A precise threshold for quasi-Ramsey numbers
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A clique has all possible edges and a stable set has none.
The clique number w is the number of vertices in a largest clique.

The stability number « is the number of vertices in a largest stable set.



The binomial random graph G, , championed by Erdés and Rényi 1959 /1960:

V(Grp):  [nl=1{L,....,n}
E(Gnp): each of (3) possible edges included independently with
probability p = p(n)
Due to its elegance and interesting properties, G, , has been widely studied.

We want properties of Gy, to hold asymptotically almost surely (a.a.s.),
i.e. with probability — 1 as n — co.



al !n,1/2lv wl !n,1/2l

a(Gp,1/2) ~ 2log, nand w(Gp1/2) ~ 2log, na.as.



O‘(Gn,l/Z)v W(Gn,1/2)

a(G,1/2) ~ 2log, n and w(G,1/2) ~ 2log, n a.as.

Here are some classic applications.

o Erdds 1947 (also Spencer 1977): The best asymptotic lower bound on
diagonal Ramsey numbers to date, R(k, k) > Q(k2*/?) as k — oo.

(Conlon 2009: R(k, k) < p2k—Qllog” k/ loglog k) a5 J 00.)

R(k, k) is the least n such that VG, |V(G)| = n: a(G) > k or w(G) > k.



O‘(Gn,l/Z)v W(Gn,1/2)

a(G,1/2) ~ 2log, n and w(G,1/2) ~ 2log, n a.as.

Here are some classic applications.

o Erdds 1947 (also Spencer 1977): The best asymptotic lower bound on
diagonal Ramsey numbers to date, R(k, k) > Q(k2*/?) as k — oo.

(Conlon 2009: R(k, k) < p2k—Qllog” k/ loglog k) a5 J 00.)
R(k, k) is the least n such that VG, |V(G)| = n: a(G) > k or w(G) > k.

e Erdés 1959: Construction of graphs of high girth and chromatic number.

e Erdés and Fajtlowicz 1981: Short disproof of Hajés's conjecture.

A sharp two-point formula is known: for every € > 0,
a(Gn1p2) = LZ log, n — 2log, (2'0752") +1+ 5J a.as.

Matula 1972 (cf. Bollobds and Erdés 1976).



Instead of cliques and stable sets, consider dense and sparse sets.

Let t > 0 parameterise how close a set must be to perfectly dense or sparse,
in terms of minimum or maximum degree.
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Instead of cliques and stable sets, consider dense and sparse sets.

Let t > 0 parameterise how close a set must be to perfectly dense or sparse,
in terms of minimum or maximum degree.

t-clique has min degree > k — 1 — t; t-stable set has max degree < t.
w" is the number of vertices in a largest t-clique.
o' is the number of vertices in a largest t-stable set.

(Note that t = 0 is clique or stable set, while t = k — 1 is anything.)
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For all G (not random),

af(G) < (t+1)a(G) (since A(H) <t = x(H)<t+1)
a(G) < o'(G) (*)



We make some general remarks on o. (Symmetric remarks valid for w'.)

For t > 0, how does o' compare to o?

For all G (not random),

a(G) < (t+1)a(G)  (since A(H) <t = x(H) <t+1)
a(G) < o'(G) (%)
“G) < % (due to Lovasz 1966)
M) < (g
(t+DIV(G)| < a'(6) (%)
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In particular, () and (*x) imply a.a.s.

at(G,,yl/g) > aGp,12) ~ 2log, n,
(t+1)n

HGpipp) > 2
6% ( ,1/2) = A(Gn,1/2) + 1

~ 2t

but could af(G,,1/2) be much bigger?



at(Gn,1/2)

In particular, () and (*x) imply a.a.s.

at(G,,yl/g) > aGp,12) ~ 2log, n,
(t+1)n

HGpipp) > 2
6% ( ,1/2) = A(Gn,1/2) + 1

~ 2t

but could af(G,,1/2) be much bigger?
Proposition (Kang and McDiarmid 2007/2010)

e Ift = o(log n), then a*(G, 1/2) ~ 2log, n a.a.s.
o Ift =w(logn) and t = o(n), then a'(G,1/2) ~ 2t a.a.s.

(And this extends with 2log,(np) and t/p nearly down to p = ©(1/n).)



t = ©(log n)

What happens at the transition t = ©(log n)?

Theorem (Kang and McDiarmid 2010)

There is a function k = k(7), continuous and strictly increasing for T € [0, ),
with k(0) = 2/log2 and k(7) ~ 27 as T — oo, such that, if t ~ 7 log n, then

a'(Gn12) ~ k(7)logn a.a.s.



What is the meaning of k7



/\*

What is the meaning of k7

We pass to the average degree, i.e.
the maximum degree is at most t implies average degree is at most t.

(The hard work is to show we do not lose much in this relaxation.)
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What is the meaning of k7

We pass to the average degree, i.e.
the maximum degree is at most t implies average degree is at most t.

(The hard work is to show we do not lose much in this relaxation.)

K is defined using the Fenchel-Legendre transform of
logarithmic moment generating function of Bernoulli(1/2),

A*(x) = { xlog(2x) + (1 — x)log(2(1 — x)) x €[0,1]

00 otherwise ’

where A*(0) = log 2 = A*(1).
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K is defined using the Fenchel-Legendre transform of
logarithmic moment generating function of Bernoulli(1/2),

e e

where A*(0) = log2 = A*(1).

K is based on the following being around 1:

()= () ()

where k = klogn and t = T log n.

I




Back to Ramsey numbers!

Define the homogeneous number h :== max{«, w}.

The bounds on R(k, k) due to Erd8s and Szekeres 1935, Erdés 1947 show

e h(G) > Llog, |V(G)| for all G and
e h(G) < 2log, |V(G)| for some G with |V(G)] large enough.

T Picture borrowed from the cover of Soifer 2009.



Quasi-Ramsey problem

Define the t-homogeneous number h' := max{a‘, w'}.
Observe that
e h'(G) > 1log, |V(G)| for all G for all t >0 and

e h°(G) < 2log, |V(G)| for some G with |V(G)| large enough,
o H1(G) > |V(G)| for all G.
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A rough threshold

As we increase t, when could we expect a linear lower bound on h'?
About halfway!
Proposition (Erdds and Pach 1983)
Let t = t(k) = c(k — 1) for some fixed 0 < ¢ < 1.

e h'(G) = O(log, |V(G)|) for some G with |V(G)| large enough if c < 1/2.
o h'(G) =Q(|V(G)]|) for all G if c > 1/2.

Erd8s and Pach also obtained a polynomial lower bound at precisely ¢ = 1/2.



A rough threshold

What is an intuition for the threshold being around halfway?
One can try to extend the Erd6s 1947 probabilistic construction, using the
sharp estimates on af(Gp1/2) ~ w'(Gn1/2), hence on h'(Gp1/2).
k(7) from earlier is always greater than 27 and x(7) — 27 as 7 — oo.

So h'(Gp1/2) < knlogn a.as. if kn > (24 €)7, and 7, is large enough wrt ¢,
however this is not true for k, < 27,.

We suspect that any improvement of this bound in this regime would yield a
corresponding improvement for the t = 0 case!
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Moreover, when could we expect a polynomial lower bound on h'?
Let us first see where h*(G, 1/2) (and large deviations) leads us.

Proposition (Kang, Pach, Patel and Regts 2014+)
Let t = t(k) = 2(k — 1) — v/(k — 1) log k for some fixed v > 0.

e h'(G)=0 (|V(G)|7Z%) for some G with |V(G)| large enough.



A precise threshold

Moreover, when could we expect a polynomial lower bound on h'?
Let us first see where h*(G, 1/2) (and large deviations) leads us.

Proposition (Kang, Pach, Patel and Regts 2014+)
Let t = t(k) = 2(k — 1) — v/(k — 1) log k for some fixed v > 0.

e h'(G)=0 (|V(G)|7Z%) for some G with |V(G)| large enough.

Notes:

e This bound is useless when v = 0.

e For any v = v(k) = oo as k — oo, there are graphs with sub-polynomial
t-homogeneous numbers.



A precise threshold

Theorem (Kang, Pach, Patel and Regts 2014+)
Let t = t(k) = 3(k — 1) — v+/(k — 1) log k for some fixed v > 0.

V(G)| 2+1) for some G with |V(G)| large enough.

<|v G)WH)
log |V(G '



A precise threshold

Theorem (Kang, Pach, Patel and Regts 2014+)
Let t = t(k) = 3(

5(k—1) —v\/(k —1)log k for some fixed v > 0.

V(G)| 2+1) for some G with |V(G)| large enough.

<|v G)WH)
log |V(G '

e The bound is (%) when v = 0: the logarithmic term is needed.

e If v =0(1) as k — oo, then G has nearly linear t-homogeneous sets

Notes:



Graph discrepancy

Proof relies on an extremal result for edge count in a set of bounded order.

Recall that, given G, the discrepancy of a set X C V(G) is
1(|X
D(X) = [E(GIXD| ('2')

Lemma (Erd8s and Spencer 1974, monograph)

For n large enough, if £ € {1,...,n}, then any graph G,

D(S 0372 | 5n
> —.
s, IPON = 15551/ 1oe 5

V(G)| = n, has




Sketch proof

Theorem (Kang, Pach, Patel, Regts 2014+)

Fixv >0, ¢ > 4/3. For large enough j and any G with |V(G)| > j5106u2+4/3'

we have h'(G) > j for t(k) = 3(k — 1) — v\/(k — 1) log k.



Sketch proof

Theorem (Kang, Pach, Patel, Regts 2014+)

Fixv >0, ¢ > 4/3. For large enough j and any G with |V(G)| > j5106u2+4/3'

we have h'(G) > j for t(k) = 3(k — 1) — v\/(k — 1) log k.
Sketch proof.
Define a skew form of discrepancy. For any X C V(G),

Dy(X) = [D(X)| — v/ |X]? log | X].

Taking X with D, (X) maximum, assuming wlog D(X) > 0, we can easily derive
deg(x) > %(|X| — 1)+ v+/|X]|In|X| for any x € X.

Applying discrepancy lemma with £ = j4/3, we get a set Y with D(Y) > vj?y/clog].
Consider the skew term of D, (Y): it is —vj2y/4/3logj and so < D(Y) as j — co.

Thus D, (X) > j2, from which we conclude |X| > j. |



An open problem

Problem (Erdés and Pach 1983)
Determine Ry ,,(k, k), defined as

min{n : [V(G)|=n => G has (3(k — 1))-homogenous k-set} .

They showed

klog k
log log k

Ri/a(k, k) = Q ( ) and Ry 5(k, k) = O(K?).



Thank you!

And to Tobias:

FUREHRSK



