DG-ALGEBRAS AND DERIVED A_{∞} -ALGEBRAS

Steffen Sagave

Universitetet i Oslo

March 2008

http://folk.uio.no/sagave

INITIAL QUESTION

Let A be a differential graded algebra over a commutative ring k, possibly unbounded and with homological grading.

Its homology $H_*(A)$ is a graded *k*-algebra.

QUESTION

Is there some additional structure on $H_*(A)$ which allows us to recover the quasi-isomorphism type of A from $H_*(A)$?

If *k* is a field (or, more generally, $H_*(A)$ is *k*-projective), a minimal A_∞ -algebra structure on $H_*(A)$ provides an answer.

A_{∞} -ALGEBRAS

DEFINITION (STASHEFF)

An A_{∞} -algebra is a graded *k*-module *A* together with a unit element $1_A \in A_0$ and *k*-linear maps $m_j \colon A^{\otimes j} \to A[2-j]$ for $j \ge 1$, satisfying

$$\sum_{+s+t=n} (-1)^{rs+t} m_{r+1+t} (\mathbf{1}^{\otimes r} \otimes m_s \otimes \mathbf{1}^{\otimes t}) = 0$$

for $n \ge 1$ (and a unit condition).

r

- A map *f*: A → B of A_∞-algebras is a family of *k*-linear maps *f_j*: A^{⊗j} → B[1 − *j*] satisfying appropriate relations.
- An A_{∞} -algebra is *minimal* if $m_1 = 0$.
- dgas are A_{∞} -algebras with m_1 the differential, m_2 the multiplication, and all other $m_j = 0$.

MINIMAL MODELS

THEOREM (KADEISHVILI)

Let A be a dga with $H_*(A)$ k-projective. There exist a minimal A_∞ -algebra structure on $H_*(A)$ and a quasi-isomorphism $f: H_*(A) \to A$, where the m_2 of $H_*(A)$ is the algebra multiplication.

One can recover the quasi-isomorphism type of *A* from the minimal A_{∞} -algebra $H_*(A)$.

In other words: The higher multiplications m_j , $j \ge 3$, on the graded algebra ($H_*(A)$, m_2) provide the data we are asking for.

RESOLUTIONS

The statement of Kadeishvili's theorem does in general not hold if $H_*(A)$ is not *k*-projective.

WHAT TO DO INSTEAD?

Look for higher multiplications on a resolution of $H_*(A)$!

We consider (\mathbb{N}, \mathbb{Z}) -bigraded *k*-modules with the \mathbb{N} -grading the 'horizontal' direction and the \mathbb{Z} -grading the 'vertical' direction.

For *E* and *F* bigraded *k*-modules,

•
$$E[st]_{ij} = E_{i-s,t-j}$$

• $(E \otimes F)_{uv} = \bigoplus_{\substack{i+p=u\\j+q=v}}^{i+p=u} E_{ij} \otimes_k E_{pq}$

DEFINITION OF dA_{∞} -ALGEBRAS

DEFINITION

A *derived* A_{∞} *-algebra* (or dA_{∞} *-algebra*) is a (\mathbb{N}, \mathbb{Z}) -bigraded *k*-module *E* with a unit element $1_E \in E_{0,0}$ and structure maps

$$m_{ij} \colon E^{\otimes j} \to E[i, 2 - (i + j)]$$
 with $i \ge 0, j \ge 1$

satisfying

$$\sum_{\substack{i+p=u\\r+q+t=v\\r+1+t=j}} (-1)^{rq+t+pj} m_{ij}(\mathbf{1}^{\otimes r} \otimes m_{pq} \otimes \mathbf{1}^{\otimes t}) = 0$$

for all $u \ge 0$ and $v \ge 1$ (and a unit condition).

A dga may be viewed as a dA_{∞} -algebra concentrated in horizontal degree 0, with m_{01} the differential, m_{02} the multiplication, and all other $m_{ij} = 0$. Structure maps & Formulas for dA_{∞} -Algebras

A dA_{∞} -algebra has structure maps starting with:

$$\begin{split} m_{01} &: E \to E[0,1] & m_{11} \colon E \to E[1,0] & m_{21} \colon E \to E[2,-1] \\ m_{02} &: E^{\otimes 2} \to E & m_{12} \colon E^{\otimes 2} \to E[1,-1] \\ m_{03} &: E^{\otimes 3} \to E[0,-1] \end{split}$$

The first six relations are:

$$m_{01}m_{01} = 0$$

$$m_{01}m_{02} = m_{02}(\mathbf{1} \otimes m_{01}) + m_{02}(m_{01} \otimes \mathbf{1})$$

$$m_{01}m_{11} = m_{11}m_{01}$$

$$m_{02}(m_{02} \otimes \mathbf{1}) = m_{01}m_{03} + m_{02}(\mathbf{1} \otimes m_{02}) + m_{03}(m_{01} \otimes \mathbf{1}^{\otimes 2})$$

$$+ m_{03}(\mathbf{1} \otimes m_{01} \otimes \mathbf{1}) + m_{03}(\mathbf{1}^{\otimes 2} \otimes m_{01})$$

$$m_{11}m_{02} = m_{01}m_{12} + m_{12}(\mathbf{1} \otimes m_{01}) + m_{12}(m_{01} \otimes \mathbf{1})$$

$$+ m_{02}(\mathbf{1} \otimes m_{11}) + m_{02}(m_{11} \otimes \mathbf{1})$$

$$m_{11}m_{11} = m_{01}m_{21} + m_{21}m_{01}$$

Some terminology for dA_{∞} -algebras

- A map of dA_{∞} -algebras is a family of *k*-module maps $f_{ij} \colon E^{\otimes j} \to E[i, 1 (i + j)]$ satisfying appropriate relations.
- A dA_{∞} -algebra is *minimal* if $m_{01} = 0$.
- A map *f*: *E* → *F* is an *E*₂-equivalence if it induces isomorphisms in the iterated homology with respect to *m*₀₁ and *m*₁₁. This is possible since we require

$$m_{01}m_{01}=0$$
 and $m_{01}m_{21}+m_{21}m_{01}=m_{11}m_{11}$.

MAIN THEOREMS

THEOREM 1

Let A be a dga over a commutative ring k. There exists a k-projective minimal dA_{∞} -algebra E together with an E_2 -equivalence $E \rightarrow A$ of dA_{∞} -algebras.

- This *minimal* dA_∞-algebra model E of A is well defined up to E₂-equivalences between k-projective minimal dA_∞-algebras.
- (*E*, *m*₁₁, *m*₀₂) is a *k*-projective resolution of the graded *k*-algebra *H*_{*}(*A*).

THEOREM 2

The quasi-isomorphism type of A can be recovered from E.

PROOF OF THEOREM 1 (SKETCH)

DEFINITION

A bidga *B* is a dA_{∞} -algebra with $m_{ij}^B = 0$ if $i + j \ge 3$. Maps of bidgas have $f_{ij} = 0$ for $i + j \ge 2$.

- Equivalently: Monoids in the category of bicomplexes.
- dgas are bidgas concentrated in horizontal degree 0

1st step of proof

Given *A*, there is a bidga *B* and an E_2 -equivalence $B \rightarrow A$ of bidgas such that $H_*(B, m_{01}^B)$ is *k*-projective.

2ND STEP OF PROOF

Set $E = H_*(B, m_{01}^B)$. There exist a minimal dA_∞ -structure on E and an E_2 -equivalence $E \to B$.

APPLICATION AND EXAMPLE: **Ext**-ALGEBRAS

Let *M* be a *k*-module and *P* be a *k*-projective resolution of *M*.

The endomorphism dga $A = \text{Hom}_k(P, P)$ of *P* has homology

$$H_*(A) = \mathsf{Ext}_k^{-*}(M, M).$$

A minimal dA_{∞} -algebra model of A is a resolution of the Yoneda algebra $\operatorname{Ext}_{k}^{*}(M, M)$ together with structure maps m_{ij} . This data encodes the quasi-isomorphism type of the endomorphism dga.

EXAMPLE

Let
$$k = \mathbb{Z}$$
 and $M = \mathbb{Z}/p$. Then $H_*(A) = \Lambda^*_{\mathbb{Z}/p}(w)$ with $|w| = -1$.

EXAMPLE: $\text{Ext}_{\mathbb{Z}}^{*}(\mathbb{Z}/p, \mathbb{Z}/p)$ Let $E = \Lambda_{\mathbb{Z}}^{*}(a, b)$ with |a| = (0, -1) and |b| = (1, 0). 0 1

$$0 \qquad \mathbb{Z}/p\{\iota\} \leftarrow -- -\mathbb{Z}\{\iota\} \longleftarrow \mathbb{Z}\{b\}$$

$$-1 \qquad \qquad \mathbb{Z}/p\{w\} \leftarrow - -\mathbb{Z}\{a\} \xleftarrow{\rho} \mathbb{Z}\{ab\}$$

- The given data specifies the m_{11} and m_{02} of a minimal dA_{∞} -algebra.
- *m*₁₂ satisfies *m*₁₂(*a* ⊗ *b*) = *ι*, *m*₁₂(*a* ⊗ *ab*) = *a*, *m*₁₂(*ab* ⊗ *b*) = −*b*, *m*₁₂(*ab* ⊗ *ab*) = −*ab* and vanishes on the other generators of *E* ⊗ *E*.
- All other *m_{ij}* vanish.

This is a complete description of a minimal dA_{∞} -model for A.

DERIVED HOCHSCHILD COHOMOLOGY CLASS

Let *A* be a dga with minimal dA_{∞} -model *E*. The complex

$$C^{qt}(E) = \bigoplus_{r+s=q} \operatorname{Hom}_k(E^{\otimes r}, E[s, t])$$

has a differential $C^{qt} \rightarrow C^{q+1,t}$ induced from m_{11} and a Hochschild differential. Its cohomology is the *derived* Hochschild cohomology dHH^{qt}(H_{*}(A)).

PROPOSITION

 $\gamma_A := [m_{03} + m_{12} + m_{21}] \in dHH^{3,-1}(H_*(A))$ is a well defined cohomology class depending only on the quasi-isomorphism type of A.

If $H_*(A) = 0$ for * < 0, then

$$dHH^{3,-1}(H_*(A)) \rightarrow dHH^3(H_0(A),H_1(A))$$

maps γ_A to the first *k*-invariant of *A*.

TWISTED CHAIN COMPLEXES

DEFINITION

A *twisted chain complex* E is an (\mathbb{N}, \mathbb{Z}) -graded k-module with differentials $d_i^E : E \to E[i, 1 - i]$ for $i \ge 0$ satisfying

$$\sum_{i+p=u}(-1)^i d_i d_p = 0 \text{ for } u \ge 0.$$

Maps are families of *k*-module maps $f_i \colon E \to F[i, -i]$ satisfying $\sum_{i+p=u} (-1)^i f_i d_p^E = \sum_{i+p=u} d_i^F f_p$. Composition of maps: $(gf)_u = \sum_{i+p=u} g_i f_p$

SLOGAN

 A_{∞} -algebras \leftrightarrow chain complexes dA_{∞} -algebras \leftrightarrow twisted chain complexes

If *E* is a dA_{∞} -algebra, then $(E, m_{i1}, i \ge 0)$ is a twisted chain complex.

dA_{∞} -Structures and the tensor coalgebra

Let *E* be a dA_{∞} -algebra, SE = E[0, 1], and $\overline{T}SE = \bigoplus_{j>1} SE^{\otimes j}$

$$\begin{array}{rcl} m_{ij} & \leftrightarrow & \widetilde{m}_{ij}^{1} \colon SE^{\otimes j} \to SE[i,1-i] \\ & \leftrightarrow & \widetilde{m}_{ij}^{q} = \sum\limits_{\substack{r+1+t=q \\ r+s+t=j \\ \end{array}} \mathbf{1}^{\otimes r} \otimes \widetilde{m}_{is}^{1} \otimes \mathbf{1}^{\otimes t} \colon SE^{\otimes j} \to SE^{\otimes q}[i,1-i] \\ & \leftrightarrow & \widetilde{m}_{i} \colon \overline{\mathsf{T}}SE \to \overline{\mathsf{T}}SE[i,1-i] \text{ with components } \widetilde{m}_{ij}^{q}. \end{array}$$

LEMMA

 dA_{∞} -relations $\Leftrightarrow (\overline{T}SE, \widetilde{m}_i)$ is a twisted chain complex

LEMMA

 dA_{∞} -algebra maps $E \to F$ correspond to maps $(\overline{T}SE, \widetilde{m}_{i}^{E}) \to (\overline{T}SF, \widetilde{m}_{i}^{F})$ of twisted chain complexes

PROOF OF THEOREM 2 (SKETCH)

- The category of modules over a *dA*_∞-algebra *E* is enriched in twisted chain complexes.
- The endomorphism object <u>Hom_E</u>(*E*, *E*) is a monoid in tCh_k.
- Tot $\underline{Hom}_E(E, E)$ is a dga.
- If *E* has *E*₂-homology concentrated in horizontal degree 0, there is an *E*₂-equivalence *E* → Tot Hom_{*E*}(*E*, *E*).
- If *E* and *F* are *E*₂-quasi-isomorphic, then Tot <u>Hom_E(E, E)</u> and Tot <u>Hom_F(F, F)</u> are quasi-isomorphic as dgas.

PROOF OF THEOREM 2.

Apply the last statement to $E \rightarrow A$.

IN OTHER WORDS:

The dA_{∞} -algebras with E_2 -homology concentrated in horizontal degree 0 model quasi-isomorphism types of dgas.