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Definition. Let A be an abelian group and let M be a set. The A-linearization of M is the set

A[M ] = {f : M → A | f−1(A \ {0}) is finite}.
We view A[M ] as an abelian group via the pointwise addition of functions.

Exercise 1.1. Let k be a field and let M be a set. Viewing k as an abelian group by only
remembering its additive structure, we obtain an abelian group k[M ].

(i) Show that the abelian group structure on k[M ] extends to a k-vector space structure in a
canonical way.

(ii) Show that k[M ] has a basis which admits a bijection from M . (This implies that the
dimension of k[M ] equals |M | if M is finite.)

Exercise 1.2. Let M be a set and let ι : M → Z[M ] be the map of sets sending m to the
function f : M → Z with f(m) = 1 and f(n) = 0 if n 6= m. Moreover, let A be an abelian group
and let ψ : M → A be a map of sets.

Show that there exists a unique group homomorphism ψ̃ : Z[M ]→ A such that ψ̃ ◦ ι = ψ.

Definition. A subset C ⊆ Rn is convex if t · x+ (1− t) · y ∈ C holds for all x, y ∈ C and for
all t ∈ R with 0 ≤ t ≤ 1. It is easy to see that the intersection of convex subsets is convex again.
The convex hull of a subset M ⊆ Rn is the intersection of all convex subsets of Rn containing M .

Exercise† 1.3. Show that the standard n-simplex

∆n = {(t0, . . . , tn) ∈ Rn+1 | ti ≥ 0, t0 + · · ·+ tn = 1}
is the convex hull of {e0, . . . , en} where ei ∈ Rn+1 has 1 in entry i and 0 in all other entries.

Exercise† 1.4. Recall that a map of sets α : {0, . . . ,m} → {0, . . . , n} induces a continuous
map α∗ : ∆m → ∆n given by α∗(t0, . . . , tm) = (

∑
i∈α−1(0) ti, . . . ,

∑
i∈α−1(n) ti). In the lecture,

we considered the map δi : ∆n−1 → ∆n induced by the unique order preserving injection
{0, . . . , n− 1} → {0, . . . , n} that does not hit i.

For n ≥ 0 and 0 ≤ i ≤ n, we now define σi : ∆n+1 → ∆n to be the map induced by the unique
order preserving surjection {0, . . . , n+ 1} → {0, . . . , n} that hits i twice. Consider the following
three squares:

∆n δi //

δi+1

��

∆n+1

σi

��

∆n
δj
//

σi−1

��

∆n+1

σi

��

∆n
δj
//

��

σi
��

∆n+1

σi

��

∆n+1 σi // ∆n ∆n−1 δj
// ∆n ∆n−1 δj−1

// ∆n

Show that the first square commutes, that the second square commutes if j < i, and that the
third square commutes if j > i+ 1.
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Definition. Let (Ai)i∈I be a family of abelian groups indexed by a set I. Recall that the direct
sum

⊕
i∈I A

i can be defined as the abelian group consisting of families of group elements (ai)i∈I
with ai ∈ Ai for all i ∈ I and ai = 0 for all but finitely many i ∈ I. The addition of the direct
sum is defined by (ai)i∈I + (bi)i∈I = (ai + bi)i∈I , and the familiy given by the zero elements of
the groups Ai provides the zero element for the direct sum. There are canonical homomorphisms
ιAi : A

i →
⊕

i∈I A
i sending a ∈ Ai to the tuple with ai = a and aj = 0 if j 6= i.

Exercise† 1.5. Let Ci be a family of chain complexes indexed by a set I. Then setting

(
⊕
i∈I

Ci)n =
⊕
i∈I

(Ci)n and ∂((ai)i∈I) = (∂(ai))i∈I

defines a chain complex
⊕

i∈I C
i, and the homomorphisms ι(Ci)n : (Ci)n →

⊕
i∈I(C

i)n from the
previous definition form a chain map ιCi : C

i →
⊕

i∈I C
i.

(i) Show that
⊕

i∈I C
i has the following universal property: Given a chain complex D and a

family of chain maps fi : C
i → D, there is a unique chain map

f :
⊕
i∈I

Ci → D

with fi = f ◦ ιCi for every i ∈ I.
(ii) Show that there is an isomorphism⊕

i∈I Hn(Ci)→ Hn

(⊕
i∈I C

i
)

whose composite with ιHn(Ci) is the map Hn(Ci)→ Hn

(⊕
i∈I C

i
)

induced by the chain
map ιCi .
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Definition. Let k be a field. A chain complex of k-vector spaces C is a sequence of k-vector
spaces and k-linear maps

. . .
∂3−→ C2

∂2−→ C1
∂1−→ C0

such that ∂n ◦ ∂n+1 = 0 for all n ≥ 1. In analogy with the chain complexes of abelian groups
considered in the lecture, one can form homology k-vector spaces Hn(C) for n ≥ 0, rather than
just homology groups. (One can unify the definition of chain complexes of abelian groups and
chain complexes of k-vector spaces by considering chain complexes of modules over a ring.)

Exercise† 2.1. Let k be a field and let C be a chain complex of k-vector spaces such that
only finitely many of the Cn are non-trivial vector spaces, and such that each Cn is a finite
dimensional k-vector space.

Show that the following equation holds:∑
n≥0

(−1)n dimk(Cn) =
∑
n≥0

(−1)n dimk(Hn(C))

This integer is the Euler characteristic of C.

Exercise† 2.2. Let f : A→ B be a homomorphism of abelian groups, let Q = B/ im f be the
quotient of B by the image of f , and let q : B → Q be the canonical homomorphism to the
quotient.

(i) Show that if p : B → P is a homomorphism of abelian groups with p ◦ f = 0, then there
exists a unique homomorphism p′ : Q→ P with p′ ◦ q = p.

(ii) Suppose that q′ : B → Q′ is a homomorphism of abelian groups such that q′ ◦ f = 0 and
such that for any homomorphism of abelian groups p : B → P with p ◦ f = 0, there exists
a unique homomorphism p′ : Q′ → P with p′ ◦ q′ = p. Show that there exists a unique
isomorphism r : Q→ Q′ such that r ◦ q = q′.

(This shows that the property established in (i) characterizes the pair (Q, q) up to unique
isomorphism. A pair with this property is called “the” cokernel of f .)

(iii) Let C and D be chain complexes of abelian groups and let f : C → D be a chain map.
For n ≥ 0, let En = Dn/ im fn and let qn : Dn → En be the quotient map. Show that there
exists a unique family of maps ∂En : En → En−1 such that

. . .
∂E3−→ E2

∂E2−→ E1

∂E1−→ E0

is a chain complex and the qn define a chain map q : D → E.
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Exercise† 2.3. We consider chain complexes of abelian groups C,D and E that are defined as
follows: For each n ≥ 0, we set

Cn = Z, Dn = Z/2, and En = Q .

For each of these chain complexes, the differential is given by

∂n =

{
multiplication with 2 if n is even

multiplication with 0 if n is odd

Compute the homology groups Hn(C), Hn(D), and Hn(E) for all n ≥ 0.

Exercise 2.4. Consider the boundary

∂∆3 = {(t0, t1, t2, t3) ∈ ∆3 | ti = 0 for some i}
of the standard 3-simplex ∆3. It has a canonical triangulation with

• vertices V0 = (1, 0, 0, 0), . . . , V3 = (0, 0, 0, 1),
• edges Eij = {(t0, t1, t2, t3) | tk = 0 for all k 6= i and k 6= j} for 1 ≤ i < j ≤ 3, and
• 2-dimensional faces Ti = {(t0, t1, t2, t3) | ti = 0} for i = 0, . . . , 3.

(i) Generalize the “motivating example” from lecture 1 by constructing differentials ∂2 and ∂1
in a chain complex C of Q-vector spaces of the form

· · · → 0→ Q[{T0, . . . , T3}]
∂2−→ Q[{Eij | 0 ≤ i < j ≤ 3}] ∂1−→ Q[{V0, . . . , V3}]

In particular, show that ∂1 ◦ ∂2 = 0 holds.
(ii) Compute the dimensions of the Q-vector spaces Hi(C) for 0 ≤ i ≤ 2.

(iii) Compute the Euler characteristic of C (in the sense of Exercise 2.1).

Remark. One can also consider the singular homology groups of the topological space ∂∆3. They
are defined in terms of the singular chain complex of ∂∆3. However, by definition the singular
chain groups Cn(∂∆3;Q) are infinite dimensional Q-vector spaces for all n ≥ 0. Later in this
course we will show the non-obvious result that the homology groups of the above chain complex
C are isomorphic to the singular homology groups of ∂∆3 with coefficients in Q.
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Exercise 3.1. (The five lemma) Let

A1

f1
��

α1 // A2

f2
��

α2 // A3

f3
��

α3 // A4

f4
��

α4 // A5

f5
��

B1
β1

// B2
β2

// B3
β3

// B4
β4

// B5

be a commutative diagram of abelian groups and group homomorphisms in which both rows are
exact. Verify the following statements:

(i) If f2 and f4 are injective and f1 is surjective, then f3 is injective.
(ii) If f2 and f4 are surjective and f5 is injective, then f3 is surjective.

(iii) If f2 and f4 are isomorphisms, f1 is surjective, and f5 is injective, then f3 is an isomorphism.

Definition. Let A and B be abelian groups. Then we write

Hom(A,B) = {f : A→ B | f is a group homomorphism}
for the set of all group homomorphisms from A to B. For f, g ∈ Hom(A,B), we define f + g to
be the group homomorphism given by (f + g)(a) = f(a) + g(a) and note that this addition
turns Hom(A,B) into an abelian group with zero element the group homomorphism A→ B
with constant value 0. We also note that a group homomorphism i : B′ → B induces a group
homomorphism

i∗ : Hom(A,B′)→ Hom(A,B), f 7→ i ◦ f
and that for the trivial abelian group 0, the group Hom(A, 0) is as well trivial.

Exercise 3.2. Let A be an abelian group, let

0→ B′
i−→ B

p−→ B → 0

be a short exact sequence of abelian groups, and consider the induced sequence of abelian groups

0→ Hom(A,B′)
i∗−→ Hom(A,B)

p∗−→ Hom(A,B)→ 0 .

(i) Show that this induced sequence is exact at Hom(A,B′) and at Hom(A,B).
(ii) Give examples of abelian groups that show that the induced sequence is in general not

exact at Hom(A,B).
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Exercise† 3.3. Let X be a topological space, let X ′ ⊂ X be a subspace, let A be an abelian
group, and let n ≥ 0 be an integer. Then we can view Cn(X ′;A) as a subgroup of Cn(X;A),
and we define the following two subsets of Cn(X;A):

Zn(X,X ′;A) ={c ∈ Cn(X;A) | ∂(c) ∈ Cn−1(X ′;A)}
Bn(X,X ′;A) ={c ∈ Cn(X;A) |There exist c′ ∈ Cn(X ′;A), e ∈ Cn+1(X;A) with c− c′ = ∂(e)}
Show the following statements:

(i) The sets Zn(X,X ′;A) and Bn(X,X ′;A) are subgroups of Cn(X;A), and Bn(X,X ′;A) is
contained in Zn(X,X ′;A).

(ii) There is a natural isomorphism Hn(X,X ′;A) ∼= Zn(X,X ′;A)/Bn(X,X ′;A).

Exercise† 3.4. (i) Let

0 // A′
j
// A

q
// A // 0

be a short exact sequence of abelian groups. Show that the following three statements are
equivalent:
(a) The map q admits a section, that is, there is a homomorphism s : A→ A such that

q ◦ s = idA.
(b) The map j admits a retraction, that is, there is a homomorphism r : A→ A′ such that

r ◦ j = idA′ .
(c) There is a commutative diagram of the form

0 // A′
j
//

id
��

A
q
//

f
��

A //

id
��

0

0 // A′
i // A′ ⊕ A p

// A // 0

where f is an isomorphism and i and p are the homomorphisms given by i(a′) = (a′, 0)
and p(a′, a) = a.

A short exact sequence satisfying the equivalent conditions (a) - (c) is called split.
(ii) Give an example of a short exact sequence that is not split! (Hint: Use the group Z/4.)

(iii) Now let X be a space, let X ′ ⊂ X be a subspace and suppose that there exists a retraction
r : X → X ′, that is, a continuous map such that r(x′) = x′ for all x′ ∈ X ′.

Use part (i) and the long exact sequence of the pair (X,X ′) to construct an isomorphism

Hn(X;A)→ Hn(X ′;A)⊕Hn(X,X ′;A) .

for all abelian coefficient groups A and all n ≥ 0.
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In the lecture, we have formulated (but not yet proved) the Excision Theorem for singular
homology. On this exercise sheet, you may use the Excision Theorem and its consequences
established in the lecture.

Exercise† 4.1. (The topological invariance of the dimension) Let m and n be positive integers,
let U ⊆ Rm and V ⊆ Rn be non-empty open subsets and let f : U → V be a homeomorphism.
Use our computation of the homology of disks relative to their boundary spheres to show that
m = n.

Exercise† 4.2. (The long exact sequence of a tripel.) Let X be a topological space, let
X ′′ ⊆ X ′ ⊆ X be subspaces of X, and let A be an abelian group. Let

Hn(X ′, X ′′;A)→ Hn(X,X ′′;A)

be the map induced by the inclusion X ′ → X, let

Hn(X,X ′′;A)→ Hn(X,X ′;A)

be the map induced by the identity of X, and let

Hn(X,X ′;A)→ Hn−1(X
′, X ′′;A)

be the composite of the map Hn(X,X ′;A) → Hn−1(X
′;A) from the long exact sequence of

(X,X ′) and the map Hn−1(X
′;A)→ Hn−1(X

′, X ′′;A) from the long exact sequence of (X ′, X ′′).
Show that the sequence

· · · → Hn(X ′, X ′′;A)→ Hn(X,X ′′;A)→ Hn(X,X ′;A)→ Hn−1(X
′, X ′′;A)→ . . .

obtained from these maps is exact.

Exercise† 4.3. Let n ≥ 1 be an integer, let Dn = {x ∈ Rn | ‖x‖ ≤ 1} be the n-dimensional
disk, let ∂Dn = {x ∈ Dn | ‖x‖ = 1} be its boundary sphere, let

∂∆n = {(t0, . . . , tn) ∈ ∆n | ti = 0 for some i}
be the boundary of the standard n-simplex ∆n, and let f : ∆n → Dn be a homeomorphism.
Show that f restricts to a homeomorphism ∂∆n → ∂Dn.

Definition. If A,A′, B are abelian groups, a bilinear map is a map of sets f : A × A′ → B
such that f(a,−) : A′ → B and f(−, a′) → B are group homomorphisms for all a ∈ A and
a′ ∈ A′. The tensor product of A and A′ is an abelian group A⊗ A′ together with a bilinear
map f : A× A′ → A⊗ A′ such that the following property is satisfied: For every bilinear map
f ′ : A×A′ → B′ to an abelian group B′, there is a unique group homomorphism g : A⊗A′ → B′

such that f ′ = g ◦ f .
The universal property characterizes the tensor product up to isomorphism. We follow the

usual convention of writing x⊗ y for f(x, y).
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In the next exercise, you may use without proof that the tensor product of abelian groups
exists. (It can be constructed as an explicit quotient.)

Exercise 4.4. Let C and D be chain complexes of abelian groups. Let I be the chain complex
of abelian groups with I0 = Z[{0, 1}] the Z-linearization of the two element set {0, 1}, with
I1 = Z[{e}] the Z-linearization of the one element set {e}, with In = 0 if n ≥ 2, and with the
only non-trivial differential given by

∂1 : I1 → I0, k · e 7→ k · 1− k · 0 .
(i) The tensor product of C and D is defined to be the chain complex with

(C ⊗D)n =
n⊕
p=0

Cp ⊗Dn−p

where we use the tensor product of abelian groups on the right hand side. The differential
∂C⊗D of C ⊗D is the group homomorphism induced by the bilinear maps

Cp ×Dn−p → (C ⊗D)n−1, (x, y) 7→ ∂Cp (x)⊗ y + (−1)p x⊗ ∂Dn−p(y)

(where ∂C0 (x) and ∂D0 (y) are understood to be zero). Show that ∂C⊗D ◦ ∂C⊗D = 0!
(ii) Now let H : I ⊗ C → D be a chain map. Show that setting

H0 : C → D, (H0)n(x) = Hn(0⊗ x) and H1 : C → D, (H1)n(x) = Hn(1⊗ x)

defines chain maps H0 and H1.
(iii) Let H : I ⊗ C → D be a chain map. Show that maps

Pn : Cn → Dn+1, x 7→ Hn+1(e⊗ x)

define a chain homotopy from H0 to H1.
(iv) Show that for any chain homotopy between two chain maps C → D, there is a chain map

H : I ⊗ C → D that gives back the original chain homotopy via the formula in (iii).

Remark. The chain complex I in the previous exercise arises from the canonical triangulation of
the 1-simplex ∆1 (compare Exercise 2.4). Therefore, I may be viewed as the chain complex
version of the interval. Thinking of the ⊗-product as “the” product of chain complexes, the
present exercise shows that the notion of chain homotopy is analogous to the notion of homotopy
of continuous maps.
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In the lecture, we have formulated (but not yet proved) the Excision Theorem and the “Small
Simplices” Theorem. On this exercise sheet, you may use these results and their consequences
established in the lecture.

Exercise† 5.1. Let X be a topological space and let A be an abelian group. Let U, V ⊆ X be
two subsets with X = interior(U) ∪ interior(V ) and let

iU : U ∩ V → U, iV : U ∩ V → V, jU : U → X, and jV : V → X

be the inclusion maps. Define group homomorphisms ∂n : Hn(X;A) → Hn−1(U ∩ V ;A) such
that the sequence of homology groups

. . . // Hn(U ∩ V ;A)
(iU∗ ,i

V
∗ )// Hn(U ;A)⊕Hn(V ;A)

( jU∗
−jV∗

)
// Hn(X;A)

∂n // Hn−1(U ∩ V ;A) // . . .

is exact. This sequence is called the Mayer–Vietoris-sequence of the cover {U, V }.
(Hint: Set O = {U, V }, replace Hn(X;A) by Hn(C(SO(X);A)) and look for a short exact

sequence of chain complexes inducing the Mayer–Vietoris-sequence.)

Exercise 5.2. In the lecture we calculated Hn(S0;A) for n ≥ 0 and H0(S
m;A) for m ≥ 0.

Use these calculations and the Mayer–Vietoris sequence from the previous exercise to give an
alternative proof of the calculation of Hn(Sm;A) for m ≥ 0 and n ≥ 0 that was carried out in
the lecture.

Definition. Let X be a topological space and let X ′ ⊆ X be a subspace. Then X ′ is called
a deformation retract of X if there exists a continuous map H : X × [0, 1] → X such that
H(x, 0) = x for all x ∈ X, H(x, t) = x for all x ∈ X ′ and all t ∈ [0, 1], and H(x, 1) ∈ X ′ for all
x ∈ X. A neighborhood of X ′ in X is a subset U ⊆ X with the property that there is an open
subset O ⊆ X with X ′ ⊆ O ⊆ U . The subspace X ′ of X is called a neighborhood deformation
retract if there exists a neighborhood U ⊆ X of X ′ such that X ′ is a deformation retract of U .

Exercise† 5.3. Let X be a topological space, let A be an abelian group, and let n ≥ 0 be an
integer. Let X ′ ⊆ X be a non-empty closed subspace of X that is a neighborhood deformation
retract. As usual, we write X/X ′ for the quotient of X obtained by identifying all points in X ′.

(i) Show that the quotient map X → X/X ′ induces an isomorphism of relative homology
groups

Hn(X,X ′;A) → Hn(X/X ′, X ′/X ′;A) .

(ii) Show that the relative homology groups Hn(X,X ′;A) of (X,X ′) are isomorphic to the

reduced homology groups H̃n(X/X ′;A) of the quotient space X/X ′.
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Exercise† 5.4. (Brouwer’s fixed point theorem)
Let n ≥ 1 be an integer, let Dn = {x ∈ Rn | ‖x‖ ≤ 1} be the n-dimensional disk, and let
∂Dn = {x ∈ Dn | ‖x‖ = 1} be its boundary.

(i) Show that there does not exist a continuous map f : Dn → ∂Dn with the property that
f(x) = x for all x ∈ ∂Dn. (Hint: Use our computation of the relative homology groups of
(Dn, Sn−1).)

(ii) Show that every continuous map f : Dn → Dn has a fixed point, i.e., a point x with
f(x) = x. (Hint: Use Part (i).)

Exercise 5.5. In the lecture, we used an inductive argument to show that the homology groups
Hn(Dn, S

n−1;A) and Hn(Sn;A) are isomorphic to A. In this exercise, we will construct explicit
isomorphisms relating these groups to A. For this we choose a homeomorphism f : ∆n → Dn

and use that it restricts to a homeomorphism ∂∆n → ∂Dn = Sn−1 by Exercise 4.3.
Show that

A→ Hn(Dn, Sn−1;A), a 7→ [a · f ]

is a well defined isomorphism of groups and that

A→ Hn−1(S
n−1;A), a 7→

∑n
i=0(−1)i[a · (f ◦ δi)]

is a well defined isomorphism of groups if n ≥ 2.
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Exercise 6.1. Let (X, d) be a compact metric space and let (Oi)i∈I be an open cover of X.
Show that there is a real number ε > 0 such that for all x ∈ X, there exists an i ∈ I such that

{y ∈ X | d(x, y) < ε} ⊆ Oi .

The number ε is called the Lebesgue number of the cover.
(Hint: Use the functions di : X → R, x 7→ infy∈X\Oi d(x, y) and d : X → R, x 7→ supi∈I di(x).)

Exercise† 6.2. Let m,n ≥ 0 be non-negative integers and let A be an abelian group. Choose
basepoints x0 ∈ Sm and y0 ∈ Sn and let Sm ∨ Sn be the one-point union formed with respect to
these basepoints. Compute Hk(S

m ∨ Sn;A) for all k ≥ 0 !

Definition. Let X be a topological space and let ∼ be an equivalence relation on the underlying
set of X. Let q : X → X/∼ be the canonical map of sets from X to the set of equivalence classes
of the equivalence relation ∼. Since q is surjective, we can endow X/∼ with a topology where a
set O ⊆ X/∼ is open if and only if q−1(O) ⊆ X is open. The resulting topological space X/∼ is
called the quotient of X by the equivalence relation ∼ .

Definition. Let X be a topological space. The suspension ΣX of X is the quotient of the
product X×[0, 1] by the equivalence relation that is generated by the identifications (x, 0) ∼ (y, 0)
for all x, y ∈ X and the identifications (x, 1) ∼ (y, 1) for all x, y ∈ X. In other words, ΣX is the
quotient of X × [0, 1] that is obtained by collapsing each of the subspaces X × {0} and X × {1}
to a point.

Exercise† 6.3. Let X be a topological space, let A be an abelian group, and let n ≥ 0 be an
integer.

(i) Construct a natural isomorphism H̃n(X;A) ∼= H̃n+1(ΣX;A) relating the n-th reduced
homology group of X to the n+ 1-st reduced homology group of its suspension. (Hint: One
approach is to cover ΣX by two cones and to consider the corresponding Mayer–Vietoris
sequence.)

(ii) What is ΣSn?

Definition. Let f : X → Y be a continuous map of topological spaces.

(i) Consider the equivalence relation on the disjoint union of X× [0, 1] and Y that is generated
by the identifications (x, 1) ∼ f(x) for all x ∈ X. The quotient space

Mf = (X × [0, 1]
∐
Y )/∼

is called the mapping cylinder of f .
(ii) Now consider the equivalence relation on X × [0, 1]

.
∪ Y that is generated by the identifica-

tions (x, 1) ∼ f(x) for all x ∈ X and (x, 0) ∼ (y, 0) for all x, y ∈ X. The quotient space
Cf = (X × [0, 1]

∐
Y )/∼ is called the mapping cone of f .
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Exercise† 6.4. Let f : X → Y be a continuous map of topological spaces and let A be an
abelian group.

(i) Let ι : X → Mf be the continuous map defined by ι(x) = (x, 0). Construct a homotopy
equivalence p : Mf → Y satisfying p ◦ ι = f .

(ii) Construct a long exact sequence of reduced homology groups

· · · → H̃n(X;A)
f∗−→ H̃n(Y ;A)→ H̃n(Cf ;A)→ H̃n−1(X;A)→ . . .

(Hint: Apply Exercise 5.3 to the pair (Mf , ι(X)).)

Exercise 6.5. Let X = [0, 1]× [0, 1] the product of two copies of the interval, and let ∼ be the
equivalence relation on X that is generated by the identifications (s, 0) ∼ (s, 1) for all s ∈ [0, 1]
and (0, t) ∼ (1, t) for all t ∈ [0, 1]. We write T = X/∼ for the resulting quotient space and note
that it is homeomorphic to a torus.

Calculate Hn(T ;A) for all n ≥ 0 and all abelian groups A! (Hint: Use the Mayer–Vietoris
sequence.)
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Exercise† 7.1. Show the following two statements about compact spaces:

(i) Any compact space is locally compact.
(ii) Let X and Y be topological spaces, let x ∈ X be a point and let L ⊆ Y be a compact

subspace. If O ⊆ X × Y is an open subset containing {x} × L, then there exists a
neighborhood V of x in X with V × L ⊆ O.

Exercise† 7.2. Let X be a topological space and let f, g : ∂Dn → X be two continuous maps.
Let Xf∪∂Dn Dn be the space obtained by attaching an n-cell to X with attaching map f , and
let Xg∪∂Dn Dn be the space obtained by attaching an n-cell to X with attaching map g.

Show that Xf∪∂Dn Dn and Xg∪∂Dn Dn are homotopy equivalent if f and g are homotopic.

Exercise 7.3. Let X be a topological space, let J be a set, let f : J×∂Dn → X be a continuous
map, and let Y = X ∪J×∂Dn J × Dn be the space obtained by attaching n-cells to X with
attaching map f . As explained in the lecture, we can view X as a closed subspace of Y .

Show that X is a neighborhood deformation retract of Y in the sense defined on Exercise
sheet 5.

Exercise† 7.4. Let n ≥ 1 be an integer and let ∼ be the equivalence relation on Rn+1 \ {0}
defined by

x ∼ x′ if and only if there exists a λ ∈ R \ {0} with λ · x = x′ .

Let RP n = (Rn+1 \ {0})/∼ be the resulting quotient space (which is called the real projective
space of dimension n).

Show that RP n+1 can be obtained from RP n by attaching an n+ 1-cell.

∗ Please return Wednesday November 1, 2017. Exercises marked with † count for the bonus.
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Definition. Let (X,A) be a relative CW-complex. Then Xn \Xn−1 is homeomorphic to Jn× D̊n

for a suitable indexing set Jn. This justifies to call a path component of Xn \Xn−1 an open n-cell
of X. The closure of an n-cell is defined to be the closure of the respective path component of
Xn \Xn−1 as a subset of the topological space X.

Exercise† 8.1. Let A be a Hausdorff space and let (X,A) be a relative CW-complex. Show the
following two statements.

(i) The closure of an n-cell is compact and contained in Xn.
(Hint: Choose a characteristic map and argue with its image.)

(ii) Let U ⊆ X be a subset with A ⊆ U . Then U is a closed subset of X if and only if the
intersection of U with the closure of every cell of X is a closed subspace of X.

Exercise 8.2. Let A be a Hausdorff space, let (X,A) be a relative CW-complex, and let (Y,A)
be a subcomplex of (X,A). Show that Y ⊆ X is a closed subset.

Exercise† 8.3. Let A be a Hausdorff space, let (X,A) be a relative CW-complex, and let
Y ⊆ X be a closed subspace with A ⊆ Y . Suppose in addition that for every n ≥ 0, the
intersection Y ∩ (Xn \Xn−1) is a union of open n-cells of X. Show that the filtration of subspaces
Yn = Y ∩Xn defines a CW-complex (Y,A).

Exercise† 8.4. Draw a picture of a CW-structure and compute the Euler characteristic for the
following spaces:

(i) Möbius strip
(ii) Solid torus

(iii) Prezel surface
(iv) Klein bottle

∗ Please return Wednesday November 8, 2017. Exercises marked with † count for the bonus.
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Definition. A topological space X is contractible if the identity of X is homotopic to a constant
map. It is locally contractible if every neighborhood of a point x ∈ X contains a contractible
neighborhood of x.

Exercise 9.1. Show that any finite-dimensional absolute CW-complex X is locally contractible.
(The statement also holds if X is not-necessarily finite-dimensional, but this general case requires
a more difficult argument.)

Exercise† 9.2. Let X be an absolute CW-complex and let Y ⊆ X be a subcomplex.

(i) Show that the pair (X, Y ) inherits a CW-complex structure from X.
(ii) Show that the quotient space X/Y inherits a CW-complex structure from X.

Definition. A cell decomposition of a topological space X is a collection E of subspaces of X
with the following two properties:

(i) Every e ∈ E is homeomorphic to the interior D̊n of Dn for some n ≥ 0 (where D̊0 = D0 by
convention).

(ii) As a set, X is the disjoint union of the subspace e ∈ E .

We call e ∈ E an n-cell if e is homeomorphic to D̊n. This is well defined since by the topological
invariance of dimension, D̊m and D̊n can only be homeomorphic if m = n.

Exercise† 9.3. Let E be a cell decomposition of a Hausdorff space X with the following
properties:

(i) For every n-cell e ∈ E , there is a continuous map χe : Dn → X which restricts to a

homeomorphism χe : D̊n → e and which maps ∂Dn to the subspace of X given by the
union of all cells of dimension strictly less than n.

(ii) For every cell e ∈ E , its closure e as a subspace of X intersects only with finitely many
other cells.

(iii) A subset U ⊆ X is closed if and only if U ∩ e is closed in X for every e ∈ E .

Show that X admits a CW-structure. (The results in the lecture and Exercise 8.1 show that
every CW-complex gives rise to a cell decomposition satisfying (i)-(iii). The name CW-complex
is motivated by calling (ii) the closure finiteness and (iii) the weak topology property.)

∗ Please return Wednesday November 15, 2017. Exercises marked with † count for the bonus.
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Definition. Let R∞ = R[N0] be the R-linearization of the set of non-negative integers N0. The
inclusion {0, . . . , n} → N0 induces an injection

Rn+1 = R[{0, . . . , n}]→ R[N0] = R∞

that allows us to view Rn+1 as a subset of R∞. We topologize R∞ by declaring O ⊆ R∞ to be
open if and only if O ∩ Rn+1 ⊆ Rn+1 is open for all n ≥ 0.

Via the inclusion Rn+1 → R∞, we also view the n-sphere Sn = {x ∈ Rn+1 | ‖x‖ = 1} as a
subset of R∞. The infinite dimensional sphere S∞ ⊂ R∞ is defined to be the union

S∞ =
⋃
n≥0

Sn .

We view S∞ as a topological space equipped with subspace topology induced from R∞.

Exercise† 9.4. (i) Construct a CW-structure on S∞.
(ii) Show that S∞ is contractible.

(Hint: One approach is to argue with the self-map (x0, x1, . . . ) 7→ (0, x0, x1, . . . ) of S∞.)
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Exercise† 10.1. Let S∞ ⊂ R∞ be the infinite dimensional sphere considered on exercise sheet 9.
Let RP∞ be the quotient of S∞ modulo the equivalence relation ∼ given by x ∼ −x for x ∈ S∞.
Construct a CW-structure on RP∞ and compute Hn(RP∞;Z) for all n ≥ 0.

(Hint: Use the corresponding computation for RP n from the lecture.)

Exercise† 10.2. The Klein Bottle can be defined as the quotient space K of the square
[0, 1]× [0, 1] modulo the equivalence relation ∼ that is generated by the identifications

(s, 0) ∼ (1− s, 1) for all x ∈ [0, 1] and (0, t) ∼ (1, t) for all t ∈ [0, 1] .

Compute Hn(K;Z) for all n ≥ 0 using cellular homology.

Exercise† 10.3. Let X and Y be finite CW-complexes and let In and Jn be the sets of n-cells
of X and Y .

(i) Construct a CW-structure on the product space X × Y with set of n-cells
⋃
p+q=n Ip × Jq.

(Hint: The bookkeeping simplifies if you describe the characteristic maps of the n-cells
using [0, 1]n instead of Dn.)

(ii) Show that the Euler characteristics of these CW-complexes satisfy χ(X×Y ) = χ(X) ·χ(Y ).

Exercise 10.4. Let p be a prime number, let ζ = e
2πi
p ∈ C be a primitive pth root of unity, let

q be an integer that is not divisible by p, and view the 3-sphere

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}
as a subspace of C2 in the indicated way. The lens space L(p, q) the quotient of S3 modulo the
equivalence relation ∼ that is generated by (z1, z2) ∼ (z1ζ, z2ζ

q).

(i) Find a CW-structure on the space L(p, q) with one n-cell for 0 ≤ n ≤ 3.
(ii) Compute Hn(L(p, q);Z) for all n ≥ 0.

(Hint: Generalize the case L(2, 1) ∼= RP 3 that was treated in the lecture.)

∗ Please return Wednesday November 22, 2017. Exercises marked with † count for the bonus.
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Exercise† 11.1. Let (X,A) be a pair of spaces with the homotopy extension property and
assume that the inclusion map i : A→ X is homotopic to a constant map. Let p : X → X/A be
the quotient map to the space obtained from X by collapsing A to a point. Show that there
exists a continuous map r : X/A→ X such that r ◦ p is homotopic to the identity on X.

Exercise† 11.2. Let (X,A) be a pair of spaces with the homotopy extension property and
assume that A is a contractible space.

(i) Show that the quotient map p : X → X/A is a homotopy equivalence.
(ii) Give an example of a pair of spaces (X,A) that satisfies the assumptions of Exercise 11.1,

but not the assumptions of the present exercise.

Exercise 11.3. Let X and Y be CW-complexes, let A ⊆ X be a subcomplex of X, and
let A → Y be a cellular map of CW-complexes. Show that the pushout Y ∪A X inherits a
CW-structure whose cells correspond to the cells of Y and those cells of X which are not
contained in A.

Exercise† 11.4. Let

Kn = {x ∈ R2 | ‖x− (
1

n
, 0)‖ =

1

n
}

be the circle with radius 1
n

around the point ( 1
n
, 0) in R2. As in lecture 7, we let the Hawaiian

earring H =
⋃
n∈NKn be the union of the circles Kn and view H as a topological space equipped

with the subspace topology induced from R2. We write 0 for the point (0, 0) ∈ H.

(i) Show that there is no n such that the inclusion Kn → H is homotopic to a constant map.
(Hint: Construct a retraction and use H1(S

1;Z) ∼= Z.)
(ii) Let f : H → H be a continuous map that is homotopic to the identity. Show that it satisfies

f(0) = 0. (Hint: Use (i) to show that f(0) 6= 0 leads to a contradiction.)
(iii) Show that the pair (H, {0}) does not have the homotopy extension property.

∗ Please return Wednesday November 29, 2017. Exercises marked with † count for the bonus.
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Definition. (i) Let X and Y be topological spaces. We write [X, Y ] for the set of homotopy
classes of continuous maps from X to Y . Hence every continuous map f : X → Y represents
an element [f ] ∈ [X, Y ], and two maps f, g : X → Y represent the same element in [X, Y ]
if there is a continuous map H : X × [0, 1]→ Y with H|X×{0} = f and H|X×{1} = g.

(ii) Let X and Y be topological spaces with preferred basepoints x0 ∈ X and y0 ∈ Y . We
write [(X, x0), (Y, y0)]∗ for the set of basepoint preserving homotopy classes of basepoint
preserving continuous maps from X to Y . Hence every continuous map f : X → Y with
f(x0) = y0 represents an element [f ] ∈ [(X, x0), (Y, y0)]∗, and two basepoint preserving
maps f, g : X → Y represent the same element in [(X, x0), (Y, y0)]∗ if there is a continuous
map H : X× [0, 1]→ Y with H|X×{0} = f , H|X×{1} = g, and H(x0, t) = y0 for all t ∈ [0, 1].

(iii) Let n ≥ 0 be an integer, let Sn be the n-dimensional sphere, and let s0 ∈ Sn be a basepoint.
If Y is a topological space with basepoint y0 ∈ Y , then we define πn(Y, y0) to be the set
[(Sn, s0), (Y, y0)]∗.

(Unraveling this definition, π0(Y, y0) is the set of path components of Y , and π1(Y, y0) is
the (underlying set of) the fundamental group of Y with basepoint y0.)

Exercise† 12.1. Let (X,A) be a relative CW-complex and let x0 ∈ A = X−1 ⊆ X be a
basepoint. Show that the inclusion of the m-skeleton induces a map

πn(Xm, x0)→ πn(X, x0)

which is surjective if m ≥ n and bijective if m ≥ n+ 1.
(Hint: Use the Cellular Approximation Theorem.)

Exercise† 12.2. Let X and Y be topological spaces with basepoints x0 ∈ X and y0 ∈ Y .
Forgetting basepoints defines a map

Φ: [(X, x0), (Y, y0)]∗ → [X, Y ] .

(i) Suppose in addition that X is an absolute CW-complex and that x0 is a 0-cell of X, that
the set π0(Y, y0) has only one element, and that for every y ∈ Y the set π1(Y, y) has only
one element. Show that in this situation, Φ is a bijective map.

(Hint: As a first step, show that (X, {x0}) and (X × [0, 1], X × {0, 1} ∪ {x0} × [0, 1])
have the homotopy extension property.)

(ii) Show that in general, Φ is neither injective nor surjective.
(Hint: You may use without proof that any group arises as the fundamental group of a

topological space.)

∗ Please return Wednesday December 6, 2017. Exercises marked with † count for the bonus.
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Definition. Let A1, A2 and A3 be sets with preferred elements ai ∈ Ai. Let

A1
f1−→ A2

f2−→ A3

be a sequence of maps of sets with f1(a1) = a2 and f2(a2) = a3. We say that this sequence is
exact if

(i) the composite f2 ◦ f1 is the constant map x 7→ a3 and
(ii) for any y ∈ A2 with f2(y) = a3 there exists an x ∈ A1 with f1(x) = y.

Exercise† 12.3. Let (X,A) be a pair of spaces with the homotopy extension property, let
a0 ∈ A be a basepoint, and let Y be a space with basepoint y0. We write i : A → X for the
inclusion map and q : X → X/A for the quotient map.

Consider the sequence

[(X/A, q(a0)), (Y, y0)]∗
q∗−→ [(X, a0), (Y, y0)]∗

i∗−→ [(A, a0), (Y, y0)]∗

where q∗([f ]) = [f ◦ q] and i∗([g]) = [g ◦ i].
(i) Show that q∗ and i∗ are well-defined.

(ii) Show that above sequence is exact. Here we take the homotopy classes of the constant
maps as the preferred elements in the sets of homotopy classes involved.

Exercise 12.4. Let X be a finite CW-complex that is path-connected. Show that X is homotopy
equivalent to a finite CW-complex with a single 0-cell.

(Hint: Use Exercises 11.2(i) and 11.3.)
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Exercise† 13.1. Let ∆2 = {(x0, . . . , x2) ∈ R3 |xi ≥ 0, x0 + x1 + x2 = 1} be the 2-simplex. The
topological dunce hat is the quotient space X obtained from ∆2 by identifying the points on its 3
edges in the way indicated by the following picture:

(1, 0, 0) (0, 0, 1)

(0, 1, 0)

More formally, X is the quotient of ∆2 by the equivalence relation generated by

(1− t, t, 0) ∼ (0, 1− t, t) ∼ (1− t, 0, t) for each t ∈ [0, 1] .

Show that the topological dunce hat X is contractible.
(Hint: Identify X with a cell attachment.)

Definition. An H-space is a topological space X with a base point e ∈ X and a continuous map
µ : X ×X → X such that µ(e, e) = e and such that the two maps X → X given by x 7→ µ(x, e)
and x 7→ µ(e, x) are both homotopic relative to {e} to the identity on X.

Exercise† 13.2. Let X be an H-space with multiplication µ : X ×X → X and base point e.

(i) Show that that for all n ≥ 1, the map

πn(X, e)× πn(X, e)
∼=−→ πn(X ×X, (e, e)) µ∗−→ πn(X, e)

coincides with the group structure of πn(X, e). (Here the first map is the canonical bijection
obtained from viewing a pair of maps (f : Sn → X, g : Sn → X) as a map Sn → X ×X.)

(ii) Show that the fundamental group π1(X, e) is abelian.

Exercise† 13.3. Let X be a CW-complex and suppose that µ : X ×X → X defines an H-space
structure on X whose base point e ∈ X is a 0-cell for the CW-structure. Show that there exists
a continuous map µ′ : X ×X → X such that µ′(e, x) = x = µ′(x, e) for all x ∈ X.

(Hint: Use the homotopy extension property.)

∗ Please return Wednesday December 13, 2017. Exercises marked with † count for the bonus.
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Definition. Let
A0

α0−→ A1
α1−→ A2

α2−→ . . .

be a sequence of abelian groups and group homomorphisms. We define colimi≥0Ai to be the
cokernel of the group homomorphism⊕

i≥0

Ai
id−⊕αi−−−−→

⊕
i≥0

Ai, (a0, a1, . . . ) 7→ (a0, a1 − α0(a0), a2 − α1(a1), . . . ) .

(One can show that colimi≥0Ai has indeed the universal property of the colimit of the above
sequence.)

Exercise 13.4. Let

X0
f0−→ X1

f1−→ X2
f2−→ . . .

be a sequence of topological spaces and continuous maps indexed by the natural numbers. The
mapping telescope tel(Xi) of this sequence is the quotient space of the disjoint union∐

i≥0Xi × [0, 1]

by the equivalence relation ∼ that is generated by the identifications (x, 1) ∼ (fi(x), 0) for all
i ≥ 0 and all x ∈ Xi.

(i) Show that there is an isomorphism

colimi≥0Hn(Xi;A)→ Hn(tel(Xi);A)

for all n ≥ 0 and all abelian coefficient groups A.
(Hint: Let U and V be the images of∐

i≥0, i evenXi × [0, 1] and
∐

i≥0, i oddXi × [0, 1]

in tel(Xi) and argue with the Mayer–Vietoris sequence for the resulting cover.)
(ii) Let p be a prime number, view S1 as {z ∈ C | |z| = 1} and let f : S1 → S1 be the map

z 7→ zp. Let X be the mapping telescope of the sequence

S1 f−→ S1 f−→ S1 f−→ . . .

in which each space is S1 and each map is f . Show that H1(X;Z) is isomorphic to the
subgroup

Z[
1

p
] = { k

pn
| k, n ∈ Z, n ≥ 0}

of the underlying additive group of the rationals Q.



http://www.math.ru.nl/~sagave/ dr. S. Sagave

Exercises for “Algebraic Topology”

Sheet 14, December 13, 2017

Remark. The exercises on this last sheet are meant to give you an idea about how typical
exam questions will look like. They differ from the homework exercises in that I will also ask you
to reproduce definitions or the statements of important theorems. (Consequently, you are not
allowed to use any notes or books during the exam.) The written exam will most likely consist
of 4 or 5 exercises consisting of various subitems that can be answered individually. Given that
the exam is scheduled to be 180 minutes long, it will probably be a little bit longer than the
present exercise sheet.

The exercises on this final sheet do not need to be handed in and they do not count for the
bonus.

Exercise 14.1. Let A be an abelian group and n ≥ 2 be an integer. We let µn : A→ A be the
group homomorphism sending a ∈ A to its n-fold sum a+ · · ·+ a. The n-torsion of A is the
subgroup torn(A) ⊆ A given by the kernel of µn, and nA denotes the image of µn.

Now let X be a topological space and let C(X;A) be the singular chain complex of X with
coefficients in A.

(i) Show that the group homomorphisms µn : Ck(X;Z)→ Ck(X;Z) for k ≥ 0 form a chain
map C(X;Z)→ C(X;Z). We also denote it by µn : C(X;Z)→ C(X;Z).

(ii) Show that there is a short exact sequence of chain complexes

0→ C(X;Z)
µn−→ C(X;Z)→ C(X;Z/nZ)→ 0 .

(iii) Show that for every k ≥ 1, there is a short exact sequence

0→ Hk(X;Z)/(nHk(X;Z))→ Hk(X;Z/nZ)→ torn(Hk−1(X;Z))→ 0 .

(iv) Suppose in addition that for all k ≥ 0, there exists a Q-vector space structure on Hk(X;Z)
whose underlying additive group structure is the abelian group structure on Hk(X;Z)
resulting from the definition of singular homology. Show that Hk(X;Z/nZ) is trivial for all
n ≥ 2 and all k ≥ 1.

Exercise 14.2. Let A be an abelian group.

(i) State the Excision Theorem for singular homology with coefficients in A.
(ii) Give an example of a space X, subspaces Y ⊆ X ′ ⊆ X and a positive integer n such that

the map Hn(X \ Y,X ′ \ Y ;A)→ Hn(X,X ′;A) induced by the inclusion X \ Y ⊆ X is not
an isomorphism.

(iii) Let m ≥ 1 be an integer and let X be a topological space such that every point of X
admits an open neighborhood which is homeomorphic to an open subset of Rm. Show that
for every x ∈ X and every n ≥ 0, there are isomorphisms

Hn(X,X \ {x};A) ∼=

{
A if n = m

0 if n 6= m .
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Exercise 14.3. (i) Let X be a CW-complex and let A be an abelian group. Reproduce the

definition of the cellular chain groups C̃n(X;A) and the differential of the cellular chain
complex considered in the lecture.

(ii) The torus T can be viewed as the quotient space of R2 by the equivalence relation ∼
generated by the identifications (x, y) ∼ (x+ k, y + l) where (x, y) ∈ R2 and k, l ∈ Z. Let
p : R2 → T be the quotient map. For integers a, b ∈ Z, the path

wa,b : [0, 1]→ R2, t 7→ t · (a, b)
has the property p(wa,b(0)) = p(wa,b(1)) and thus induces a continuous map fa,b : S1 → T
from the circle S1 = [0, 1]/0 ∼ 1 to the torus T .

Show that for every generator [e1] of H1(S
1,Z), the induced map on homology groups

satisfy (fa,b)∗([e
1]) = a · (f0,1)∗([e1]) + b · (f1,0)∗([e1]) in H1(T,Z).

Exercise 14.4. (i) Reproduce the definition of the homotopy extension property for a pair of
spaces (X,A) and the retract criterion for the homotopy extension property that applies if
A ⊆ X is a closed subspace.

(ii) Now let f : X → Y be a continuous map between topological spaces. As in the lecture, we
let the mapping cylinder M(f) be the pushout of

X × [0, 1]
incl1←−− X

f−→ Y ,

and write jX : X →M(f) for the map induced by incl0 : X → X × [0, 1]. Via jX , we view
X as a subspace of M(f). Show that the pair (M(f), X) has the homotopy extension
property.


