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TOPOLOGICAL HOCHSCHILD HOMOLOGY

The smash product of symmetric spectra is symmetric
monoidal. lts unit is the sphere spectrum S. Monoids in
(Sp¥, A, S) are known as (symmetric) ring spectra.

DEFINITION
The topological Hochschild homology of a (sufficiently
cofibrant) symmetric ring spectrum A is

THH(A) = [BJ (A),

the realization of the cyclic bar construction of Ain (Sp*, A, S).

EXAMPLE

Any discrete ring R gives rise to a symmetric ring spectrum
HR, the Eilenberg—Mac Lane spectrum of R. The topological
Hochschild homology of R is defined by THH(R) = THH(HR).
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THE CYCLIC BAR CONSTRUCTION

Let (A, ®,1) be a symmetric monoidal category and let A be a
monoid in A.

DEFINITION
The cyclic bar construction of A is the simplicial object
BI(A): A% — A, K| A®...QA.
N —
k+1 copies

The face and degeneracy maps are as follows:

PHR...038a841®...0a Iifi<k

dlay®...®ak) = .
(o k) {akao®...®ak1 if i=k

Si(a®..0a)=a®..0a81®a11®...Q a

Via cyclic permutation of ®@-factors, BY(A) extends to a cyclic
object AP — A.
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TRACE MAPS

Let A be a ring spectrum. Topological Hochschild homology is
useful because there are trace maps

TC(A)

trc

K(A) —5 THH(A).

e K(A) is the algebraic K-theory of A. For many A, it is both
hard and interesting to compute K(A).
(K(S) is Waldhausen’s A(x) and K(HR) is Quillen’s K(R).)
e TC(A) is the topological cyclic homology of A, a refinement
of THH(A) constructed from fixed point information of an
S'-action on THH(A).

¢ In some examples of interest, trc: K(A) — TC(A) is close
to being an equivalence.
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TRACE MAPS FOR PERIODIC RING SPECTRA?

When trying to understand how algebraic K-theory of ring
spectra interacts with localization and étale descent, it is natural
to also consider K(A) for periodic A (or, more general, for
non-connective A).

EASIEST EXAMPLES
A= KU, A= KO, A =L (the p-local Adams summand)

PROBLEM
The trace map K(A) — THH(A) is less useful for periodic A.

One indication: If Ais commutative, THH(A) is an A-module
spectrum.
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A MOTIVATION FOR LOGARITHMIC THH

We like to give an alternative construction of relative
THH-terms such as THH(ku|KU) which is

e more accessible to computations and
o takes logarithmic ring spectra as input data.

7122

LOCALIZATION SEQUENCES

Blumberg and Mandell established compatible homotopy
cofiber sequences

K(Z) — K(ku) —— K(KU) —— £K(Z)

! ! ] !

THH(Z) — THH(ku) — THH(ku|KU) — X THH(Z).

The relative THH-term THH(ku|KU) is defined using
localization techniques and THH of Waldhausen categories.
THH(ku|KU) is not equivalent to THH(KU).
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DISCRETE LOG RINGS

DEFINITION
A discrete pre-log ring (A, M) is a commutative ring A and a
commutative monoid M together with a monoid homomorphism

a:M— (A,-)
to the multiplicative monoid of A.
The inclusion of the units A* — A induces a pullback square
a1 (AX) —— AX

1

—2 A

DEFINITION
A pre-log ring (A, M) is a log ring if a1 (AX) — A* is an
isomorphism.
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EXAMPLE FOR DISCRETE LOG RINGS TOPOLOGICAL GENERALIZATIONS OF LOG RINGS

Let A be an integral domain with quotient field K. e The classical notions of multiplicative E, spaces and units
of ring spectralead to a version of logarithmic ring spectra.
e (A A*) and (K, K*) are (trivial) log rings.
e However, this framework makes it difficult to produce
interesting topological examples lying beyond
Eilenberg—Mac Lane specitra.

e (A A\ {0})is alog ring that sits in a factorization
(A, A7) = (A, A\ {0}) — (K, K™).

e To generalize log rings to log ring spectra in a more
interesting way, we need graded notions of multiplicative
monoids and units for ring spectra that detect units in

It is useful to think of A\ {0} as (A — K)*(K*). nomaere degree
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COMMUTATIVE J -SPACE MONOIDS GRADED E., SPACES
Let 7 = X~ 'Y be Quillen’s localization construction on the The category of commutative [7-space monoids CSY admits a
category ¥ of finite sets and bijections. The category 7 is model structure where f: M — N is a weak equivalence iff

symmetric monoidal under concatenation L, and BJ ~ QS°. . . .
hocolim f: hocolims M — hocolims N

DEFINITION _ - _
A J-space is a functor X: 7 — S to the category of spaces S. is a weak homotopy equivalence in S.
The functor category S7 inherits a symmetric monoidal THEOREM (S.—SCHLICHTKRULL)
convolution product X from the product of 7. By definition, There is a chain of Quillen equivalences

X XY is the left Kan extension of
¢S7~ E.-spaces/QS°
IxT XY sx8%5s
sending a commutative J -space monoid M to
alongu: 7 xJ = J.
hocolim; M — hocolim_; const () = BJ ~ QS°.
DEFINITION
A commutative J -space monoid is a commutative monoid in We view the augmentation hocolim s M — QS° as a grading of

(87, K). the E., space hocolim_; M.

11/22 12/22



GRADED E., SPACES AND THOM SPECTRA

There is a Quillen-adjunction
s7:c87 = cspr: Q7

relating CSY to commutative symmetric ring spectra.

e Q7(A) models the graded multiplicative E., space of A.

o There is a notion of units GLY (A) ¢ Q7 (A) that captures
T« (A)*C C e (A).
e S7[M] models the graded spherical monoid ring of M.

THEOREM (S.—SCHLICHTKRULL)
If M is sufficiently cofibrant, then S7 [M] is equivalent to the
Thom spectrum of the virtual vector bundle classified by

hocolim; M — hocolim_; const 7 (%) ~ QS® — Z x BO.
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EXAMPLES FOR LOGARITHMIC RING SPECTRA

Let E be a d-periodic commutative symmetric ring spectrum,
let x € m4(E) be a unit of minimal positive degree, and let
j: e — E be the connective cover of E.

Consider the pullback j.(GLY (E)) of
GL{(E) — Q7(E) «+ Q7 (e).
We write (e, (x)) for the log ring spectrum (e, j.(GLY (E)).

This log ring spectrum comes with a factorization
(e,GL{ (e)) — (e, (x)) = (E,GL{ (E)).

EXAMPLE
The Bott class u € mo(KU) gives rise to a factorization
(ku, GLY (ku)) — (ku, (u)) — (KU, GL{ (KU)).
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LOGARITHMIC RING SPECTRA

DEFINITION

A pre-log ring spectrum (A, M) is a commutative symmetric ring
spectrum A together with a commutative 7-space monoid M
andamap a: M — Q7(A)inCS7.

DEFINITION
A pre-log ring spectrum (A, M) is a log ring spectrum if
a~1(GLY (A)) — GLY (A) is a weak equivalence in CS7 .

Every commutative symmetric ring spectrum A gives rise to the
trivial log ring spectrum (A, GLY (A)).

THE REPLETE BAR CONSTRUCTION
Let M be a commutative [7-space monoid.

DEFINITION
Let BY(M) = |B(M)| be the realization of the cyclic bar
construction of M in (57, X).

DEFINITION
The replete bar construction of M is the (homotopy) pullback

B (M) —— BY(MeP)

| |

M—— MeP
in commutative J-space monoids.

e M — M#P s the group completion of M.
e There is a canonical repletion map p: B (M) — B™P(M).
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REPLETE BAR CONSTRUCTION OF N

One can also consider B and B*P for discrete monoids.

BY(N)={+}1I]] &'

k>1
BY(z)=]] S
KeZ
Bo(N) =[] S
k>0

In homology, the repletion map B%(N) — B"P(N) takes the form
p«: P(X)®E(dx) — P(x)®E(dlogx), p«(x) = X, ps(dx) = x-dlogx

where P denotes a polynomial algebra, E denotes an exterior
algebra, and the generators have degrees

|x| =(0,1), |dx| =(1,1), and |dlogx| = (1,0).
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LOCALIZATION SEQUENCES FOR LOG THH

Let E be a d-periodic commutative symmetric ring spectrum
with periodicity class x € m4(E) and connective cover e — E.
We write [0, d) for the dth Postnikov section of e.

THEOREM (ROGNES—S.—SCHLICHTKRULL)
There is a localization homotopy cofiber sequence

THH(e) — THH(e, (x)) — X THH(e[O0, d)).

The resulting homotopy cofiber sequence
THH(ku) — THH(ku, (u)) — X THH(Z)

is analogous to the cofiber sequence established by
Blumberg—Mandell. We expect the relative THH-terms to be
equivalent when both are defined.
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DEFINITION OF LOGARITHMIC THH

Let (A, M) be a (cofibrant) pre-log ring spectrum. The repletion
and the adjoint S7[M] — A of M — Q7 (A) induce a diagram of
commutative symmetric ring spectra

THH(A) « THH(S? [M]) = ST[BY(M)] — S7[B*P(M)]

DEFINITION
The logarithmic topological Hochschild homology is defined to
be the pushout

THH(A, M) = THH(A) Asa(g(my SY [B*P(M)]

in commutative symmetric ring spectra.

EXAMPLE
For trivial log ring spectra, we have

THH(A) = THH(A, GLY (A4)).

18722

TAME RAMIFICATION

Let p be an odd prime, let ku = ku(,) be the p-local connective
complex K-theory spectrum, and let £ — ku be the inclusion of
the connective p-local Adams summand.

On T, the map ¢ — ku induces Zy[v] — Zp[u], v — uP1,

There are compatible homotopy cofiber sequences

THH(¢) — THH(Z, (v)) — Z THH(Z ;)

| | |

THH(ku) — THH(ku, (u)) — X THH(Z ;) .

THEOREM (ROGNES—S.—SCHLICHTKRULL)
The diagram induces a stable equivalence

ku Ae THH(Z, (v)) — THH(ku, (u)),

i.e., { — ku is formally log-THH étale.
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COMPUTATIONS FOR ¢ AND ku(p) TOWARDS LOGARITHMIC TC

For a spectrum X, let V(1),.X = m.(V(1) A X) denote the Currently there appear to be 3 possible constructions of TC:
V(1)-homotopy groups. (Here (1) The original construction by Békstedt—Hsiang—Madsen,
V(1) = cone(vi: ¥2°-2S/p — S/p) exploiting the cyclotomic structure on the Bdkstedt model
for THH.
is a Smith—Toda complex of type 2). (2) The approach by
) Angeltveit-Blumberg—Gerhardi—Hill-Lawson—Mandell
THEOREM (BOKSTEDT)

ooy 201 , building on a property of the geometric fixed points of
V(1) THH(Zp) = ECer ', M) @ P(i7) norms of orthogonal spectra and the Blumberg—Mandell
description of cyclotomic spectra.
MCCLURE-STAFFELDT
THEOREM ( 20— 1 207 1 zpz) (3) The Nikolaus-Scholze approach using an S'-equivariant
V(1) THH() = E( A1, X2 ) @ P(p2) map to the C,-Tate construction of THH(A).

THEOREM (ROGNES—S.—SCHLICHTKRULL) WORK IN PROGRESS

2p—1 1
V(1). THH(?, (v)) = E( ‘1\1 ,dlogv) ® P(éﬁ) For an interesting class of pre-log ring spectra (A, M), our

C R S-S model of THH(A, M) is cyclotomic in the sense of (2). The
OROLLARY (ROGNES— o, CHLISETKREJLL) , approach (3) is likely to also produce cyclotomic structures on
V(1) THH(ku, (u)) = Pp_1(U) ® E( A1 ,dlogu) ® P(k7) THH(A, M).
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