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Background: homogeneous sets

A homogeneous set in a graph G is a stable or complete subset of V (G ).
We shall be interested in

h(G ) ≡ max{α(G ), ω(G )},

the order of a largest homogeneous set in G .
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Background: homogeneous sets

Lower bounds on h (a.k.a. upper bounds on Ramsey numbers) are
fundamental in extremal combinatorics.

Erdős & Szekeres (’35) and Erdős (’47) showed

h(G ) ≥ 1

2
log2 |V (G )| for all G , while

h(G ) ≤ 2 log2 |V (G )| for some G with |V (G )| large enough.

The factors 1/2 and 2 are best known even after more than six decades1.

1Lower-order improvements by Spencer (’75), Thomason (’88) and Conlon (’09).
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Background: the Erdős–Hajnal conjecture

We will focus on the following question.

How is h(G ) affected by the exclusion from G of a fixed graph H
as an induced subgraph?

Erdős & Hajnal proved that h(G ) is significantly larger than in general.

Theorem (Erdős and Hajnal, 1989)

For any H, there exists ε′ = ε′(H) > 0 such that

G 6⊇i H =⇒ h(G ) > eε
′
√

log |V (G)|.

They also conjectured something stronger.
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Background: the Erdős–Hajnal conjecture
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Background Asymptotic linear Erdős–Hajnal Conclusion

Background: the Erdős–Hajnal conjecture

Conjecture (Erdős and Hajnal, 1989)

For any H, there exists ε = ε(H) > 0 such that

G 6⊇i H =⇒ h(G ) > |V (G )|ε.

Notation: If there exists ε > 0 such that G 6⊇i H =⇒ h(G ) > |V (G )|ε,
then we say H has the Erdős–Hajnal property.

The state of the art.
Erdős & Hajnal, Alon, Pach & Solymosi (’01), Chudnovsky & Safra (’08):

1 K1, the path P4 and the bull graph have the E–H property;

2 the E–H property is closed under complementation and substitution.

The cycle C5 and the path P5 are at present open.
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Background Asymptotic linear Erdős–Hajnal Conclusion

Background: forbidden induced subgraphs

Notation:2

Forb(H) ≡ induced H-free graphs.
Forb(H)n ≡ induced H-free graphs of order n.

Our approach towards the E–H conjecture has roots going back at least to
Erdős, Kleitman & Rothschild (’76) on the asymptotic enumeration of
Kk -free graphs, which sparked a rich and active line of research.

A basic method behind this programme is, e.g. for Forb(H)n,
to find some well-structured family Q ⊆ Forb(H)n and
then show |Forb(H)n| is close to |Q|.

2Sometimes Forb∗(H) is used instead of Forb(H).
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Background: forbidden induced subgraphs

Prömel & Steger (’92/3) implemented this method for Forb(H)n:
|Forb(H)n| is governed by the colouring number τ(H) of H,

defined as the least t such that, for all a, b with a + b = t,
V (H) can be partitioned into a cliques and b stable sets.

There exist a′, b′ with a′ + b′ = τ(H)− 1 so that V (H) does not admit a
partition into a′ cliques and b′ stable sets. If V (G ) can be partitioned into
a′ cliques and b′ stable sets, then G ∈ Forb(H). Partition [n] as follows:

· · ·

a′

· · ·

b′

with near equal-sized parts, edges arbitrary between parts.
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Background: forbidden induced subgraphs

· · ·

a′

· · ·

b′

certifies that

|Forb(H)n| ≥ 2

(
1− 1

τ(H)−1
+o(1)

)
(n2).

Using Szemerédi’s regularity lemma, Prömel & Steger showed

|Forb(H)n| ≤ 2

(
1− 1

τ(H)−1
+o(1)

)
(n2).

An extension of this to all hereditary graph properties was obtained by,
independently, Alekseev (’92) and Bollobás & Thomason (’95).
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Asymptotic E–H: a strengthening of Prömel–Steger

There is a form of the E–H conjecture, with a flavour of the above
asymptotic enumeration. If there exists ε = ε(H) > 0 such that

|{G ∈ Forb(H)n : h(G ) ≥ nε}|
|Forb(H)n|

→ 1 as n→∞,

then we say H has the asymptotic Erdős–Hajnal property.

Theorem (Loebl, Reed, Scott, Thomason, Thomassé, 2010)

Every graph has the asymptotic E–H property.

They proved this by combining SRL with Chudnovsky & Safra’s bull result.
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Asymptotic E–H: further strengthening

· · ·

P3: Forb(P3) is the class of disjoint unions of cliques
=⇒ for almost all G ∈ Forb(P3)n, h(G ) = Θ(n/ log n).

C4: The class of split graphs forms almost all of Forb(C4)
=⇒ for almost all G ∈ Forb(C4)n, h(G ) = Θ(n).

C5: The class of generalised split graphs forms almost all of Forb(C5)
=⇒ for almost all G ∈ Forb(C5)n, h(G ) = Θ(n).

... or complement

Ross Kang (CWI) Asymptotic linear Erdős–Hajnal KolKom 2012 10 / 19
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Asymptotic E–H: further strengthening

A stronger asymptotic property: if there exists ε̂ = ε̂(H) > 0 such that

|{G ∈ Forb(H)n : h(G ) ≥ ε̂n}|
|Forb(H)n|

→ 1 as n→∞,

then we say H has the asymptotic linear Erdős–Hajnal property.

NB: C4 and C5 have asymptotic linear E–H property, while P3 does not.

What graphs have the asymptotic linear E–H property?

Apart from P3 and P4?
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Asymptotic linear E–H: main theorem

We “almost” answer this question.

Theorem (K, McDiarmid, Reed, Scott, 2012+)

Almost every graph has the asymptotic linear E–H property.

“Almost every graph” here should read “A.a.s. Gn
1/2”.
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Asymptotic linear E–H: proof outline

Theorem (K, McDiarmid, Reed, Scott, 2012+)

Almost every graph has the asymptotic linear E–H property.

The proof depends on a variant colouring number τ1(H) described later.
It naturally breaks into two parts.

Lemma

For almost every H, τ1(H) < τ(H), i.e. τ1(Gn
1/2) < τ(Gn

1/2) a.a.s.

Lemma

τ1(H) < τ(H) =⇒ H has the asymptotic linear E–H property.
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Asymptotic linear E–H: a variant colouring number

Recall τ(H) is the least t such that, for all t1, t2 with t1 + t2 = t,
V (H) can be partitioned into t1 cliques and t2 stable sets.

We define a family F1 of six graph classes:

Ka Kb

B1

Ka Kb

B2

Ka Kb

B3

Ka Kb

B4

Kk

B5

Kk

B6
The F1-colouring number τ1(H) of H is the least t such that,
for all t1, t2, t3, t4, t5, t6 with t1 + · · ·+ t6 = t,
V (H) can be partitioned into t1 B1’s, . . . , and t6 B6’s.
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Asymptotic linear E–H: a variant colouring number

Note the class of stable sets is a subclass of each of B2, B4, B6.
Also the class of cliques is a subclass of each of B1, B3, B5.

Ka Kb

B1

Ka Kb

B2

Ka Kb

B3

Ka Kb

B4

Kk

B5

Kk

B6

=⇒ τ1(H) ≤ τ(H) for any graph H.
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Asymptotic linear E–H: the first random part

Lemma

For almost every H, τ1(H) < τ(H), i.e. τ1(Gn
1/2) < τ(Gn

1/2) a.a.s.

To prove this random graphs part, we define yet another variant colouring
number τ2.

Then, by straightforward reductions, it suffices to prove that

χ(Gn
1/2)− τ2(Gn

1/2) = Ω

(
n

(log n)2

)
,

with the aid of recent methodology (of Panagiotou & Steger (2009) and
Fountoulakis, K & McDiarmid (2010)) to colour random graphs.
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Asymptotic linear E–H: another variant colouring number

Let F2 be four “balanced” versions of the six graph classes:

|a− b| ≤ 1

Ka Kb

B̃1

|a− b| ≤ 1

Ka Kb

B̃2

|a− b| ≤ 1

Ka Kb

B̃3

|a− b| ≤ 1

Ka Kb

B̃4
The F2-colouring number τ2(H) of H is the least t such that, for all
t1, t2, t3, t4 with t1 + t2 + t3 + t4 = t, V (H) can be partitioned into
t1 B̃1’s, . . . , and t4 B̃4’s.
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Asymptotic linear E–H: the second random part

Lemma

τ1(H) < τ(H) =⇒ H has the asymptotic linear E–H property.

This second part of the main result follows from another application of
SRL and another structural lemma (that does not require bull).

Lemma

Let k = |V (H)| and c = 1/2R(k) where R() denotes the Ramsey number.
If G is a graph of order n ≥ max{R(k2 + k), 2(R(k) + k2 + k)}, then it
contains either

a homogeneous set of size cn, or

an induced copy of a “balanced” member of F1 of order 2k or 2k + 1.
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Concluding remarks

The following is as yet unresolved:

Could it be that every graph except P3 and P4 has the
asymptotic linear E–H property?

A weaker form of the above question (which does not follow from the
Loebl et al. result) is also open:

Is there some universal constant ε > 0 such that for all H

|{G ∈ Forb(H)n : h(G ) ≥ nε}|
|Forb(H)n|

→ 1 as n→∞?
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