
European Autumn School in Topology 2018
Preparatory talks

The following 5 talks of 60 minutes length are supposed to provide foundations for the series
of talks held by Tyler Lawson and Thomas Nikolaus. They will make up the program of
the first day of the autumn school.

The talks are

1. Introduction to ∞-categories

2. The ∞-category of spectra

3. Bar constructions in algebra

4. The Tate construction and spectral sequences

5. Operads

If you volunteer for a talk, the first and especially the third and fifth talk should be the
easier ones. Below you find a detailed outline of the contents of these talks.

Talk 1: Introduction to ∞-categories Recall the definition of an ∞-category in the
sense of a quasi-category [Lur09, Chapter 1]. Give the example of the ∞-category of
spaces S and of the ∞-category of (small) ∞-categories Cat∞. These can be defined
via the simplicial nerve construction (see Section 1.1.5 and Definitions 1.2.16.1 and
3.0.0.1 in [Lur09]). You might contemplate just given the low-dimensional simplices
of S and Cat∞ in detail.1

Next discuss (co)limits in an ∞-category following [Lur09, Chapter 1]. Dicuss in
particular pushouts and pullbacks. State that in Top if one leg of the diagram is
a cofibration respectively a fibration, then the pushout respectively pullback in S
can be calculated as a (1-categorical) pushouts respetively pullback in Top.2 Use
this to show that the unreduced suspension ΣX = CX ∪X CX defines a pushout of
∗ ← X → ∗ in S and similarly that the loop space ΩX for a pointed space defines a
pullback of ∗ → X ← ∗ in S (using path spaces).

If time remains, discuss adjunctions between∞-categories. The definition of adjunc-
tion in [Lur09] is a bit hard to understand at first. You can use Definition 2.1.1 from
[RV18] instead.3 Mention [RV18, Theorem 2.4.2].

1For a topological space X, its singular comples Sing(X) is alwyays a Kan set. Viewing the 1-category
Top as a simplicial category (with discrete mapping spaces), we obtain a functor from Top to the simplicial
category of Kan complexes; taking (simplicial) nerves produces a functor N Top → S. One can show that
this functor is the universal one that sends weak homotopy equivalences to equivalences.

2This can be proved as follows if you know some model category theory. By [Lur09, Proposition
4.2.4.4] pushouts in S can be computed as homotopy pushout in the model category of simplicial sets.
As Sing : Top → sSet is the right adjoint of a Quillen equivalence and every object in Top is fibrant, Sing
preserves homotopy pushout squares; here we use the Quillen model structure on Top, where the weak ho-
motopy equivalences are the weak equivalences, and the Kan–Quillen model structure on sSet. For example
by [Lur09, Proposition A2.4.4] a pushout diagram in Top is a homotopy pushout diagram if one of the legs
is a cofibration in the Quillen–Serre model structure. But this is also true if we just require the leg to be
cofibration (in the sense of the homotopy extension property) by [BV73, Appendix, Proposition 4.8b] and
replacing the original diagram up to weak homotopy equivalence by one where one leg is a cofibration in
the Quillen model structure. The argument for pullbacks and fibrations is similar, but does not need this
last step.

3For our purposes, please ignore what they say about ∞-cosmoi before this definition; just interpret
the words ∞-category and functor as in [Lur09] and a natural transformation is a 1-simplex in Fun(A,B).
Their notation hFun(A,B) is the homotopy category of Fun(A,B).



Talk 2: The ∞-category of spectra The goal of this talk is to introduce the∞-category
of spectra, discuss some of its basic properties and introduce the smash product. A
line to do this is the following.

Begin by recalling that Eilenberg–MacLane spaces represent singular cohomology
on CW-complexes or reduced singular cohomology on pointed CW-complexes. The
suspension isomorphism corresponds to ΩK(G,n) ' K(G,n − 1). A sequence of
pointed spaces Xn with chosen weak homotopy equivalences ΩXn ' Xn−1 is called
an Ω-spectrum. These represent cohomology theories and by Brown representability
every cohomology theory is represented by one. Here you can also mention the
example of (complex) K-theory.

For S∗ the ∞-category of pointed spaces and Ω the loop functor, we define the ∞-
category Sp of spectra as the limit of the diagram

· · · Ω−→ S∗
Ω−→ S∗

in the ∞-category Cat∞ of ∞-categories. This is not the definition used in [Lur17],
but it is equivalent to it by [Lur17, Proposition 1.4.2.24].

An object in Sp is the same as an arrow ∗ → Sp from the one-object ∞-category.
Discuss how the universal property of the limit identifies this exactly with an Ω-
spectrum.

A lot of spectra do not arise naturally as Ω-spectrum. A sequential spectrum is a
sequence of pointed space Xi with maps ΣXi → Xi+1. By adjunction we obtain maps
Xi → ΩXi+1. Given a sequential spectrum (Xi) we define

RXi = colimn

(
· · · → ΩnXn+i → Ωn+1Xn+1+i → · · ·

)
.

Here, the colimit is taken in the∞-category S∗. In general, Ω commutes with directed
colimits in S∗.4 This easily implies that (RXi) forms an Ω-spectrum and thus an
object in Sp. Define the suspension spectrum Σ∞X of a pointed space X by (RΣiX).
The sphere spectrum S is the suspension spectrum Σ∞S0.

The ∞-category Sp enjoys many pleasant properties.5 The most important ones
are that it has all small limits and colimits6 and that it is stable in the sense of
[Lur17, Definition 1.1.1.9], i.e. that cofiber and fiber sequence agree [Lur17, Corollary
1.4.2.17]. This implies that the loop and suspension functor are mutually inverse to
each other on Sp (see the discussion on p.23 and p.24 of [Lur17]). There you also find
explained why the homototopy category Ho(Sp) is additive. You can mention that it
is actually triangulated, but you should not give the full definition of a triangulated
category.

The last vital item is the smash product that defines a pairing ∧ : Sp×Sp → Sp.
The most important properties for us are

• S∧X ' X
• Σ∞X ∧Σ∞Y ' Σ∞(X ∧Y )

4This can be proven by the compactness of S1 in the category of simplicial sets or in the category of
topological spaces (with respect to directed systems of closed inclusions of T1-spaces) and the fact that
colimits in S∗ can be computed as homotopy colimits in these categories; for the general ∞-categorical
statement see [Lur09, Proposition 5.3.3.3].

5After the steep hills of unstable homotopy theory, it feels like a valley of joy.
6Limits of Ω-spectra are formed space-wise. Colimits are a bit more subtle: One can form them in

sequential spectra and then apply our functor R. See [Lur17, Proposition 1.4.3.7] for a different argument
using that S is compactly generated (which is essentially contained in [Lur09, Example 5.5.1.8]).



• For every X ∈ Sp the functor X ∧− : Sp→ Sp commutes with colimits.

• The smash product endows Ho(Sp) with the structure of a symmetric monoidal
category.

The last point can actually be refined to the statement that ∧ is part of the structure
of a symmetric monoidal ∞-category on Sp [Lur17, Corollary 4.8.2.19], but defining
this would lead to far.

Talk 3: Bar constructions in algebra The aim of this talk to introduce several ho-
mology and cohomology theories occurring in algebra in the unified framework of bar
constructions: Group (co)homology, André-Quillen (co)homology and Hochschild ho-
mology.

Introduce group (co)homology first as a derived functor and compute the example of
the group Z/n. Then introduce the bar construction and say that it is a second way
to compute group (co)homology.

This is a special case of cotriple homology.7 This is done in Sections 8.6 and 8.7 of
[Wei94]. In particular, introduce the chain complex associated to a simplicial object.
You can skip most of the examples here, but do Example 8.7.2 and relate it to group
(co)homology.

The most important other example for us in Andre-Quillen homology, treated in
Sections 8.8 of [Wei94]. Definitely do the definition and the example of polynomial
rings. Exercise 8.8.3 is also important. State the second exact sequence in 8.8.6 and
treat how it extends the fundamental exact sequence as a motivation for viewing
André–Quillen homology as (non-abelian) derived functors of Ω1.

In general, André–Quillen homology groups are very difficult to calculate. You can
mention Theorem 8.8.9 (without explicitly defining which summand it is) as one
motivation to go to Hochschild homology instead. Then define Hochschild homology
as in Section 9.1 and give at least one example.

Talk 4: The Tate construction and spectral sequences The goal of this talk is to
introduce first spectral sequence for homotopy fixed points and homotopy orbits.
Then you should introduce the Tate construction. There should be examples.

For the homotopy fixed point spectral sequence see e.g. [Dug03]. The homotopy orbit
spectral sequence is an analogous spectral sequence

Hq(G;πpX)⇒ πp+q(XhG)

if X is a spectrum with an action by a group G. This is also induced by the cellcular
filtration of EG.

The Tate spectrum XtG is the cofiber of the norm map relating homotopy orbits
and homotopy fixed points. We recommend the treatment of [Rog08]. Please replace
all occurrences of ’E-local S-module’ by ’spectrum’. We furthermore recommend to
concentrate on the finite groups of equivariance, but please mention the compact Lie
group case as well.

If M is an abelian group with a G-action (for G finite), one can identify π∗HM
tG with

the Tate cohomology Ĥ−i(G,M), which is a mixture of group homology and group
cohomology (see e.g. [Bro94, Chapter VI] for an introduction to Tate cohomology).
Give the example of G = Cp and M = Z with the trivial action. If you know how

7Mention that cotriples are more commonly called monads.



to do it, you can also introduce the spectral sequence from Tate cohomology to the
homotopy groups of the Tate construction.

One of the classic examples for the homotopy fixed point spectral sequence is the
C2-action on complex K-theory KU by complex conjugation. Recall that π∗KU =

Z[u±1] with u in degree 2; this corresponds to the Bott periodicity fact that K̃U
0
(Si)

is Z if i is even 0 if i is odd. The generator for i = 2 is the tautological bundle on

CP1 = S2 and the isomorphism K̃U
0
(S2)→ Z = H2(S2;Z) is given by the first Chern

class. This implies that complex conjugation acts by −1 on u. An easy calculation
shows that the E2-term of the homotopy fixed point spectral sequence is isomorphic
to Z[u±2, x]/2x with x ∈ H1(C2;π2KU). Use now that x is a permanent cycle that
represents the image of the element η along the unit map S→ KU .8 As η4 = 0, there
must be a differential and deduce that the only possibility is d3(u2) = η3. This implies
by the multiplicativity of the spectral sequence (see [Dug03]) a whole bunch of other
d3-differentials and on the remaining E4-page there can be no further differentials
for degree reasons. The resulting homotopy groups of KUhC2 agree with the known
values of π∗KO. In contrast, KU tC2 vanishes as can be seen from the Tate spectral
sequence. Thus, the norm map KUhC2 → KUhC2 is an equivalence in this case.

Talk 5: Operads This talk is an introduction to the theory of operads.

Introduce in an example-based way what a (topological) operad and an algebra over
it are. The most important examples for us are the En-operads (up to n = ∞) –
other examples one might consider are the commutative or the Lie operad. You can
follow [Bel17]. More background can be found in [MSS02], Sections 1.2, 1.4, 2.1 and
2.2, or [MS04]. The recognition principle for n-fold loop spaces should be mentioned
(and maybe used as a motivation), but you do not have to treat it in detail.
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