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Introduction Main theorem Consequences and conclusion

Counting complexity and #BIS

P v NP-complete

Maximum independent set (MIS) is NP-hard.
Maximum independent set in a bipartite graph (MBIS) is in P.

FP v #P-complete

Counting spanning trees is in FP (Kirchhoff, 19C).
Counting independent sets in a bipartite graph (#BIS) is #P-complete.
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Approximate counting complexity

Another viewpoint on #P w.r.t. randomised approximation.

A randomised approximation scheme for a function f : Σ∗ → N is a
probabilistic Turing machine that takes as input a pair (x , ε) ∈ Σ∗ × (0, 1)
and produces as output an integer random variable Y satisfying the
condition Pr(e−ε ≤ Y /f (x) ≤ eε) ≥ 3/4. It is fully polynomial (FPRAS)
if it runs in time polynomial in both |x | and ε−1.

In the AP-reducibility framework developed by Dyer, Goldberg, Greenhill
and Jerrum (2004), the “FPRASable” class takes on the role of FP
(though it clearly contains FP).
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Approximate counting complexity and #BIS

FPRASable v AP-interreducible with #SAT

A counting problem that corresponds to an NP-complete decision
problem must be #P-complete with respect to AP-reducibility.
DGGJ discovered an intermediate complexity class1, all
AP-interreducible, denoted #RHΠ1, represented by #BIS.

FPRAS #RHΠ1 #SAT
#matchings #BIS

1Includes counting problems for downsets of a partial order, configurations in
the Widom-Rowlinson model, stable matchings.
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FPRASs and rapidly mixing Markov chains

Many FPRASs are obtained using Markov chain Monte Carlo (MCMC).

That is, by designing a suitable Markov chain, one that converges to a
desired probability distribution, then proving fast convergence, we can
derive a FPRAS.

(NB: This derivation is not trivial and there is a deeper link.)
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The Tutte polynomial and the random cluster model

The partition function of the random cluster model is defined for any
G = (V ,E ) and q, µ as

ZRC (G ; q, γ) :=
∑
S⊆E

qκ(S)γ|S|,

where κ(S) is the number of components in (V , S). ZRC (G ; q, γ) is
equivalent to the Tutte polynomial, defined for any G = (V ,E ) and x , y as

T (G ; x , y) :=
∑
S⊆E

(x − 1)r(E)−r(S)(y − 1)|S |−r(S),

where r(S) is the F2-rank of incidence matrix for (V ,S).
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The Tutte polynomial and the random cluster model
New Result
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Stolen from Leslie Goldberg’s Dagstuhl slides.
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A general form of graph polynomial

An edge subset expansion formula for P is written as follows: for any
simple graph G = (V ,E ),

P(G ) =
∑
S⊆E

w((V , S))

for some graph function w , where (V ,S) denotes the graph with vertex
set V and edge set S .

The weight function w shall be assumed to be positive — from a
statistical physics viewpoint, this results in a so-called ‘soft-core model’.
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A general form of graph polynomial

For the partition function of the random cluster model,

w((V , S)) = qκ(S)γ|S |.

For the Tutte polynomial,

w((V ,S)) = (x − 1)r(E)−r(S)(y − 1)|S |−r(S).
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Subset Glauber dynamics
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Subset Glauber dynamics

P(G ) =
∑
S⊆E

w((V , S))

⇓

Using the weighting w , we define the single bond flip chain M = (Xt)
∞
t=0.

Start with arbitrary X0 ⊆ E and then repeatedly run the following.

1 Pick an edge e ∈ E u.a.r.

2 Set Xt+1 = Xt ⊕ {e} w.p. 1
2 min

{
1, w((V ,S))

w((V ,Xt))

}
(and Xt+1 = Xt o/w).

M is a reversible Markov chain with unique stationary distribution
π(S) ∝ w((V ,S)).
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2 min

{
1, w((V ,S))

w((V ,Xt))

}
(and Xt+1 = Xt o/w).

M is a reversible Markov chain with unique stationary distribution
π(S) ∝ w((V ,S)).

Rapid mixing of M

⇓

FPRAS to compute P(G )
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A mild condition on the weight functions

V1 V2K
E1

E2

For G = (V ,E ), a partition (E1,E2) of E is appropriate for a vertex cut
(V1,K ,V2) if E1 has no edge adjacent to a vertex in V2 and E2 has no
edge adjacent to a vertex in V1.

Fix λ > 0 and let λ̂ := max{λ, 1/λ}. Then w is λ-multiplicative, if for any
G = (V ,E ), any vertex cut (V1,K ,V2), any appropriate partition (E1,E2),

λ̂−|K | ≤ w((V1 ∪ K ,E1))w((V2 ∪ K ,E2))

w(G )
≤ λ̂|K |.
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A mild condition on the weight functions

For the partition function of the random cluster model,

w((V , S)) = qκ(S)γ|S |.

For the Tutte polynomial,

w((V ,S)) = (x − 1)r(E)−r(S)(y − 1)|S |−r(S).
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The main theorem

Theorem

Let G = (V ,E ) where |V | = n. If w is λ-multiplicative for some λ > 0,
then the mixing time of M on G satisfies

τ(ε) = O
(

n4+4(tw(G)+1)| log λ| log(1/ε)
)

where tw(G ) denotes the tree-width of G .
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Canonical paths and linear-width

Proof is via a “canonical paths” argument, a method pioneered by
Diaconis and Stroock (1991) and Sinclair (1992).

To define the collection of canonical paths, we use a “linear-width”
edge-ordering of the base graph.

For G = (V ,E ), an ordering (e1, . . . , em) of E has linear-width at most `
if for each i there are at most ` vertices incident to both an edge in
{e1, . . . , ei−1} and an edge in {ei , . . . , em}. The linear-width lw(G ) of G is
the least ` such that such an ordering of E exists.

Importantly, lw . tw log n.
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Applications

With appropriate conditions on their respective parameters, we obtain
rapid mixing on the associated Glauber dynamics as well as FPRASs for
the following, for graphs of bounded tree-width:

ZRC (G ; q, γ) and T (G ; x , y), in particular, the partition function for
the ferromagnetic Potts model;

R2(G ; q, µ), the adjacency-rank polynomial of Ge and Štefankovič
(2010);

ZTutte(G ; q, ~v), the multivariate Tutte polynomial of Sokal (2005);

U(G ;~x , y), the U polynomial of Noble and Welsh (1999); and

q(G ; x , y), the interlace polynomial of Arratia, Bollobás and Sorkin
(2004).

R. J. Kang (Durham) Subset Glauber ICALP 2011 14 / 15



Introduction Main theorem Consequences and conclusion

Concluding remarks

Ge and Štefankovič used this same methodology to show, one, that
the MC for the random cluster model mixes rapidly for bounded
tree-width and, two, that the MC for their adjacency-rank polynomial
mixes rapidly upon trees.

Although exponential mixing can occur for the adjacency-rank
polynomial upon bipartite graphs, Goldberg and Jerrum (2010), it is
still of interest to show/refute rapid mixing for large classes of graphs
and polynomials in the framework.

Efficient exact computation can usually be achieved upon graphs of
bounded tree-width with dynamic programming.
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