Hoeffding type bound for sums of indicator variables.

Lemma 14 (Lovász Local Lemma, [7]). Let A be a finite set of events and

suppose that p, δ satisfy that

1. P(A) ≤ p for all A ∈ A, and

2. each A ∈ A is independent of all but at most δ of the other events in

A.
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If ep(δ + 1) ≤ 1, then P(
⋂

A∈A A) > 0.

Lemma 15. Let Z =
∑m

i=1 Ii be a sum of independent {0, 1}-valued random

variables, and pick k > µ = EZ. Then

P(Z > k) ≤ e−µH(k/µ),

where H(x) = x ln x − x + 1.

Lemma 15 is essentially what is found in Janson,  Luczak and Ruczinski [9],
but in a form that we desire. A short proof of this lemma is given in the
appendix.

Proof of Theorem 12. Let w = (wv)v∈V be the vector from Lemma 13, and
set pv = min(100wv ln d, 1) for all v. Let us now construct the set D at
random, by selecting each vertex v with probability pv independently of all
other vertices. We claim that with positive probability, the set D has the
required properties. In order to prove our claim we apply the Lovász Local
Lemma. For v ∈ V , let Av denote the event that either D ∩ N [v] = ∅ or
|D ∩ N2[v]| > 200d lnd. If none of the events Av occur, then the set D will
satisfy the conclusion of the theorem.

If pu = 1 for some u ∈ N [v] then P(D ∩ N [v] = ∅) = 0. If pu < 1 for all
u ∈ N [v], then

P(D ∩ N [v] = ∅) ≤
∏

u∈N [v]

(1 − 100wu ln d)

≤
∏

u∈N [v]

exp[−100wu ln d] = d−100
P

u∈N[v] wu

≤ d−100,

where the last inequality is due to Lemma 13. Next, let us consider the
probability that |D ∩N2[v]| > 200d ln d. Let us write µ =

∑

u∈N2[v] pu. Note
that 1 ≤ µ ≤ 100d lnd by Lemma 13. By Lemma 15, we have that

P(|D ∩ N2[v]| > 200d ln d) ≤ exp[−µH(200d ln d
µ

)]

≤ exp[−100 · H(2) · d ln d] ≪ d−100.

Thus, P(Av) ≤ 2d−100 for d sufficiently large.
Each event Av is independent of all but at most d4 others; therefore, for

sufficiently large d, it holds that

e · P(Av) · (d4 + 1) < 1.

Applying the Lovász Local Lemma, we conclude P(
⋂

v∈V Av) > 0, as required.
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3.2 Proof of Theorem 2

Let n, m be integers and let us define a graph Gn,m = (V, E) with 2nm
vertices as follows. Set V = {v1

i,j, v
2
i,j : i ∈ {1, . . . , n}, j ∈ {1, . . . , m}} and

add vx
i,jv

x′

i′,j′ to E if and only if i = i′ or j = j′. The graph Gn,m may be
envisaged as a (n×m)-matrix with two vertices in each entry, where vertices
are adjacent if and only if they share the same row or column. Let us also
define Hn,m = Gn,m \ {v2

i,m : i ∈ {1, . . . , n}}, i.e. Hn×m is the same as Gn,m

except that it has only one vertex in each entry of the last column. Thus,
Gn,m is a regular graph with degree 2(n + m) − 3, and Hn,m has maximum
degree 2(n + m) − 4.

Lemma 16. Suppose n ≤ m. Then

χ2(n+m)−4
a (Gn,m) ≥ n/2 and χ2(n+m)−3

a (Hn,m+1) ≥ n/2.

Let us first show how this lemma implies Theorem 2.

Proof of Theorem 2. Let d be an arbitrary positive integer. There is a posi-
tive integer n such that we can write either d = 4n−4, d = 4n−3, d = 4n−2
or d = 4n−1; thus, d is the maximum degree of one of Hn,n, Gn,n, Hn,n+1, and
Gn,n+1, respectively. By Lemma 16, it follows that χd−1

a (d) ≥ n/2 ≥ (d+1)/8,
so that χd−1

a (d) = Ω(d) as required.

Proof of Lemma 16. Our proof improves upon the corresponding analysis in
Addario et al. [1]. We shall focus on the case of Hn,m+1, since the case of Gn,m

is similar. Let d be the maximum degree of Hn,m+1 and suppose that there
exists a (d − 1)-improper colouring c : V → {1, . . . , k} for some k < n/2.

In any row, there is at most one colour that occurs more than once,
because if two distinct colours occur more than once in the same row, there
is a 4-cycle alternating between them. Pick an arbitrary row. As the number
of colours used is less than n/2, there is some colour that appears at least
2m + 2 − n/2 ≥ 3(m + 1)/2 + 1 times in this row. We call this colour the
“dominant colour” of that row. Moreover, for any i ∈ {1, . . . , n}, there are
more than (m + 1)/2 values j ∈ {1, . . . , m} for which both vertices v1

i,j, v
2
i,j

are coloured by the dominant colour.
Now consider rows i, i′ for i 6= i′. By the above, there must exist j ∈

{1, . . . , m} such that the pair v1
i,j, v

2
i,j both have the dominant colour of row i

and the pair v1
i′,j, v

2
i′,j both have the dominant colour of row i′. We conclude

that rows i and i′ must have the same dominant colour, for otherwise the
4-cycle v1

i,jv
2
i′,jv

2
i,j, v

1
i′,j is alternating. As i and i′ were arbitrary, it follows

that all rows have the same dominant colour. By similar aguments, there is
a single dominant colour for the columns 1 to m; furthermore, the dominant
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colour for the rows and the dominant colour for the columns must coincide
and we may assume this colour is, say, 1.

Because the colouring is (d − 1)-improper, it must either hold that none
of the rows is monochromatic or that none of columns 1 to m is monochro-
matic, for if both row i and column j (with i ∈ {1, . . . , n} and j ∈ {1, . . . , m})
are monochromatic then the vertices v1

i,j, v
2
i,j and their d neighbours all have

colour 1. Let us assume none of columns 1 through m is monochromatic.
(The case when no row is monochromatic is similar.) For technical reasons,
let us assume by permuting the rows that if column m + 1 is not monochro-
matic with colour 1, then a colour different from 1 occurs in the intersection
of row 1 and column m + 1.

Now let A1 ⊆ {2, . . . , k} be the set of non-dominant colours appearing in
the first row, and let J1 ⊆ {1, . . . , m+1} be the set of columns in which these
colours appear (in the first row). Note that either m+1 ∈ J1 or column m+1
is monochromatic with colour 1, by assumption. If a colour from A1 appears
in column j ∈ {1 . . . , m}\J1 then there is an alternating 4-cycle through the
vertices v1

1,j , v
2
1,j, both of colour 1; thus, colours from A1 appear only in the

columns from J1. For i ∈ {2, . . . , n}, let Ai ⊆ {2, . . . , k} be the set of colours
that appear in row i and columns {1, . . . , m + 1} \

⋃i−1
j=1 Jj ; let Ji be the

corresponding set of columns in which these colours appear (in row i). By
the same logic, the colours from Ai do not appear outside the columns from
Ji. Observe that |Ai| ≥ |Ji| and the sets A1, . . . , An are mutually disjoint.
Since none of the columns 1 to m is monochromatic, each is a member of
exactly one Ji and hence

k − 1 ≥ |A1| + · · · + |An| ≥ |J1| + · · · + |Jm| ≥ m ≥ n.

But this contradicts the assumption that k < n/2.
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Appendix

Proof of Lemma 15. Let pi = EIi. The moment generating function of Z
equals

EetZ =
∏

i

EetIi =
∏

i

((1 − pi) + etpi) ≤ e−(1−et)
P

i pi = e−µ(1−et).

For any t > 0, Markov’s inequality gives

P(Z > k) = P(etZ > etk) ≤ EetZ/etk = e−µ(t(k/µ)−et+1).

Setting t = ln(k/µ) gives the result.
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