The distance-t chromatic index of graphs

Ross J. Kang

Centrum Wiskunde & Informatica / Utrecht

Maastricht, 8/2012
Workshop on Graphs and Matroids
Problem definition

Let $G = (V, E)$ be a (simple) graph.

The distance between two edges in G is the number of vertices in a shortest path between them, i.e. distance in the line graph $L(G)$ of G. (So adjacent edges have distance 1.)

A distance-t matching of G is a set of edges no two of which are within distance t in G.

$t = 1$
Problem definition

Let $G = (V, E)$ be a (simple) graph.

The distance between two edges in G is the number of vertices in a shortest path between them, i.e. distance in the line graph $L(G)$ of G. (So adjacent edges have distance 1.)

A distance-t matching of G is a set of edges no two of which are within distance t in G.

$t = 2$
A distance-t edge-colouring is an assignment of colours to edges of G such that each colour class induces a distance-t matching.

The distance-t chromatic index $\chi'_t(G)$ of G is the least integer k such that there exists a distance-t edge-colouring of G using k colours.

Remarks:

- $\chi'_1(G)$ is the chromatic index $\chi'(G)$ of G.
- A distance-2 matching is an induced matching and so $\chi'_2(G)$ is the strong chromatic index $s\chi'(G)$ of G.
- $\chi'_t(G) = \chi((L(G))^t)$ where $(L(G))^t$ is the t^{th} power of the line graph.
A proposed practical motivation for χ'_t:

- Timeslot assignment (TDMA) for wireless sensor networks.
 - Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
 - The distance requirement models the range of network interference that results from transmission between two sensors.
Problem definition

A proposed practical motivation for χ_t':

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.
Problem definition

A proposed practical motivation for χ_t':

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.
Problem definition

A proposed practical motivation for χ'_t:

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.
Problem definition

A proposed practical motivation for χ_t':

- Timeslot assignment (TDMA) for wireless sensor networks.
 - Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
 - The distance requirement models the range of network interference that results from transmission between two sensors.
Scope of current work

Two main settings (with Δ large):

1. $\chi'_t(G)$ for graphs G of maximum degree Δ:

 $$\chi'_t(\Delta) := \max\{\chi'_t(G) : \Delta(G) \leq \Delta\}.$$
Scope of current work

Two main settings (with Δ large):

1. $\chi'_t(G)$ for graphs G of maximum degree Δ:

 $$\chi'_t(\Delta) := \max\{\chi'_t(G) : \Delta(G) \leq \Delta\}.$$

2. $\chi'_t(G)$ when G is also prescribed to have girth at least g:

 $$\chi'_t(\Delta, g) := \max\{\chi'_t(G) : \Delta(G) \leq \Delta, \text{girth}(G) \geq g\};$$

 particularly, when does $\chi'_t(\Delta, g)$ becomes $o(\chi'_t(\Delta))$ in terms of g?
Background

$t = 1$.

Vizing's Theorem implies that $\chi'_1(\Delta) = \Delta + 1$ and $\chi'_1(\Delta, g) \geq \Delta$ for all g.
Background

$t = 2$.

Erdős and Nešetřil proposed the problem of determining $\chi'_2(\Delta)$ in 1985. They suggested as extremal the multiplied 5-cycle $\implies \chi'_2(\Delta) \geq 1.25 \Delta^2$. Molloy and Reed (1997) showed $\chi'_2(\Delta) \leq 1.998 \Delta^2$ for large enough Δ.

NB: Faudree, Gyárfás, Schelp, Tuza (1990) conjectured $\chi'_2(\Delta, 4) = \Delta^2$. Mahdian (2000) showed $\chi'_2(\Delta, 5) = \mathcal{O}(\Delta^2/\log \Delta)$ (and in fact the stronger result for all C_4-free graphs). A probabilistic construction shows $\chi'_2(\Delta, g) = \Omega(\Delta^2/\log \Delta)$ for all $g \geq 5$.

R. J. Kang (CWI)
Background

$t = 2$.

Erdős and Nešetřil proposed the problem of determining $\chi'_2(\Delta)$ in 1985. They suggested as extremal the multiplied 5-cycle $\implies \chi'_2(\Delta) \geq 1.25\Delta^2$.

Molloy and Reed (1997) showed $\chi'_2(\Delta) \leq 1.998\Delta^2$ for large enough Δ.

The complete bipartite graphs $K_{\Delta,\Delta} \implies \chi'_2(\Delta, 4) \geq \Delta^2$.

NB: Faudree, Gyárfás, Schelp, Tuza (1990) conjectured $\chi'_2(\Delta, 4) = \Delta^2$.

Mahdian (2000) showed $\chi'_2(\Delta, 5) = O(\Delta^2 / \log \Delta)$ (and in fact the stronger result for all C_4-free graphs).

A probabilistic construction shows $\chi'_2(\Delta, g) = \Omega(\Delta^2 / \log \Delta)$ for all $g \geq 5$.
A table for $\chi'_t(\Delta)$ and $\chi'_t(\Delta, g)$ (Δ large)

<table>
<thead>
<tr>
<th>$t \backslash g$</th>
<th>3 (lower/upper)</th>
<th>4</th>
<th>5</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\Delta + 1$</td>
<td></td>
<td></td>
<td>$\Theta(\Delta)$</td>
</tr>
<tr>
<td>2</td>
<td>$1.25\Delta^2$</td>
<td>$1.998\Delta^2$</td>
<td>$\Theta(\Delta^2)$</td>
<td>$\Theta(\Delta^2/\log \Delta)$</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>\vdots</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
A distance-t version of the Erdős-Nešetřil problem

Consider the following upper bound:

$$\chi'_t(\Delta) \leq 1 + \Delta((L(G))^t) \leq 1 + 2 \sum_{j=1}^{t} (\Delta - 1)^j < 2\Delta^t.$$

Problem

For each $t \geq 3$, is $\limsup_{\Delta \to \infty} \chi'_t(\Delta)/\Delta^t$ less than $2 - \varepsilon$ for some $\varepsilon > 0$?

NB: Molloy and Reed solved the $t = 2$ case with $\varepsilon > 0.002$.

We next show $\limsup_{\Delta \to \infty} \chi'_t(\Delta)/\Delta^t$ is positive for every fixed $t \geq 3$.
Two constructive lower bounds

Proposition (K and Manggala)

For arbitrarily large Δ, there exists a bipartite, Δ-regular graph of girth 6 such that $\chi'_3(G) = \Delta^3 - \Delta^2 + \Delta$.

$t = 3$, $\Delta = 3$: point-line incidence graph of the Fano plane.
Two constructive lower bounds

Proposition (K and Manggala)

Fix $t \geq 2$. For arbitrarily large Δ, there exists a Δ-regular graph such that $\chi'_t(G) > \Delta^t / (2(t - 1)^{t-1})$.

$t = 4, \Delta = 6$.
A table for $\chi'_t(\Delta)$ and $\chi'_t(\Delta, g)$ (Δ large)

<table>
<thead>
<tr>
<th>$t \backslash g$</th>
<th>3 (lower/upper)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\Delta + 1$</td>
<td>$\Theta(\Delta)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$1.25\Delta^2$</td>
<td>$1.998\Delta^2$</td>
<td>$\Theta(\Delta^2)$</td>
<td>$\Theta(\Delta^2 / \log \Delta)$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Δ^3</td>
<td>$2\Delta^3$</td>
<td>$\Theta(\Delta^3)$</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$0.0185\Delta^4$</td>
<td>$2\Delta^4$</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>$0.00195\Delta^5$</td>
<td>$2\Delta^5$</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Main theorem I

Theorem (Kaiser and K)

For each $t \geq 2$, $2 - \limsup_{\Delta \to \infty} \frac{\chi'_t(\Delta)}{\Delta^t} \geq 0.00008$.

I.e. the t-E-N problem affirmed with a *uniform* choice of ε for all t.
Main theorem I: proof idea

Theorem (Kaiser and K)

For each \(t \geq 2 \),
\[
2 - \limsup_{\Delta \to \infty} \frac{\chi'_t(\Delta)}{\Delta^t} \geq 0.00008.
\]

This relies on colouring graphs with sparse neighbourhood counts.
Main theorem I: proof idea

Theorem (Kaiser and K)

For each $t \geq 2$, $2 - \limsup_{\Delta \to \infty} \frac{\chi'_t(\Delta)}{\Delta^t} \geq 0.00008$.

This relies on colouring graphs with sparse neighbourhood counts.

Lemma (Molloy and Reed (1997))

Let $\delta, \varepsilon > 0$ be such that $\varepsilon < \frac{\delta}{2(1-\varepsilon)} e^{-\frac{3}{1-\varepsilon}}$ and let $\hat{\Delta}_0$ be large enough. If $\hat{G} = (\hat{V}, \hat{E})$ is a graph with maximum degree at most $\hat{\Delta} \geq \hat{\Delta}_0$ such that at most $(1 - \delta)\left(\frac{\hat{\Delta}}{2}\right)$ edges span each $N(\hat{v}), \hat{v} \in \hat{V}$, then $\chi(\hat{G}) \leq (1 - \varepsilon)\hat{\Delta}$.

Thus the t-E-N problem can be resolved by showing neighbourhood counts in $(L(G))^t$ with $\Delta(G) \leq \Delta$ are at most $(1 - \delta) \cdot 2\Delta^{2t}$.
Main theorem I: proof idea

Assume $G = (V, E)$ is Δ-regular. Let $e \in E$ be arbitrary.
Set $\hat{N} := N_{L(G)}(e)$.

Set $\hat{S} := E(L(G)^t[\hat{N}])$ and, for contradiction, assume $|\hat{S}| > (1 - \delta) \cdot 2\Delta^{2t}$.
Main theorem 1: proof idea

Assume $G = (V, E)$ is Δ-regular. Let $e \in E$ be arbitrary. Set $\hat{N} := N_{L(G)}(e)$.

Consider $\tau(e, f) := \max\{0, (\# ef\text{-walks with } \leq t + 1 \text{ edges}) - 1\}$.

Set $\hat{S} := E(L(G)^t[\hat{N}])$ and, for contradiction, assume $|\hat{S}| > (1 - \delta) \cdot 2\Delta^{2t}$.

Claim

$$\sum_{e,f \in \hat{N}} \tau(e, f) + \text{Esc} < 4\delta \cdot \Delta^{2t}.$$
Main theorem I: proof idea

Claim
\[\sum_{e,f \in \hat{N}} \tau(e,f) + \text{Esc} < 4\delta \cdot \Delta^{2t}. \]

Set
\[A^* := A_1 \cup \cdots \cup A_{t-1} \cup B_t, \]
\[\sigma_t(u,v) := \#uv\text{-walks with } \leq t \text{ edges and first edge in } \hat{N}. \]

Claim
\[\sum_{u,v \in A^*} \sigma_t(u,v) > \alpha \cdot \Delta^{2t-1}. \]
Main theorem 1: $t = 3$

For $t = 3$, we can extend the argument of Molloy and Reed for $t = 2$, which applies Jensen’s Inequality twice for a lower bound on the number of C_4s in $N_{(L(G))^3}(e)$, $\forall e \in V$.

Theorem (Kaiser and K)

$$2 - \limsup_{\Delta \to \infty} \chi'_3(\Delta)/\Delta^3 \geq 0.0002.$$
A table for $\chi'_t(\Delta)$ (Δ large)

<table>
<thead>
<tr>
<th>t</th>
<th>lower</th>
<th>upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\Delta + 1$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$1.25\Delta^2$</td>
<td>$1.998\Delta^2$</td>
</tr>
<tr>
<td>3</td>
<td>Δ^3</td>
<td>$1.9998\Delta^3$</td>
</tr>
<tr>
<td>4</td>
<td>$0.0185\Delta^4$</td>
<td>$1.99992\Delta^4$</td>
</tr>
<tr>
<td>5</td>
<td>$0.00195\Delta^5$</td>
<td>$1.99992\Delta^5$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Remarks:
- The general proof gives an alternative solution to the E-N problem, albeit with a much weaker constant.
- It remains possible that $\limsup_{\Delta \to \infty} \chi'_t(\Delta)/\Delta^t = o(1)$ as $t \to \infty$.
Main theorem II

Theorem (Kaiser and K)

For $t \geq 2$, all graphs G of girth at least $2t + 1$ and maximum degree at most Δ have $\chi'_t(G) = O(\Delta^t / \log \Delta)$.
Main theorem II

Theorem (Kaiser and K)

For $t \geq 2$, all graphs G of girth at least $2t + 1$ and maximum degree at most Δ have $\chi'_t(G) = O(\Delta^t / \log \Delta)$.

By a probabilistic construction, this bound is tight up to a constant factor dependent upon t^1.

Proposition (Kaiser and K)

There is a function $f = f(\Delta, t) = (1 + o(1))\Delta^t / (t \log \Delta)$ (as $\Delta \to \infty$) such that, for every $g \geq 3$ and every Δ, there is a graph G of girth at least g and maximum degree at most Δ with $\chi'_t(G) \geq f(\Delta, t)$.

1If girth at least $3t - 2$, the upper bound can be strengthened to $O(\Delta^t / (t \log \Delta))$.

A table for $\chi'_t(\Delta, g)$ (Δ large)

<table>
<thead>
<tr>
<th>t</th>
<th>g</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\Theta(\Delta)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$\Theta(\Delta^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$\Theta(\Delta^2/\log \Delta)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>$\Theta(\Delta^3)$</td>
<td></td>
<td></td>
<td>$\Theta(\Delta^3/\log \Delta)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$\Theta(\Delta^4)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\Theta(\Delta^4/\log \Delta)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>$\Theta(\Delta^5)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\Theta(\Delta^5/\log \Delta)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Open problems

1. Is there some $\varepsilon > 0$ such that $\limsup_{\Delta \to \infty} \chi'_t(\Delta)/\Delta^t \geq \varepsilon$ for all t?

2. Is it true that $\limsup_{\Delta \to \infty} \chi'_t(\Delta, 2t)/\Delta^t > 0$ for all $t \geq 4$?
Thank you!