For almost all graphs *H*, almost all *H*-free graphs have a linear homogeneous set.

Ross J. Kang

Centrum Wiskunde & Informatica

16 November 2012 Kolloquium über Kombinatorik, TU Berlin

Background: homogeneous sets

A homogeneous set in a graph G is a stable or complete subset of V(G). We shall be interested in

$$h(G) \equiv \max\{\alpha(G), \omega(G)\},\$$

the order of a largest homogeneous set in G.

Background: homogeneous sets

Lower bounds on h (a.k.a. upper bounds on Ramsey numbers) are fundamental in extremal combinatorics.

Erdős & Szekeres ('35) and Erdős ('47) showed

$$h(G) \ge \frac{1}{2}\log_2 |V(G)|$$
 for all G, while
 $h(G) \le 2\log_2 |V(G)|$ for some G with $|V(G)|$ large enough.

The factors 1/2 and 2 are best known even after more than six decades¹.

¹Lower-order improvements by Spencer ('75), Thomason ('88) and Conlon ('09).

We will focus on the following question.

How is h(G) affected by the exclusion from G of a fixed graph H as an induced subgraph?

We will focus on the following question.

How is h(G) affected by the exclusion from G of a fixed graph H as an induced subgraph?

Erdős & Hajnal proved that h(G) is significantly larger than in general.

Theorem (Erdős and Hajnal, 1989)

For any H, there exists $\varepsilon' = \varepsilon'(H) > 0$ such that

$$G \not\supseteq_i H \implies h(G) > e^{\varepsilon' \sqrt{\log |V(G)|}}.$$

They also conjectured something stronger.

Ross Kang (CWI)

Conjecture (Erdős and Hajnal, 1989)

For any H, there exists $\varepsilon = \varepsilon(H) > 0$ such that

 $G \not\supseteq_i H \implies h(G) > |V(G)|^{\varepsilon}.$

Notation: If there exists $\varepsilon > 0$ such that $G \not\supseteq_i H \implies h(G) > |V(G)|^{\varepsilon}$, then we say H has the *Erdős–Hajnal property*.

Conjecture (Erdős and Hajnal, 1989)

For any H, there exists $\varepsilon = \varepsilon(H) > 0$ such that

 $G \not\supseteq_i H \implies h(G) > |V(G)|^{\varepsilon}.$

Notation: If there exists $\varepsilon > 0$ such that $G \supseteq_i H \implies h(G) > |V(G)|^{\varepsilon}$, then we say H has the *Erdős–Hajnal property*.

The state of the art.

Erdős & Hajnal, Alon, Pach & Solymosi ('01), Chudnovsky & Safra ('08):

- **(**) K_1 , the path P_4 and the bull graph have the E–H property;
- **Q** the E–H property is closed under complementation and substitution.

The cycle C_5 and the path P_5 are at present open.

Notation:²

Forb(H) \equiv induced H-free graphs. Forb(H)ⁿ \equiv induced H-free graphs of order n.

Our approach towards the E–H conjecture has roots going back at least to Erdős, Kleitman & Rothschild ('76) on the asymptotic enumeration of K_k -free graphs, which sparked a rich and active line of research.

A basic method behind this programme is, e.g. for $Forb(H)^n$, to find some well-structured family $Q \subseteq Forb(H)^n$ and then show $|Forb(H)^n|$ is close to |Q|.

²Sometimes Forb^{*}(H) is used instead of Forb(H).

Prömel & Steger ('92/3) implemented this method for $Forb(H)^n$: $|Forb(H)^n|$ is governed by the *colouring number* $\tau(H)$ of H, defined as the least t such that, for all a, b with a + b = t, V(H) can be partitioned into a cliques and b stable sets.

There exist a', b' with $a' + b' = \tau(H) - 1$ so that V(H) does not admit a partition into a' cliques and b' stable sets. If V(G) can be partitioned into a' cliques and b' stable sets, then $G \in Forb(H)$. Partition [n] as follows:

with near equal-sized parts, edges arbitrary between parts.

$$|\operatorname{Forb}(H)^n| \ge 2^{\left(1 - \frac{1}{\tau(H) - 1} + o(1)\right)\binom{n}{2}}.$$

certifies that

$$|\operatorname{Forb}(H)^n| \ge 2^{\left(1 - \frac{1}{\tau(H) - 1} + o(1)\right)\binom{n}{2}}.$$

Using Szemerédi's regularity lemma, Prömel & Steger showed

$$|\operatorname{Forb}(H)^n| \le 2^{\left(1 - \frac{1}{\tau(H) - 1} + o(1)\right)\binom{n}{2}}.$$

An extension of this to all hereditary graph properties was obtained by, independently, Alekseev ('92) and Bollobás & Thomason ('95).

Asymptotic E–H: a strengthening of Prömel–Steger

There is a form of the E–H conjecture, with a flavour of the above asymptotic enumeration. If there exists $\varepsilon = \varepsilon(H) > 0$ such that

$$\frac{|\{G \in \mathsf{Forb}(H)^n : h(G) \ge n^{\varepsilon}\}|}{|\operatorname{Forb}(H)^n|} \to 1 \text{ as } n \to \infty,$$

then we say H has the asymptotic Erdős-Hajnal property.

Asymptotic E–H: a strengthening of Prömel–Steger

There is a form of the E–H conjecture, with a flavour of the above asymptotic enumeration. If there exists $\varepsilon = \varepsilon(H) > 0$ such that

$$\frac{|\{G \in \mathsf{Forb}(H)^n : h(G) \ge n^{\varepsilon}\}|}{|\operatorname{Forb}(H)^n|} \to 1 \text{ as } n \to \infty,$$

then we say *H* has the *asymptotic Erdős–Hajnal property*.

Theorem (Loebl, Reed, Scott, Thomason, Thomassé, 2010) Every graph has the asymptotic E–H property.

They proved this by combining SRL with Chudnovsky & Safra's bull result.

P₃: Forb(P₃) is the class of disjoint unions of cliques ⇒ for almost all $G \in Forb(P_3)^n$, $h(G) = \Theta(n/\log n)$.

P₃: Forb(P₃) is the class of disjoint unions of cliques ⇒ for almost all $G \in Forb(P_3)^n$, $h(G) = \Theta(n/\log n)$.

- C₄: The class of split graphs forms almost all of Forb(C₄) \implies for almost all $G \in Forb(C_4)^n$, $h(G) = \Theta(n)$.
- C₅: The class of generalised split graphs forms almost all of Forb(C₅) ⇒ for almost all $G \in Forb(C_5)^n$, $h(G) = \Theta(n)$.

A stronger asymptotic property: if there exists $\hat{\varepsilon} = \hat{\varepsilon}(H) > 0$ such that

$$\frac{|\{G \in \mathsf{Forb}(H)^n : h(G) \ge \hat{\varepsilon}n\}|}{|\operatorname{Forb}(H)^n|} \to 1 \text{ as } n \to \infty,$$

then we say *H* has the asymptotic linear Erdős–Hajnal property.

A stronger asymptotic property: if there exists $\hat{\varepsilon} = \hat{\varepsilon}(H) > 0$ such that

$$\frac{|\{G \in \mathsf{Forb}(H)^n : h(G) \ge \hat{\varepsilon}n\}|}{|\operatorname{Forb}(H)^n|} \to 1 \text{ as } n \to \infty,$$

then we say *H* has the *asymptotic linear Erdős–Hajnal property*.

NB: C_4 and C_5 have asymptotic linear E–H property, while P_3 does not.

What graphs have the asymptotic linear E–H property?

Apart from P_3 and P_4 ?

Asymptotic linear E–H: main theorem

We "almost" answer this question.

Theorem (K, McDiarmid, Reed, Scott, 2012+)

Almost every graph has the asymptotic linear E–H property.

"Almost every graph" here should read "A.a.s. $G_{1/2}^{n}$ ".

Asymptotic linear E–H: proof outline

Theorem (K, McDiarmid, Reed, Scott, 2012+)

Almost every graph has the asymptotic linear E–H property.

The proof depends on a variant colouring number $\tau_1(H)$ described later. It naturally breaks into two parts.

Asymptotic linear E–H: proof outline

Theorem (K, McDiarmid, Reed, Scott, 2012+)

Almost every graph has the asymptotic linear E–H property.

The proof depends on a variant colouring number $\tau_1(H)$ described later. It naturally breaks into two parts.

Lemma

For almost every H, $\tau_1(H) < \tau(H)$, i.e. $\tau_1(G_{1/2}^n) < \tau(G_{1/2}^n)$ a.a.s.

Asymptotic linear E–H: proof outline

Theorem (K, McDiarmid, Reed, Scott, 2012+)

Almost every graph has the asymptotic linear E–H property.

The proof depends on a variant colouring number $\tau_1(H)$ described later. It naturally breaks into two parts.

Lemma

For almost every H, $\tau_1(H) < \tau(H)$, i.e. $\tau_1(G_{1/2}^n) < \tau(G_{1/2}^n)$ a.a.s.

Lemma

 $\tau_1(H) < \tau(H) \implies H$ has the asymptotic linear E–H property.

Asymptotic linear E–H: a variant colouring number

Recall $\tau(H)$ is the least t such that, for all t_1, t_2 with $t_1 + t_2 = t$, V(H) can be partitioned into t_1 cliques and t_2 stable sets.

We define a family \mathcal{F}_1 of six graph classes:

The \mathcal{F}_1 -colouring number $\tau_1(H)$ of H is the least t such that, for all $t_1, t_2, t_3, t_4, t_5, t_6$ with $t_1 + \cdots + t_6 = t$, V(H) can be partitioned into $t_1 \mathcal{B}_1$'s, ..., and $t_6 \mathcal{B}_6$'s.

Asymptotic linear E–H: a variant colouring number

Note the class of stable sets is a subclass of each of \mathcal{B}_2 , \mathcal{B}_4 , \mathcal{B}_6 . Also the class of cliques is a subclass of each of \mathcal{B}_1 , \mathcal{B}_3 , \mathcal{B}_5 .

 $\implies \tau_1(H) \leq \tau(H)$ for any graph H.

Asymptotic linear E-H: the first random part

Lemma

For almost every H,
$$au_1(H) < au(H)$$
, i.e. $au_1(G_{1/2}^n) < au(G_{1/2}^n)$ a.a.s.

To prove this random graphs part, we define yet another variant colouring number τ_2 .

Then, by straightforward reductions, it suffices to prove that

$$\chi(G_{1/2}^n) - \tau_2(G_{1/2}^n) = \Omega\left(\frac{n}{(\log n)^2}\right),$$

with the aid of recent methodology (of Panagiotou & Steger (2009) and Fountoulakis, K & McDiarmid (2010)) to colour random graphs.

Asymptotic linear E–H: another variant colouring number

Let \mathcal{F}_2 be four "balanced" versions of the six graph classes:

The \mathcal{F}_2 -colouring number $\tau_2(H)$ of H is the least t such that, for all t_1, t_2, t_3, t_4 with $t_1 + t_2 + t_3 + t_4 = t$, V(H) can be partitioned into $t_1 \tilde{\mathcal{B}}_1$'s, ..., and $t_4 \tilde{\mathcal{B}}_4$'s.

Asymptotic linear E-H: the second random part

Lemma

 $\tau_1(H) < \tau(H) \implies H$ has the asymptotic linear E–H property.

This second part of the main result follows from another application of SRL and another structural lemma (that does not require bull).

Lemma

Let k = |V(H)| and c = 1/2R(k) where R() denotes the Ramsey number. If G is a graph of order $n \ge \max\{R(k^2 + k), 2(R(k) + k^2 + k)\}$, then it contains either

- a homogeneous set of size cn, or
- an induced copy of a "balanced" member of \mathcal{F}_1 of order 2k or 2k + 1.

Concluding remarks

The following is as yet unresolved:

Could it be that every graph except P_3 and P_4 has the asymptotic linear E–H property?

A weaker form of the above question (which does not follow from the Loebl *et al.* result) is also open:

Is there some universal constant $\varepsilon > 0$ such that for all H

$$\frac{|\{G \in \operatorname{Forb}(H)^n : h(G) \ge n^{\varepsilon}\}|}{|\operatorname{Forb}(H)^n|} \to 1 \text{ as } n \to \infty?$$