Rapid Mixing of Subset Glauber Dynamics on Graphs of Bounded Tree-Width

Ross J. Kang Magnus Bordewich

School of Engineering and Computing Sciences, Durham University

7 July 2011 ICALP 2011, Zürich

R. J. Kang (Durham)

Subset Glauber

ICALP 2011 1 / 15

Counting complexity and #BIS

- P v NP-complete
 - Maximum independent set (MIS) is NP-hard.
 - Maximum independent set in a bipartite graph (MBIS) is in P.
- FP v #P-complete
 - Counting spanning trees is in FP (Kirchhoff, 19C).
 - Counting independent sets in a bipartite graph (#BIS) is #P-complete.

Approximate counting complexity

Another viewpoint on #P w.r.t. randomised approximation.

A randomised approximation scheme for a function $f: \Sigma^* \to \mathbb{N}$ is a probabilistic Turing machine that takes as input a pair $(x, \varepsilon) \in \Sigma^* \times (0, 1)$ and produces as output an integer random variable Y satisfying the condition $\Pr(e^{-\varepsilon} \leq Y/f(x) \leq e^{\varepsilon}) \geq 3/4$. It is *fully polynomial* (FPRAS) if it runs in time polynomial in both |x| and ε^{-1} .

In the AP-reducibility framework developed by Dyer, Goldberg, Greenhill and Jerrum (2004), the "FPRASable" class takes on the role of FP (though it clearly contains FP).

イロト 不得 トイヨト イヨト ヨー うらで

Approximate counting complexity and #BIS

• FPRASable v AP-interreducible with #SAT

- A counting problem that corresponds to an NP-complete decision problem must be #P-complete with respect to AP-reducibility.
- DGGJ discovered an *intermediate* complexity class¹, all AP-interreducible, denoted $\#RH\Pi_1$, represented by #BIS.

¹Includes counting problems for downsets of a partial order, configurations in the Widom-Rowlinson model, stable matchings. $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle$

FPRASs and rapidly mixing Markov chains

Many FPRASs are obtained using *Markov chain Monte Carlo* (MCMC).

That is, by designing a suitable Markov chain, one that converges to a desired probability distribution, then proving fast convergence, we can derive a FPRAS.

(NB: This derivation is not trivial and there is a deeper link.)

The Tutte polynomial and the random cluster model

The *partition function of the random cluster model* is defined for any G = (V, E) and q, μ as

$$Z_{RC}(G;q,\gamma) := \sum_{S\subseteq E} q^{\kappa(S)} \gamma^{|S|},$$

where $\kappa(S)$ is the number of components in (V, S). $Z_{RC}(G; q, \gamma)$ is equivalent to the *Tutte polynomial*, defined for any G = (V, E) and x, y as

$$T(G; x, y) := \sum_{S \subseteq E} (x - 1)^{r(E) - r(S)} (y - 1)^{|S| - r(S)},$$

where r(S) is the \mathbb{F}_2 -rank of incidence matrix for (V, S).

<ロト < 回 > < 回 > < 回 > < 三 > 二 三

The Tutte polynomial and the random cluster model

Stolen from Leslie Goldberg's Dagstuhl slides.

R. J.	Kang	(Durham)
-------	------	----------

An *edge subset expansion formula* for \mathcal{P} is written as follows: for any simple graph G = (V, E),

$$\mathcal{P}(G) = \sum_{S \subseteq E} w((V,S))$$

for some graph function w, where (V, S) denotes the graph with vertex set V and edge set S.

The weight function w shall be assumed to be positive — from a statistical physics viewpoint, this results in a so-called 'soft-core model'.

The partition function of the random cluster model is defined for any G = (V, E) and q, μ as

$$Z_{RC}(G;q,\gamma) := \sum_{S\subseteq E} q^{\kappa(S)} \gamma^{|S|},$$

where $\kappa(S)$ is the number of components in (V, S). $Z_{RC}(G; q, \gamma)$ is equivalent to the *Tutte polynomial*, defined for any G = (V, E) and x, y as

$$T(G; x, y) := \sum_{S \subseteq E} (x - 1)^{r(E) - r(S)} (y - 1)^{|S| - r(S)},$$

where r(S) is the \mathbb{F}_2 -rank of incidence matrix for (V, S).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つへの

The partition function of the random cluster model is defined for any G = (V, E) and q, μ as

$$Z_{RC}(G;q,\gamma) := \sum_{S\subseteq E} q^{\kappa(S)} \gamma^{|S|},$$

where $\kappa(S)$ is the number of components in (V, S). $Z_{RC}(G; q, \gamma)$ is equivalent to the *Tutte polynomial*, defined for any G = (V, E) and x, y as

$$T(G; x, y) := \sum_{S \subseteq E} (x - 1)^{r(E) - r(S)} (y - 1)^{|S| - r(S)},$$

where r(S) is the \mathbb{F}_2 -rank of incidence matrix for (V, S).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つへの

For the partition function of the random cluster model,

$$w((V,S)) = q^{\kappa(S)} \gamma^{|S|}.$$

For the Tutte polynomial,

$$w((V,S)) = (x-1)^{r(E)-r(S)}(y-1)^{|S|-r(S)}.$$

$$\mathcal{P}(G) = \sum_{S \subseteq E} w((V, S))$$

Using the weighting w, we define the single bond flip chain $\mathcal{M} = (X_t)_{t=0}^{\infty}$. Start with arbitrary $X_0 \subseteq E$ and then repeatedly run the following.

• Pick an edge
$$e \in E$$
 u.a.r.

Set
$$X_{t+1} = X_t \oplus \{e\}$$
 w.p. $\frac{1}{2} \min \left\{1, \frac{w((V,S))}{w((V,X_t))}\right\}$ (and $X_{t+1} = X_t$ o/w).

 \mathcal{M} is a reversible Markov chain with unique stationary distribution $\pi(S) \propto w((V, S)).$

Using the weighting w, we define the single bond flip chain $\mathcal{M} = (X_t)_{t=0}^{\infty}$. Start with arbitrary $X_0 \subseteq E$ and then repeatedly run the following.

• Pick an edge
$$e \in E$$
 u.a.r.

3 Set
$$X_{t+1} = X_t \oplus \{e\}$$
 w.p. $\frac{1}{2} \min \left\{1, \frac{w((V,S))}{w((V,X_t))}\right\}$ (and $X_{t+1} = X_t$ o/w).

 \mathcal{M} is a reversible Markov chain with unique stationary distribution $\pi(S) \propto w((V, S)).$

Rapid mixing of ${\cal M}$

 \Downarrow

FPRAS to compute $\mathcal{P}(G)$

A mild condition on the weight functions

For G = (V, E), a partition (E_1, E_2) of E is *appropriate* for a vertex cut (V_1, K, V_2) if E_1 has no edge adjacent to a vertex in V_2 and E_2 has no edge adjacent to a vertex in V_1 .

Fix $\lambda > 0$ and let $\hat{\lambda} := \max\{\lambda, 1/\lambda\}$. Then w is λ -multiplicative, if for any G = (V, E), any vertex cut (V_1, K, V_2) , any appropriate partition (E_1, E_2) ,

$$\hat{\lambda}^{-|\mathcal{K}|} \leq rac{w((V_1\cup \mathcal{K}, \mathcal{E}_1))w((V_2\cup \mathcal{K}, \mathcal{E}_2))}{w(\mathcal{G})} \leq \hat{\lambda}^{|\mathcal{K}|}.$$

A mild condition on the weight functions

For the partition function of the random cluster model,

$$w((V,S)) = q^{\kappa(S)}\gamma^{|S|}.$$

For the Tutte polynomial,

$$w((V,S)) = (x-1)^{r(E)-r(S)}(y-1)^{|S|-r(S)}.$$

The main theorem

Theorem

Let G = (V, E) where |V| = n. If w is λ -multiplicative for some $\lambda > 0$, then the mixing time of M on G satisfies

$$au(arepsilon) = O\left(n^{4+4(\mathsf{tw}(\mathcal{G})+1)|\log\lambda|}\log(1/arepsilon)
ight)$$

where tw(G) denotes the tree-width of G.

Canonical paths and linear-width

Proof is via a "canonical paths" argument, a method pioneered by Diaconis and Stroock (1991) and Sinclair (1992).

To define the collection of canonical paths, we use a "linear-width" edge-ordering of the base graph.

For G = (V, E), an ordering (e_1, \ldots, e_m) of E has *linear-width* at most ℓ if for each i there are at most ℓ vertices incident to both an edge in $\{e_1, \ldots, e_{i-1}\}$ and an edge in $\{e_i, \ldots, e_m\}$. The *linear-width* $\mathsf{lw}(G)$ of G is the least ℓ such that such an ordering of E exists.

Importantly, $lw \leq tw \log n$.

イロト 不得 トイヨト イヨト ヨー うらで

Applications

With appropriate conditions on their respective parameters, we obtain rapid mixing on the associated Glauber dynamics as well as FPRASs for the following, for graphs of bounded tree-width:

- Z_{RC}(G; q, γ) and T(G; x, y), in particular, the partition function for the ferromagnetic Potts model;
- *R*₂(*G*; *q*, μ), the adjacency-rank polynomial of Ge and Štefankovič (2010);
- $Z_{Tutte}(G; q, \vec{v})$, the multivariate Tutte polynomial of Sokal (2005);
- $U(G; \vec{x}, y)$, the U polynomial of Noble and Welsh (1999); and
- q(G; x, y), the interlace polynomial of Arratia, Bollobás and Sorkin (2004).

イロト 不得 トイヨト イヨト ヨー うらで

Concluding remarks

- Ge and Štefankovič used this same methodology to show, one, that the MC for the random cluster model mixes rapidly for bounded tree-width and, two, that the MC for their adjacency-rank polynomial mixes rapidly upon trees.
- Although exponential mixing can occur for the adjacency-rank polynomial upon bipartite graphs, Goldberg and Jerrum (2010), it is still of interest to show/refute rapid mixing for large classes of graphs and polynomials in the framework.
- Efficient exact computation can usually be achieved upon graphs of bounded tree-width with dynamic programming.