Multivariable generalizations of the Schur class: positive kernel characterization and transfer function realization

Joseph A. Ball, Animikh Biswas, Quanlei Fang and Sanne ter Horst

Abstract. The operator-valued Schur-class is defined to be the set of holomorphic functions S mapping the unit disk into the space of contraction operators between two Hilbert spaces. There are a number of alternate characterizations: the operator of multiplication by S defines a contraction operator between two Hardy Hilbert spaces, S satisfies a von Neumann inequality, a certain operator-valued kernel associated with S is positive-definite, and S can be realized as the transfer function of a dissipative (or even conservative) discrete-time linear input/state/output linear system. Various multivariable generalizations of this class have appeared recently, one of the most encompassing being that of Muhly and Solel where the unit disk is replaced by the strict unit ball of the elements of a dual correspondence E associated with a W^*-correspondence over a W^*-algebra A together with a $*$-representation σ of A. The main new point which we add here is the introduction of the notion of reproducing kernel Hilbert correspondence and identification of the Muhly-Solel Hardy spaces as reproducing kernel Hilbert correspondences associated with a completely positive analogue of the classical Szegö kernel. In this way we are able to make the analogy between the Muhly-Solel Schur class and the classical Schur class more complete. We also illustrate the theory by specializing it to some well-studied special cases; in some instances there result new kinds of realization theorems.

Mathematics Subject Classification (2000). Primary 47A58; Secondary 46L08, 47A56, 47B32, 47L65, 93B28, 93C05.

Keywords. contractive multiplier, von Neumann inequality, completely positive definite kernel, Hilbert C^*-module, reproducing kernel Hilbert correspondence.
1. Introduction

The classical Schur class S (consisting of holomorphic functions mapping the unit disk \mathbb{D} into the closed unit disk $\overline{\mathbb{D}}$) along with its operator-valued generalization has been an object of intensive study over the past century (see [45] for the original paper of Schur and [26] for a survey of some of the impact and applications in signal processing). To formulate the definition of the operator-valued version, we let $L(U, Y)$ denote the space of bounded linear operators acting between Hilbert spaces U and Y. We also let $H^2_U(D)$ and $H^2_Y(D)$ be the standard Hardy spaces of U-valued (respectively Y-valued) holomorphic functions on the unit disk D. By the Schur class $S(U, Y)$ we mean the set of $L(U, Y)$-valued functions holomorphic on the unit disk D with values $S(z)$ having norm at most 1 for each $z \in D$. The class $S(U, Y)$ admits several remarkable characterizations. The following result is well known and is formulated as the prototype for the multivariable generalizations to follow.

Theorem 1.1. Let S be an $L(U, Y)$-valued function defined on D. The following are equivalent:

1. $S \in S(U, Y)$, i.e., S is analytic on \mathbb{D} with contractive values in $L(U, Y)$.

 (1') The multiplication operator $M_S: f(z) \mapsto S(z) \cdot f(z)$ defines a contraction from $H^2_U(D)$ into $H^2_Y(D)$.

 (1'') S is analytic and satisfies the von Neumann’s inequality: if T is any strictly contractive operator on a Hilbert space \mathcal{K}, i.e., $\|T\| < 1$, then $S(T)$ is a contraction operator ($\|S(T)\| \leq 1$), where $S(T)$ is the operator defined by

 $$S(T) = \sum_{n=0}^{\infty} S_n \otimes T^n \in L(U \otimes \mathcal{K}, Y \otimes \mathcal{K})$$

 if $S(z) = \sum_{n=0}^{\infty} S_n z^n$.

2. The function $K_S: \mathbb{D} \times \mathbb{D} \to L(Y)$ given by

 $$K_S(z, w) = \frac{I_Y - S(z)S(w)^*}{1 - zw \overline{w}}$$

 is a positive kernel on $\mathbb{D} \times \mathbb{D}$.

3. There exists a Hilbert space \mathcal{H} and a coisometric (or even unitary or contractive) connecting operator (or colligation) U of the form

 $$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix}: \begin{bmatrix} \mathcal{H} \\ U \end{bmatrix} \to \begin{bmatrix} \mathcal{H} \\ Y \end{bmatrix}$$

 so that $S(z)$ can be realized in the form

 $$S(z) = D + zC(I_\mathcal{H} - zA)^{-1}B. \quad (1.1)$$

From the point of view of systems theory, the function (1.1) is the transfer function of the linear system

$$\Sigma = \Sigma(U): \begin{cases} x(n+1) = Ax(n) + Bu(n) \\ y(n) = Cx(n) + Du(n) \end{cases}$$
The following well-known Proposition gives several equivalent definitions for the term “positive kernel” used in condition (2) in Theorem 1.1. The scalar case \((\mathcal{Y} = \mathbb{C})\) of this result goes back to the paper of Aronszajn [7], but is also often attributed to E.H. Moore and Kolmogorov, while the vector-valued case has been well exploited in the function-theoretic operator theory literature over the years (see [47, 19]).

Proposition 1.2. Let \(K : \Omega \times \Omega \to \mathcal{L}(\mathcal{Y})\) be a given function. Then the following conditions are equivalent:

1. For any finite collection of points \(\omega_1, \ldots, \omega_N \in \Omega\) and of vectors \(y_1, \ldots, y_N \in \mathcal{Y}\) \((N = 1, 2, \ldots)\) it holds that
 \[
 \sum_{i,j=1,\ldots,N} \langle K(\omega_i, \omega_j) y_j, y_i \rangle_{\mathcal{Y}} \geq 0. \tag{1.2}
 \]

2. There exists an operator-valued function \(H : \Omega \to \mathcal{L}(H, \mathcal{Y})\) for some auxiliary Hilbert space \(H\) so that
 \[
 K(\omega', \omega) = H(\omega') H(\omega)^*. \tag{1.3}
 \]

3. There exists a Hilbert space \(H(K)\) of \(\mathcal{Y}\)-valued functions \(f\) on \(\Omega\) so that the function \(K(\cdot, \omega)y\) is in \(H(K)\) for each \(\omega \in \Omega\) and \(y \in \mathcal{Y}\) and has the reproducing property
 \[
 \langle f, K(\cdot, \omega)y \rangle_{H(K)} = \langle f(\omega), y \rangle_{\mathcal{Y}}.
 \]

When any (and hence all) of these equivalent conditions hold, we say that \(K\) is a positive kernel on \(\Omega \times \Omega\).

We provide a sketch of the proof of Theorem 1.1 as a model for how extensions to more general settings may proceed.

Sketch of the proof of Theorem 1.1. The easy part is (3) \(\implies (2) \implies (1'') \implies (1') \implies (1):\)

(3) \(\implies (2):\) Assume that \(S(z)\) is as in (1.1) with \(U\) unitary, and hence, in particular, coisometric. From the relations arising from the coisometric property of \(U:\)

\[
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} A^* & C^* \\ B^* & D^* \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}
\]

one can verify that

\[
I - S(z) S(w)^* = I - [D + zC(I - zA)^{-1} B][D + wC(I - wA)^{-1} B]^* \\
= C(I - zA)^{-1}[(1 - z\overline{w}) I_H](I - \overline{w}A^*)^{-1} C^*.
\]

This implies that \(H(z) = C(I - zA)^{-1}\) satisfies (1.3).

(2) \(\implies (1'')\): Due to \(I - S(z) S(w)^* = H(z)((1 - z\overline{w}) I_H) H(w)^*\), we can see that for any \(\|T\| < 1\)

\[
I - S(T) S(T)^* = H(T)((1 - TT^*) \otimes I_H) H(T)^* \geq 0.
\]
\((1'') \implies (1')\): Observe that \(M_S = S(S) = s - \lim_{r \uparrow 1} S(rS)\) where \(S\) is the shift operator \(M_S\) on \(H^2(\mathbb{D})\). Thus the fact that \(\|S(rS)\| \leq 1\) for any \(r < 1\) implies \(\|M_S\| \leq 1\).

\((1') \implies (1)\): Note that since \(S(z)u = M_S \cdot u\) for any \(u \in \mathcal{U}\), we have \(\|M_S\|_{op} = \|S\|_{\infty}\). So \(\|M_S\| \leq 1\) implies that \(S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})\).

The harder part is \((1') \implies (1'') \implies (2) \implies (3)\):

\((1') \implies (1)\): We can view \(H^2(\mathbb{D}) \subset L^2(T)\). Thus \(\|M_Su\|_{L^2(T)} \leq \|S\|_{\infty} \cdot \|u\|_{L^2(T)}\).

\((1') \implies (1'')\): According to the Sz.-Nagy dilation theorem, any contraction operator \(T\) has a unitary dilation \(U\). In the strictly contractive case \(\|T\| < 1\), one can show that in fact the unitary dilation is the bilateral shift with some multiplicity \(N\); \(U = S \otimes I_N\) (if \(N = \infty\), we interpret \(I_N\) as the identity operator on \(\ell^2\)). We then have \(T^n = P_K(S \otimes I_N)^n|_{\mathcal{K}}\). Therefore \(\|S(T)\| = \|P_{\mathcal{Y} \otimes \mathcal{K}}S(S \otimes I_N)|_{\mathcal{U} \otimes \mathcal{K}}\| \leq 1\).

\((1'') \implies (2)\): A direct proof of this implication can be done via a rather long, intricate argument using a Gelfand-Naimark-Segal construction in conjunction with a Hahn-Banach separation argument—we refer to this as a GNS/HB argument. For the polydisk setting, the argument originates in [1]; the version for a general semigroupoid setting in [23] covers in particular the classical setting here.

Alternatively, one can avoid the GNS/HB argument via the following short-cut:

\((1'') \implies (1') \implies (2)\): We have seen that \((1'') \implies (1')\) is easy. For \((1') \implies (2)\), we assume \(\|M_S\| \leq 1\). View \(H^2(\mathbb{D})\) as the reproducing kernel Hilbert space \(\mathcal{H}(k_{S_{\mathbb{D}}})\), where \(k_{S_{\mathbb{D}}}(z, w) = \frac{1}{1 - z \bar{w}}\) is the Szegö kernel. Since \(M_S^* k_{S_{\mathbb{D}}} (\cdot, w) y = k_{S_{\mathbb{D}}} (\cdot, w) S(w)^* y\), we see that

\[
\sum_{i,j=1,\ldots,N} (K_S(z_i, z_j) y_j, y_i) = \| \sum_j k_{S_{\mathbb{D}}} (\cdot, z_j) y_j \|^2 - \| (M_S)^* \sum_j k_{S_{\mathbb{D}}} (\cdot, z_j) y_j \|^2 \geq 0
\]

and it follows (via criterion (1.2)) that \(K_S\) is a positive kernel on \(\mathbb{D} \times \mathbb{D}\).

\((2) \implies (3)\): This implication can be done by the now standard lurking isometry argument—see [8] where this coinage was introduced. \(\square\)

The purpose of this paper is to study recent extensions of the Schur class and the associated analogues of Theorem 1.1 to more general multivariable settings. In Section 2 we describe two such extensions: the Drury-Arveson space setting and the free-semigroup setting. We emphasize how all the ingredients of the proof of Theorem 1.1 sketched above have direct analogues in these two settings; hence the proof of the analogues of Theorem 1.1 for these two settings (see Theorem 2.1 and Theorem 2.3 below) directly parallel the proof of Theorem 1.1 as sketched above.

A far more sophisticated generalized Schur class has been introduced by Muhly and Solel (see [33, 36]). The main contribution of the present paper is to introduce the notion of reproducing kernel Hilbert correspondence and an analogue of the Fourier (or \(Z^{-}\)) transform for the Muhly-Solel setting. The starting point for most
of the constructions is a W^*-correspondence E over a W^*-algebra \mathcal{A} together with a \ast-representation σ of \mathcal{A}. We show that the image, denoted in our notation as $H^2(E, \sigma)$ which is an analogue of H^2, of a Muhly-Solel Fock space, denoted as $\mathcal{F}^2(E, \sigma)$ in our notation which is an analogue of $\ell^2(\mathbb{Z}_+)$, under this Z-transform is a space of \mathcal{E}-valued functions (\mathcal{E} equal to a coefficient Hilbert space) on the Muhly-Solel generalized unit disk $\mathbb{D}((E^\sigma)^*)^1$ and that an element S of the Muhly-Solel Schur class as introduced in [36] induces a bounded multiplication operator on $H^2(E, \sigma)$. We also obtain analogues of the other parts of Theorem 1.1 for this setting (see Theorem 5.1 in Section 5 below) and thus obtain a more complete analogy between the Muhly-Solel Schur class and the classical Schur class than that presented in [36]. Section 3 develops required preliminaries concerning general correspondences, including the notions of reproducing kernel correspondence and of reproducing kernel Hilbert correspondence; these are natural elaborations of the Kolmogorov decomposition for a completely positive kernel found in [18]. Section 4 introduces the spaces $H^2(E, \sigma)$ and $H^\infty(E, \sigma)$ which are the analogues of the Hardy spaces H^2 and H^∞ for this setting. The final section 6 applies the general theory to some familiar more concrete special cases. Specifically we make explicit how the classical case discussed above as well as the Drury-Arveson setting and the free-semigroup algebra setting discussed in Section 2 are particular cases of the Muhly-Solel setting. The general theory here leads to more structured versions of these well-studied settings and corresponding new types of realization theorems. We also discuss one of the main examples motivating the work in [31, 33, 36], namely the setting of analytic crossed-product algebras. It is interesting to note that the realization theorem for a particular instance of this example amounts to the realization theorem for input-output maps of conservative time-varying linear systems obtained in [4].

Another class of examples covered by the Muhly-Solel setting are graph algebras (also known as semigroupoid algebras) [30, 32, 27]; we do not discuss these here. There are still other types of generalized Schur classes which are not subsumed under the Muhly-Solel Fock space/correspondence setup. We mention the Schur-Agler class for the polydisk (see [1, 2, 14] and for more general domains [5, 9]), the noncommutative Schur-Agler class (see [12, 13]), and higher-rank graph algebras (see [28]). A differentiating feature of these variants of the Schur class is a more implicit version of condition (2) in Theorem 1.1 where the single positive kernel (the Szegö kernel $\frac{1}{1-zw}$) is replaced by a whole family of positive kernels. An abstract framework using this feature as the point of departure is the semigroupoid approach of Dritschel-Marcantognini-McCullough [23] which incorporates all the aforementioned settings in [1, 2, 14, 12, 28]. However the theory in [23] does not appear to include the analytic crossed-product algebras included in the Muhly-Solel scheme since it does not allow for the action of a W^*-algebra \mathcal{A} acting on

\[^1\]In nice cases, the general situation collapses to this statement; more correctly, the vector-valued functions are defined on $\mathbb{D}((E^\sigma)^*) \times \sigma(A)'$ where $\sigma(A)'$ is the commutant of the image $\sigma(A)$ of σ in $L(\mathcal{E})$.\n
the ambient Hilbert space. It is conceivable that some sort of synthesis of these
two disparate approaches is possible; the recent work on product decompositions
over general semigroups (see [46]) appears to be a start in this direction.

The notation is mostly standard but we mention here a few conventions for
reference. For \(\Omega \) any index set, \(\ell^2(\Omega) \) denotes the space of complex-valued functions
on \(\Omega \) which are absolutely square summable:

\[
\ell^2(\Omega) = \{ \xi : \Omega \to \mathbb{C} : \sum_{\omega \in \Omega} |\xi(\omega)|^2 < \infty \}.
\]

Most often the choice \(\Omega = \mathbb{Z} \) (the integers) or \(\Omega = \mathbb{Z}_+ \) (the nonnegative integers)
appears. For a Hilbert space, we use \(\ell^2_H(\Omega) \) as shorthand for \(\ell^2(\Omega) \otimes H \) (the
space of \(H \)-valued function on \(\Omega \) square-summable in norm). More general versions
where \(H \) may be a correspondence also come up from time to time.

2. Some multivariable Schur classes

In this section we introduce two multivariable settings (the Drury-Arveson space
setting and the free semigroup algebra setting) for the Schur class and formulate
the analogue of Theorem 1.1 for these two settings.

2.1. Drury-Arveson space

A multivariable generalization of the Szegö kernel \(k(z, w) = (1 - zw)^{-1} \) much
studied of late is the positive kernel

\[
k_d(z, w) = \frac{1}{1 - \overline{z}w} \text{ on } \mathbb{B}^d \times \mathbb{B}^d,
\]

where \(\mathbb{B}^d = \{ z = (z_1, \ldots, z_d) \in \mathbb{C}^d : |z| < 1 \} \) is the unit ball of the \(d \)-dimensional
Euclidean space \(\mathbb{C}^d \). By \(\langle z, w \rangle = \sum_{j=1}^d z_j \overline{w}_j \) we mean the standard inner product
in \(\mathbb{C}^d \). The reproducing kernel Hilbert space (RKHS) \(\mathcal{H}(k_d) \) associated with \(k_d \)
via Aronszajn’s construction [7] is a natural multivariable analogue of the Hardy
space \(H^2 \) of the unit disk and coincides with \(H^2 \) if \(d = 1 \).

For \(\mathcal{Y} \) an auxiliary Hilbert space, we consider the tensor product Hilbert space
\(\mathcal{H}_\mathcal{Y}(k_d) := \mathcal{H}(k_d) \otimes \mathcal{Y} \) whose elements can be viewed as \(\mathcal{Y} \)-valued functions
in \(\mathcal{H}(k_d) \). Then \(\mathcal{H}_\mathcal{Y}(k_d) \) can be characterized as follows:

\[
\mathcal{H}_\mathcal{Y}(k_d) = \left\{ f(z) = \sum_{n \in \mathbb{Z}_+^d} f_n z^n : \|f\|^2 = \sum_{n \in \mathbb{Z}_+^d} \frac{n!}{n!} \cdot \|f_n\|_{\mathcal{Y}}^2 < \infty \right\}.
\]

Here and in what follows, we use standard multivariable notations: for multi-
integers \(n = (n_1, \ldots, n_d) \in \mathbb{Z}_+^d \) and points \(z = (z_1, \ldots, z_d) \in \mathbb{C}^d \) we set

\[
|n| = n_1 + n_2 + \ldots + n_d, \quad n! = n_1!n_2! \ldots n_d!, \quad z^n = z_1^{n_1}z_2^{n_2} \ldots z_d^{n_d}.
\]
By \(\mathcal{M}_d(U, Y) \) we denote the space of all \(\mathcal{L}(U, Y) \)-valued analytic functions \(S \) on \(\mathbb{B}^d \) such that the induced multiplication operator
\[
M_S : f(z) \mapsto S(z) \cdot f(z)
\]
maps \(\mathcal{H}_U(k_d) \) into \(\mathcal{H}_Y(k_d) \). It follows by the closed graph theorem that for every \(S \in \mathcal{M}_d(U, Y) \), the operator \(M_S \) is bounded. We shall pay particular attention to the unit ball of \(\mathcal{M}_d(U, Y) \), denoted by
\[
S_d(U, Y) = \{ S \in \mathcal{M}_d(U, Y) : \|M_S\|_{op} \leq 1 \}.
\]
We refer to \(S_d(U, Y) \) as a generalized (d-variable) Schur class since \(S_1(U, Y) \) collapses to the classical Schur class. Characterizations of \(S_d(U, Y) \) in terms of realizations originate in [3, 15, 25]. The following is the analogue of Theorem 1.1 for this setting; the result with condition \((1'')\) eliminated appeared e.g. in [15, 11].

Theorem 2.1. Let \(S \) be an \(\mathcal{L}(U, Y) \)-valued function defined on \(\mathbb{B}^d \). The following are equivalent:

1. \(S \) belongs to \(S_d(U, Y) \), i.e., the multiplication operator \(M_S : f(z) \mapsto S(z)f(z) \) defines a contraction from \(\mathcal{H}_U(k_d) \) into \(\mathcal{H}_Y(k_d) \).
2. \(\|S(T)\| \leq 1 \) for any commutative row contraction \(T = (T_1, \ldots, T_d) \in \mathcal{L}(\mathcal{K})^d \), i.e., if \(S \) is given by \(S(z) = \sum_{n \in \mathbb{Z}^d} S_n z^n \) and if \((T_1, \ldots, T_d) \) is any commuting \(d \)-tuple of bounded linear operators on a Hilbert space \(\mathcal{K} \) such that the row matrix \([T_1 \cdots T_d] \) defines a strict contraction operator from \(\mathcal{K}^d \) to \(\mathcal{K} \), then the operator \(S(T) \in \mathcal{L}(U \otimes \mathcal{K}, Y \otimes \mathcal{K}) \) defined via the operator-norm limit of the series \(S(T) := \sum_n S_n \otimes T^n \) has \(\|S(T)\| \leq 1 \).
3. The function \(K_S : \mathbb{B} \times \mathbb{B} \to \mathcal{L}(Y) \) given by
\[
K_S(z, w) = \frac{I_Y - S(z)S(w)^*}{1 - \langle z, w \rangle}
\]
is a positive kernel (see Proposition 1.2).

4. There exists a Hilbert space \(\mathcal{H} \) and a unitary (or even coisometric or contractive) connecting operator (or colligation) \(U \) of the form
\[
U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \end{bmatrix} : \mathcal{H} \to \begin{bmatrix} \mathcal{H}^d \\ U \end{bmatrix}
\]
so that \(S(z) \) can be realized in the form
\[
S(z) = D + C(I - z_1 A_1 - \cdots - z_d A_d)^{-1} (z_1 B_1 + \cdots + z_d B_d) = D + C(I - Z(z)A)^{-1}Z(z)B
\]
where we set
\[
Z(z) = [z_1 I_{\mathcal{H}} \ldots z_d I_{\mathcal{H}}], \quad A = \begin{bmatrix} A_1 \\ \vdots \\ A_d \end{bmatrix}, \quad B = \begin{bmatrix} B_1 \\ \vdots \\ B_d \end{bmatrix}. \tag{2.1}
\]
Remarks on the proof: (3) \implies (2) \implies (1′′) \implies (1′) follows in the same way as in the sketch of the proof of Theorem 1.1 above. For (1′) \implies (2), one can use the same reproducing kernel argument as the shortcut discussed in the proof Theorem 1.1 above. For (1′′) \implies (1′), one can follow the corresponding argument sketched above for Theorem 1.1 but with the Sz.-Nagy dilation theorem replaced with the Drury dilation theorem (see [24]). The implication (2) \implies (3) follows exactly as in the classical case via the lurking isometry argument (see [15]). Note that (1′′) \implies (2) also can be achieved directly by the GNS/HB argument in [23] specialized to the setting here, but this is not usually done since one has the alternative easier route (1′′) \implies (1′) \implies (2).

2.2. Free semigroup algebras

We now discuss the generalization of the Schur class associated with free semigroup algebras and models for row contractions (see [39, 40, 41, 42, 17]). We follow the formalism and notation as used in [17, 16].

Let $z = (z_1, \ldots, z_d)$ and $w = (w_1, \ldots, w_d)$ be two sets of noncommuting indeterminates. We let F_d denote the free semigroup generated by the d letters $\{1, \ldots, d\}$. A generic element of F_d is a word $\alpha = i_N \cdots i_1$ where $i_k \in \{1, \ldots, d\}$ for $k = 1, \ldots, N$. (2.2)

The product of two words is defined by the usual concatenation. The unit element of F_d is the empty word denoted by \emptyset. For α a word of the form (2.2), we let z_α denote the monomial in noncommuting indeterminates $z_\alpha = z_i^N \cdots z_i^1$ and we let $z^{\emptyset} = 1$. We extend this noncommutative functional calculus to a d-tuple of operators $A = (A_1, \ldots, A_d)$ on a Hilbert space K: $A^v = A_i^N \cdots A_i^1$ if $v = i_N \cdots i_1 \in F_d \setminus \{\emptyset\}$; $A^{\emptyset} = I_K$.

We will also have need of the transpose operation on F_d: $\alpha^\top = i_1 \cdots i_N$ if $\alpha = i_N \cdots i_1$.

Given a coefficient Hilbert space Y we let $Y(z)$ denote the set of all polynomials in $z = (z_1, \ldots, z_d)$ with coefficients in Y: $Y(z) = \left\{ p(z) = \sum_{\alpha \in F_d} p_\alpha z^\alpha : p_\alpha \in Y \text{ and } p_\alpha = 0 \text{ for all but finitely many } \alpha \right\}$,

while $Y((z))$ denotes the set of all formal power series in the indeterminates z with coefficients in Y: $Y((z)) = \left\{ f(z) = \sum_{\alpha \in F_d} f_\alpha z^\alpha : f_\alpha \in Y \right\}$.

Note that vectors in Y can be considered as Hilbert space operators between \mathbb{C} and Y. More generally, if U and Y are two Hilbert spaces, we let $L(U, Y)\langle z \rangle$ and $L(U, Y)((z))$ denote the space of polynomials (respectively, formal power series) in the noncommuting indeterminates $z = (z_1, \ldots, z_d)$ with coefficients in $L(U, Y)$.
Given \(S = \sum_{\alpha \in \mathcal{F}_d} s_{\alpha} z^\alpha \in \mathcal{L}(\mathcal{U}, \mathcal{Y})(\langle \cdot \rangle) \) and \(f = \sum_{\beta \in \mathcal{F}_d} f_{\beta} z^\beta \in \mathcal{U}(\langle \cdot \rangle) \), the product \(S(z) \cdot f(z) \in \mathcal{Y}(\langle \cdot \rangle) \) is defined as an element of \(\mathcal{Y}(\langle \cdot \rangle) \) via the noncommutative convolution:

\[
S(z) \cdot f(z) = \sum_{\alpha, \beta \in \mathcal{F}_d} s_{\alpha} f_{\beta} z^{\alpha + \beta} = \sum_{\nu \in \mathcal{F}_d} \left(\sum_{\alpha, \beta \in \mathcal{F}_d, \alpha + \beta = \nu} s_{\alpha} f_{\beta} \right) z^\nu. \tag{2.3}
\]

Note that the coefficient of \(z^\nu \) in (2.3) is well defined since any given word \(v \in \mathcal{F}_d \) can be decomposed as a product \(v = \alpha \cdot \beta \) in only finitely many distinct ways.

In general, given a coefficient Hilbert space \(\mathcal{C} \), we use the \(\mathcal{C} \) inner product to generate a pairing

\[
\langle \cdot, \cdot \rangle_{C \times C(\langle \cdot \rangle)} : C \times C(\langle \cdot \rangle) \to C(\langle \cdot \rangle)
\]

via

\[
\langle c, \sum_{\beta \in \mathcal{F}_d} f_{\beta} w^\beta \rangle_{C \times C(\langle \cdot \rangle)} = \sum_{\beta \in \mathcal{F}_d} \langle c, f_{\beta} \rangle_C w^\beta \in C(\langle \cdot \rangle).
\]

Similarly we can consider \(\langle \sum_{\alpha \in \mathcal{F}_d} f_{\alpha} w^\alpha, c \rangle_{C(\langle \cdot \rangle) \times C} \) or the more general pairing

\[
\langle \sum_{\alpha \in \mathcal{F}_d} f_{\alpha} w^\alpha, \sum_{\beta \in \mathcal{F}_d} g_{\beta} w^\beta \rangle_{C(\langle \cdot \rangle) \times C(\langle \cdot \rangle)} = \sum_{\alpha, \beta \in \mathcal{F}_d} \langle f_{\alpha}, g_{\beta} \rangle_C w^{\beta^T} w^\alpha.
\]

Suppose that \(\mathcal{H} \) is a Hilbert space whose elements are formal power series in \(\mathcal{Y}(\langle \cdot \rangle) \) and that \(K(z, w) = \sum_{\alpha, \beta \in \mathcal{F}_d} K_{\alpha, \beta} z^\alpha w^{^\beta^T} \) is a formal power series in the two sets of \(d \) noncommuting indeterminates \(z = (z_1, \ldots, z_d) \) and \(w = (w_1, \ldots, w_d) \). We say that \(\mathcal{H} \) is a NFRKHS (noncommutative formal reproducing kernel Hilbert space) if for each \(\alpha \in \mathcal{F}_d \), the linear operator \(\Phi_{\alpha} : \mathcal{H} \to \mathcal{Y} \) defined by \(f(z) = \sum_{\beta \in \mathcal{F}_d} f_{\beta} z^\beta \mapsto f_{\alpha} \) is continuous. In this case there must be a formal power series \(k_{\alpha}(z) \in \mathcal{L}(\mathcal{Y})(\langle \cdot \rangle) \) so that \(k_{\alpha}(\cdot)y \in \mathcal{H} \) for each \(\alpha \in \mathcal{F}_d \) and \(y \in \mathcal{Y} \) and

\[
\langle f, k_{\alpha}y \rangle_{\mathcal{H}} = \langle f_{\alpha}, y \rangle_{\mathcal{Y}}.
\]

If we set \(K(z, w) = \sum_{\beta \in \mathcal{F}_d} k_{\beta}(z) w^{^\beta^T} \), then we have the reproducing property

\[
\langle f, K(z, \cdot) \rangle_{\mathcal{H} \times \mathcal{H}(\langle \cdot \rangle)} = \langle f(\cdot), y \rangle_{\mathcal{Y}(\langle \cdot \rangle) \times \mathcal{Y}}.
\]

In this case we say that \(K(z, w) \) is the reproducing kernel for the NFRKHS \(\mathcal{H} \). As explained in detail in [16], we have the following equivalent characterizations for such kernels which parallel the statements of Proposition 1.2 for the classical case.

Proposition 2.2. Let \(K(z, w) \in \mathcal{L}(\mathcal{Y})(\langle \cdot, \cdot \rangle) \) be a formal power series in two sets of noncommuting indeterminates with coefficients \(K_{\alpha, \beta} \) equal to bounded operators on the Hilbert space \(\mathcal{Y} \). Then the following conditions are equivalent:

1. For all finitely supported \(\mathcal{Y} \)-valued functions \(\alpha \mapsto y_{\alpha} \) it holds that

\[
\sum_{\alpha, \alpha' \in \mathcal{F}_d} \langle K_{\alpha, \alpha'} y_{\alpha'}, y_{\alpha} \rangle \geq 0,
\]
i.e., the function from $\mathcal{F}_d \times \mathcal{F}_d$ to $L(\mathcal{Y})$ given by $(\alpha, \beta) \mapsto K_{\alpha, \beta}$ is a positive kernel in the classical sense of Proposition 1.2.

2. $K(z, w)$ has a factorization

$$K(z, w) = H(z)H(w)^*$$

for some $H \in L(\mathcal{H}, \mathcal{Y})(\langle z \rangle)$ where \mathcal{H} is some auxiliary Hilbert space. Here

$$H(w)^* = \sum_{\beta \in \mathcal{F}_d} H_\beta^* w^{\beta^\top} = \sum_{\beta \in \mathcal{F}_d} H_\beta^* w^{\beta}$$

if $H(z) = \sum_{\alpha \in \mathcal{F}_d} H_\alpha z^\alpha$.

3. $K(z, w)$ is the reproducing kernel for a NFRKHS $\mathcal{H}(K)$, i.e., for each $\beta \in \mathcal{F}_d$ and $y \in \mathcal{Y}$ the formal power series $k_\beta y$ given by $k_\beta y(z) := \sum_{\alpha \in \mathcal{F}_d} K_{\alpha, \beta} y z^\alpha$ is in $\mathcal{H}(K)$ and has the reproducing property

$$\langle f, \sum_{\beta \in \mathcal{F}_d} k_\beta y^{\beta(\mathcal{H}(K))(\langle w \rangle)) = \langle f(w), y \rangle_{\mathcal{Y}} \times \mathcal{Y} \rangle$$

for every $f \in \mathcal{H}(K)$.

A natural analogue of the vector-valued Hardy space over the unit disk (see e.g. [39]) is the Fock space with coefficients in \mathcal{Y} which we denote here by $H^2_\mathcal{Y}(\mathcal{F}_d)$ and express the elements in power series form:

$$H^2_\mathcal{Y}(\mathcal{F}_d) = \left\{ f(z) = \sum_{\alpha \in \mathcal{F}_d} f_\alpha z^\alpha : f_\alpha \in \mathcal{Y}, \sum_{\alpha \in \mathcal{F}_d} \|f_\alpha\|^2 < \infty \right\}. \quad (2.4)$$

When $\mathcal{Y} = \mathbb{C}$ we write simply $H^2(\mathcal{F}_d)$.

As explained in [16], $H^2(\mathcal{F}_d)$ is a NFRKHS with reproducing kernel equal to the following noncommutative analogue of the classical Szegő kernel:

$$k_{\mathcal{S}_z, \text{nc}}(z, w) = \sum_{\alpha \in \mathcal{F}_d} z^\alpha w^{\alpha^\top}. \quad (2.5)$$

Thus we have in general $H^2_\mathcal{Y}(\mathcal{F}_d) = \mathcal{H}(k_{\mathcal{S}_z, \text{nc}} \otimes I_\mathcal{Y})$. We abuse notation and let S_j denote the shift operator

$$S_j : f(z) = \sum_{v \in \mathcal{F}_d} f_v z^v \mapsto f(z) \cdot z_j = \sum_{v \in \mathcal{F}_d} f_v z^{v+j} \text{ for } j = 1, \ldots, d$$

on $H^2_\mathcal{Y}(\mathcal{F}_d)$ for any auxiliary space \mathcal{Y}. The adjoint of S_j on $H^2_\mathcal{Y}(\mathcal{F}_d)$ is then given by

$$S_j^* : \sum_{v \in \mathcal{F}_d} f_v z^v \mapsto \sum_{v \in \mathcal{F}_d} f_{v-j} z^v \text{ for } j = 1, \ldots, d.$$

We let $\mathcal{M}_{\text{nc}, \mathcal{Y}}(\mathcal{U}, \mathcal{Y})$ denote the set of formal power series $S(z) = \sum_{\alpha \in \mathcal{F}_d} s_\alpha z^\alpha$ with coefficients $s_\alpha \in L(\mathcal{U}, \mathcal{Y})$ such that the associated multiplication operator $M_S : f(z) \mapsto S(z) \cdot f(z)$ (see (2.3)) defines a bounded operator from $H^2_\mathcal{Y}(\mathcal{F}_d)$ to $H^2_\mathcal{Y}(\mathcal{F}_d)$. The noncommutative Schur class $\mathcal{S}_{\text{nc}, \mathcal{Y}}(\mathcal{U}, \mathcal{Y})$ is defined to consist of such multipliers S for which M_S has operator norm at most 1:

$$\mathcal{S}_{\text{nc}, \mathcal{Y}}(\mathcal{U}, \mathcal{Y}) = \{ S \in L(\mathcal{U}, \mathcal{Y})(\langle z \rangle) : M_S : H^2_\mathcal{Y}(\mathcal{F}_d) \to H^2_\mathcal{Y}(\mathcal{F}_d) \text{ with } \|M_S\|_{\text{op}} \leq 1 \}.$$

The following is the noncommutative analogue of Theorem 1.1 for this setting. We refer to [39, 40] for details.
Theorem 2.3. Let $S(z) \in \mathcal{L}(\mathcal{U}, \mathcal{Y})\langle \langle z \rangle \rangle$ be a formal power series in $z = (z_1, \ldots, z_d)$ with coefficients in $\mathcal{L}(\mathcal{U}, \mathcal{Y})$. Then the following are equivalent:

$(1')$ $S \in S_{n.c.d}(\mathcal{U}, \mathcal{Y})$, i.e., $M_S: \mathcal{U}(z) \to \mathcal{Y}(\langle z \rangle)$ given by $M_S: p(z) \to S(z)p(z)$ extends to define a contraction operator from $H^2_d(\mathcal{F}_d)$ into $H^2_d(\mathcal{F}_d)$.

$(1'')$ For each strict row contraction (T_1, \ldots, T_d), i.e., a d-tuple (T_1, \ldots, T_d) of operators on a Hilbert space \mathcal{K} (commutative or not) such that the row matrix $[T_1 \cdots T_d]$ defines a strict contraction operator from \mathcal{K}^d to \mathcal{K}, we have

$$\|S(T)\| \leq 1,$$

where

$$S(T) = \sum_{\alpha \in \mathcal{F}_d} s_\alpha \otimes T^\alpha \in \mathcal{L}(\mathcal{U} \otimes \mathcal{K}, \mathcal{Y} \otimes \mathcal{K}) \quad \text{if} \quad S(z) = \sum_{\alpha \in \mathcal{F}_d} s_\alpha z^\alpha$$

and where we set

$$T^\alpha = T_{i_1} \cdots T_{i_d} \quad \text{if} \quad \alpha = i_{N} \cdots i_{1} \in \mathcal{F}_d.$$

(2) The formal power series given by

$$K_S(z, w) := k_{S_{nc}}(z, w) - S(z)k_{S_{nc}}(z, w)S(w)^*$$

is a noncommutative positive kernel (see Proposition 2.2).

(3) There exists a Hilbert space \mathcal{H} and a unitary connection operator U of the form

$$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U} \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{X} \\ \mathcal{Y} \end{bmatrix}$$

so that $S(z)$ can be realized as a formal power series in the form

$$S(z) = D + \sum_{j=1}^{d} \sum_{\alpha \in \mathcal{F}_d} C A^\circ B_j z^\alpha \cdot z_j = D + C(I - Z(z)A)^{-1}Z(z)B$$

where $Z(z)$, A and B are as in (2.1) but where now z_1, \ldots, z_d are noncommuting indeterminates rather than commuting variables.

Sketch of the proof of Theorem 2.3: The proof of $(3) \implies (2) \implies (1'') \implies (1') \implies (1)$ formally goes through in the same was as the classical case. Let us just note that $(1'') \implies (1')$ involves viewing $M_S: H^2_d(\mathcal{F}_d) \to H^2_d(\mathcal{F}_d)$ as $M_S = S(S)$ where $S = (S_1, \ldots, S_d)$ are the left creation operators of multiplication by z_j on the left on the Fock space $H^2_d(\mathcal{F}_d)$. From the assumption $(1'')$, we know that $\|S(rS)\| \leq 1$ for each $r < 1$ and hence $\|M_S\| = \lim_{r \downarrow 1} \|S(rS)\| \leq 1$ as well.

We discuss the harder direction $(1') \implies (1'') \implies (2) \implies (3)$.

$(1') \implies (1'')$: One can follow the proof of $(1') \implies (1'')$ for the classical case but substitute the Popescu dilation theorem for row contractions (see [37]) for the Sz.-Nagy dilation theorem for a single contraction operator.
(1'') \implies (2): This implication again can be done via an appropriate version of the GNS/HB argument; see [12] for a slightly more general version and [23] for an even more general version.

Alternatively, one can follow the route (1'') \implies (1') \implies (2): As we have already discussed (1'') \implies (1'), it suffices to discuss (1') \implies (2). This can be done by an adaptation of the argument for the classical case to the present setting of formal, noncommutative reproducing kernel Hilbert spaces—see [16, Theorem 3.15].

(2) \implies (3): The lurking isometry argument works in this context as well—see [16, Theorem 3.16].

3. Reproducing kernel (A, B)-correspondences

The notion of a vector-valued reproducing kernel Hilbert space based on an operator-valued positive kernel has been a standard tool in operator theory as well as in other applications for some time now. Recently, Barreto, Bhat, Liebscher and Skeide [18] introduced a finer notion of positive kernel (completely positive kernel) and gave several equivalent characterizations, but did not develop the connections with reproducing kernel Hilbert spaces. The purpose of this section is to fill in this gap, as it is the natural tool for the discussion to follow.

Let B be a C*-algebra and E a linear space. For some of the discussion to follow, it will be convenient to assume that B has a unit. However, any C*-algebra has an approximate identity (see [20, Theorem I.4.8]): by making use of such an approximate identity, most arguments using a unit element 1B can be adapted to an approximation argument yielding the desired result for the general case where B is not assumed to possess a unit. In the sequel we usually leave the details of this adaptation to the reader.

We say that E is a (right) pre-Hilbert C*-module over B if E is a right module over B and is endowed with a B-valued inner product \langle \cdot, \cdot \rangle_E satisfying the following axioms for any \lambda, \mu \in \mathbb{C}, e, f, g \in E and b \in B:

1. \langle \lambda e + \mu f, g \rangle_E = \lambda \langle e, g \rangle_E + \mu \langle f, g \rangle_E;
2. \langle e \cdot b, f \rangle_E = \langle e, f \rangle_E b;
3. \langle e, f \rangle_E^* = \langle f, e \rangle_E;
4. \langle e, e \rangle_E \geq 0 (as an element of B);
5. \langle e, e \rangle_E = 0 implies that e = 0.

We also impose that (\lambda e) \cdot b = e \cdot (\lambda b) for all e \in E, b \in B and \lambda \in \mathbb{C}. Note that if B has a unit, this last condition is automatic from the axioms for the identification \lambda \mapsto \lambda \cdot 1_B and the axioms for E being a module over B. (Unlike some other authors, we take the B-valued inner-product to be linear in the first variable and conjugate-linear in the second variable as is usually done in the Hilbert-space setting (B = \mathbb{C}) rather than the reverse.) Note that it then follows that

\langle e, f \cdot b \rangle_E = b^* \langle e, f \rangle_E.
When the inner product is clear, we drop the subscript E and write simply $\langle e, f \rangle$ for the B-valued inner product. If E is a pre-Hilbert module over B, then E is a normed linear space with norm given by

$$\|e\|_E = \|\langle e, e \rangle^{1/2}\|_B.$$ \hspace{1cm} (3.1)

Here $\| \|$ denotes the norm associated with the C^*-algebra B. One can always complete E to a Banach space in the norm (3.1) to get what we shall call a Hilbert C^*-module over B. Moreover, E has additional structure, namely E carries the structure of an operator space, i.e., E is the upper right corner of a subalgebra of operators acting on a Hilbert space with a representation as 2×2-block operator matrices (the linking algebra)—see [31] or [43].

Given two Hilbert C^*-modules E and F over the same C^*-algebra B, it is natural to consider the space $\mathcal{L}(E, F)$ of bounded linear operators $T: E \to F$ between the Banach spaces E and F. Unlike the Hilbert space case, for a linear map T from E to F it may or may not happen that there is an adjoint operator $T^* \in \mathcal{L}(F, E)$ so that

$$\langle Te, f \rangle_F = \langle e, T^* f \rangle_E$$

for all $e \in E$ and $f \in F$.

In case there exists an operator $T^* \in \mathcal{L}(F, E)$ with this property we say that T is adjointable and we denote the set of all adjointable linear operators between E and F as $\mathcal{L}^a(E, F)$ (with the usual abbreviation $\mathcal{L}^a(E)$ in case $E = F$). When the mapping $T: E \to F$ is adjointable in this sense, necessarily $T \in \mathcal{L}(E, F)$ with the additional property that T is a B-module map:

$$T(e \cdot b) = T(e) \cdot b$$

for all $e \in E$ and $b \in B$. \hspace{1cm} (3.2)

However, this additional property (3.2) alone is not sufficient for admission of T in the class $\mathcal{L}^a(E, F)$ of adjointable maps (see [43, Example 2.19]).

Following [31, 33] (see also the books [29, 43] for more comprehensive treatments), we now introduce the notion of an $(\mathcal{A}, \mathcal{B})$-correspondence. If E is a right Hilbert C^*-module over B and \mathcal{A} is another C^*-algebra, we say that E is a $(\mathcal{A}, \mathcal{B})$-correspondence if E is also a left module over \mathcal{A} which makes E an $(\mathcal{A}, \mathcal{B})$-bimodule:

$$(a \cdot e) \cdot b = a \cdot (e \cdot b)$$

for all $a \in \mathcal{A}$, $e \in E$ and $b \in B$

with the additional compatibility condition

$$\langle a \cdot e, f \rangle_E = \langle e, a^* \cdot f \rangle_E.$$ \hspace{1cm} (3.3)

The compatibility condition in (3.3) is equivalent to requiring that each of the left multiplication operators $\varphi(a): e \mapsto a \cdot e$ on E is a bounded linear operator on E for each $a \in \mathcal{A}$ and φ is a C^*-homomorphism from \mathcal{A} into the C^*-algebra $\mathcal{L}^a(E)$ of bounded adjointable operators on E: thus $\varphi(a)$ is adjointable for each $a \in \mathcal{A}$ with $\varphi(a)^* = \varphi(a^*)$. We shall occasionally write $\varphi(a)e$ rather than $a \cdot e$.

Note the lack of symmetry in the roles of \mathcal{A} and \mathcal{B}: the identities $\langle e \cdot b, f \rangle = \langle e, f \rangle b$ together with $\langle e, f \cdot b^* \rangle = b \cdot \langle e, f \rangle$ preclude the validity in general of the identity $\langle e \cdot b, f \rangle = \langle e, f \cdot b^* \rangle$ (the would-be \mathcal{B} analogue of (3.3)) unless \mathcal{B} is commutative.
If both \mathcal{A} and \mathcal{B} have units, we also demand that the scalar multiplication on E is compatible with both the identification $\lambda \mapsto \lambda 1_{\mathcal{A}}$ of \mathbb{C} as a subalgebra of \mathcal{A} and the identification $\lambda \mapsto \lambda 1_{\mathcal{B}}$ of \mathbb{C} as a subalgebra of \mathcal{B}. This is consistent with demanding the additional axioms

$$(\lambda a) \cdot e = a \cdot (\lambda e), \quad (\lambda e) \cdot b = e \cdot (\lambda b)$$

for the general case.

The classical case is the one where E is a Hilbert space \mathcal{E}, $\mathcal{B} = \mathbb{C}$ and $\mathcal{A} = \mathcal{L}(\mathcal{E})$ with the operations given by

$$(a \cdot e) = ae \text{ (the operator } a \text{ acting on the vector } e)$$
$$e \cdot b = be \text{ (scalar multiplication in } \mathcal{E}),$$
$$(e, f) \text{ (the } \mathcal{E} \text{ Hilbert-space inner product)}.$$

Another easy example is to take $E = A = B$ all equal to a C^*-algebra with

$$a \cdot e = ae, \quad e \cdot b = eb, \quad (e, f)_E = f^*e.$$

We encourage the reader to peruse Section 6 for a variety of additional examples and references for more complete details.

We will have need of various constructions for making new correspondences out of given correspondences. We give formal definitions as follows.

Definition 3.1.

1. **Direct sum:** Let E and F be two $(\mathcal{A}, \mathcal{B})$-correspondences. Then the direct-sum correspondence $E \oplus F$ is defined to be the direct sum vector space $E \oplus F$ together with the diagonal left-\mathcal{A} action and right-\mathcal{B} action and the direct-sum \mathcal{B}-valued inner product:

$$(\lambda a) \cdot (e \oplus f) = (\lambda a) \cdot (a \cdot e) \oplus (\lambda a) \cdot (b \cdot f),$$
$$(e \oplus f) \cdot (c \oplus d) = (e \cdot c) \oplus (f \cdot d),$$
$$(e \oplus f, e' \oplus f')_{E \oplus F} = (e, e')_E + (f, f')_F.$$

2. **Tensor product:** Suppose that we are given three C^*-algebras \mathcal{A}, \mathcal{B} and \mathcal{C} together with an $(\mathcal{A}, \mathcal{B})$-correspondence E and a $(\mathcal{B}, \mathcal{C})$-correspondence F. Then we define the tensor product correspondence $E \otimes_{\mathcal{B}} F$ (sometimes abbreviated to $E \otimes F$) to be the completion of the linear span of all tensors $e \otimes f$ (with $e \in E$ and $f \in F$) subject to the identification

$$(e \otimes f) \cdot (c \otimes d) = e \otimes (f \cdot c),$$

with left \mathcal{A}-action given by

$$a \cdot (e \otimes f) = (a \cdot e) \otimes f,$$

with right \mathcal{C}-action given by

$$(e \otimes f) \cdot c = e \otimes (f \cdot c),$$

and with \mathcal{C}-valued inner product $\langle \cdot, \cdot \rangle_{E \otimes_{\mathcal{B}} F}$ given by

$$\langle e \otimes f, e' \otimes f' \rangle_{E \otimes_{\mathcal{B}} F} = \langle e, e' \rangle_E \cdot \langle f, f' \rangle_F.$$
It is a straightforward exercise to verify that the balanced tensor-product construction is well-defined. For example the computation
\[
\langle (e \cdot b) \otimes f, (e' \cdot b') \otimes f' \rangle = \langle b' \cdot (e, e') \cdot b \cdot f, f' \rangle
\]
\[
= \langle (e, e') \cdot b \cdot f, b' \cdot f' \rangle
\]
\[
= \langle e \otimes (b \cdot f), e' \otimes (b' \cdot f') \rangle
\]
shows that the $E \otimes F$-inner product is well-defined.

Remark 3.2. Bounded linear operators between direct sum correspondences admit operator matrix decompositions in precisely the same way as in the Hilbert space case ($\mathcal{B} = \mathbb{C}$), while adjointability of such an operator corresponds to the operators in the decomposition being adjointable. For bounded linear operators between tensor-product correspondences the situation is slightly more complicated. We give an example how operators can be constructed. Let E and E' be $(\mathcal{A}, \mathcal{B})$-correspondences and F and F' $(\mathcal{B}, \mathcal{C})$-correspondences, for \mathcal{C}^*-algebras \mathcal{A}, \mathcal{B} and \mathcal{C}. Furthermore, let $X \in \mathcal{L}(E, E')$ and $Y \in \mathcal{L}(F, F')$ be \mathcal{B}-module maps. Then we write $X \otimes Y$ for the operator in $\mathcal{L}(E \otimes_B F, E' \otimes_B F')$ which is determined by
\[
X \otimes Y(e \otimes f) = (Xe) \otimes (Yf) \quad \text{for each } e \otimes f \in E \otimes_B F.
\] (3.5)
The \mathcal{B}-module map properties are needed to guarantee that for each $e \otimes f \in E \otimes_B F$ and all $b \in \mathcal{B}$ we have
\[
X \otimes Y(eb \otimes f) = (X(eb)) \otimes (Yf) = (Xe)b \otimes (Yf) = (Xe) \otimes (bf) = (Xe) \otimes (Y(bf)) = X \otimes Y(e \otimes bf).
\]
Thus the balancing in the tensor product (see (3.4)) is respected by the operator $X \otimes Y$. Moreover, $X \otimes Y$ is adjointable in case X and Y are adjointable operators, with $(X \otimes Y)^* = X^* \otimes Y^*$. Indeed, this is the case since for $f \otimes g \in E \otimes F$ and $e' \otimes f' \in E' \otimes F'$ we have
\[
\langle (X \otimes Y)(e \otimes f), e' \otimes f' \rangle_{E' \otimes F'} = \langle (Xe \otimes Yf, e' \otimes f')_{E' \otimes F'}
\]
\[
= \langle (Xe, e')_E Yf, f' \rangle_F,
\]
\[
= \langle Y(Xe, e')_{E'} f, f' \rangle_{F'},
\]
\[
= \langle (e, X^*e')_{E} Yf, Y^* f' \rangle_F
\]
\[
= \langle e \otimes f, (X^* \otimes Y^*)e' \otimes f' \rangle_{E \otimes F'}
\]
\[
= \langle e \otimes f, (X^* \otimes Y^*)e' \otimes f' \rangle_{E \otimes F}.
\]

In particular, the left action on $E \otimes F$ can now be written as $a \mapsto \varphi(a) \otimes I_F \in \mathcal{L}^a(E \otimes F, E \otimes F)$, where $I_F \in \mathcal{L}^a(F, F)$ is the identity operator on F. We will have occasions to use operators constructed in this way in the sequel.

We now introduce the notion of reproducing kernel $(\mathcal{A}, \mathcal{B})$-correspondence.

Definition 3.3. Let \mathcal{A} and \mathcal{B} be \mathcal{C}^*-algebras. By an $(\mathcal{A}, \mathcal{B})$-reproducing kernel correspondence on a set Ω, we mean an $(\mathcal{A}, \mathcal{B})$-correspondence E whose elements are \mathcal{B}-valued functions $f : (\omega, a) \mapsto f(\omega, a) \in \mathcal{B}$ on $\Omega \times \mathcal{A}$, which is a vector space with
respect to the usual point-wise vector-space operations and such that for each
\(\omega \in \Omega \) there is a kernel element \(k_\omega \in E \) with
\[
f(\omega, a) = \langle a \cdot f, k_\omega \rangle_E.
\] (3.6)
When this is the case we say that the function \(K: \Omega \times \Omega \to \mathcal{L}(A, B) \) given by
\[
K(\omega, \omega')[a] = k_{\omega'}(\omega, a)
\] (3.7)
is the reproducing kernel for the reproducing kernel correspondence \(E \).

From the inner product characterization in (3.6) of the point evaluation for
elements in an \((A, B)\)-reproducing kernel correspondence \(E \) on \(\Omega \) one easily deduces
that the left \(A \)-action and the right \(B \)-action are given by
\[
(a \cdot f)(\omega', a') = f(\omega', a'a) \quad \text{and} \quad (f \cdot b)(\omega', a') = f(\omega', a')b.
\] (3.8)
It is implicit in Definition 3.3 that the map \(a \mapsto k_{\omega'}(\omega, a) \in B \) is linear in
\(a \in A \) for each \(\omega, \omega' \in \Omega \). In fact the mapping from \(A \) to \(B \) given by \(a \mapsto f(\omega, a) \)
is \(A \)-linear for each fixed \(f \in E \) and \(\omega \in \Omega \). If \(A \) has a unit \(1_A \), this follows from
the general identity \(f(\omega, a) = (a \cdot f)(\omega, 1_A) \) (a consequence of (3.8) together with
the linearity of the point-evaluation map \(f \mapsto f(\omega, 1_A) \) from \(E \) to \(B \) for each fixed
\(\omega \in \Omega \) which in turn is an easy consequence of (3.6)). The general case follows by
adapting this argument to the setting where one has only an approximate identity.
Note also that we recover the element \(k_{\omega'} \) from \(K \) by using formula (3.7) to define
\(k_{\omega'} \) as a function of \((\omega, a) \) for each \(\omega' \in \Omega \).

The next proposition gives some elementary observations concerning the
structure of reproducing kernel correspondences.

Proposition 3.4. If \(E \) is a reproducing kernel \((A, B)\)-correspondence with kernel
elements \(k_\omega \) for \(\omega \in \Omega \), then the bounded evaluation map \(e_{\omega, a} \) from \(E \) to \(B \) given
by \(e_{\omega, a}: f \mapsto f(\omega, a) \) is adjointable for each fixed \((\omega, a) \in \Omega \times A \) and we have
\[
a^* k_\omega b = e_{\omega, a}^* b \quad \text{for each} \quad \omega \in \Omega, \ a \in A, \ \text{and} \ b \in B.
\] (3.9)
Conversely, suppose that \(E \) is an \((A, B)\)-correspondence of \(B \)-valued functions on
the set \(\Omega \times A \) satisfying (3.8) and such that the evaluation map
\[
e_{\omega, a}: f \mapsto f(\omega, a)
\] is a bounded and adjointable map from \(E \) to \(B \) for each \(\omega \in \Omega \) and \(a \in A \). Then
\(E \) is a reproducing kernel \((A, B)\)-correspondence with reproducing kernel elements
determined by (3.9).

Moreover, in either case, for each fixed pair \((\omega, a) \) the point-evaluation map
\[e_{\omega, a}: E \to B\text{ is a }B\text{-module map:}
\[
(f \cdot b)(\omega, a) = f(\omega, a)b \quad \text{for all} \ b \in B.
\] Proof. Suppose \(E \) is a reproducing kernel \((A, B)\)-correspondence with kernel
elements \(k_\omega \) for \(\omega \in \Omega \). If \(e_{\omega, a} \) denotes the evaluation map from \(E \) to \(B \) given by
\[
e_{\omega, a}: f \mapsto f(\omega, a), \text{ we have}
\]
\[
\langle e_{\omega, a} f, b \rangle_B = b^* f(\omega, a) = b^* (a \cdot f, k_\omega)_{E} = (f, a^* k_\omega \cdot b).
\]
So \(e_{\omega,a} \) is adjointable with \(e_{\omega,a}^* b = a^* k_\omega b \) for any \(b \in B \).

On the other hand, if the evaluation map

\[e_{\omega,a} : f \mapsto f(\omega,a) \]

is a bounded and adjointable map from \(E \) to \(B \) for each \(\omega \in \Omega \) and \(a \in A \), then there exists an \(e_{\omega,a}^* \) so that

\[b^*(e_{\omega,a} f) = \langle e_{\omega,a} f, b \rangle_B = \langle f, e_{\omega,a}^* b \rangle_E. \]

If \(A \) and \(B \) have identities \(1_A \) and \(1_B \) respectively, we set \(k_\omega = e_{\omega,1_A}^*(1_B) \). Using the first identity in (3.8) it follows from a computation similar to that above, that \(a^* k_\omega = e_{\omega,a}^*(1_B) \). We readily see that

\[f(\omega,a) = e_{\omega,a} f = \langle f, a^* k_\omega \rangle_E = \langle a \cdot f, k_\omega \rangle_E. \]

If \(A \) and/or \(B \) does not have a unit, one can do an approximate version of the above argument using an approximate identity for \(A \) and/or \(B \). In any case, it follows that \(E \) is a reproducing kernel \((A,B)\)-correspondence with reproducing kernel elements determined by (3.9).

The last part follows from the definition of the right \(B \)-action given by (3.8).

\[\square \]

Given a reproducing kernel \((A,B)\)-correspondence as in Definition 3.3, one can show that the associated reproducing kernel function \(\mathbb{K} : \Omega \times \Omega \to \mathcal{L}(A,B) \) defined by (3.7) is a completely positive kernel in the sense of [18], i.e., the function

\[((\omega,a), (\omega',a')) \mapsto \mathbb{K}(\omega, \omega')(a^* a') \]

is a positive kernel in the classical sense of Aronszajn [7] (extended to the \(C^* \)-algebra-valued case), that is, \(\sum_{i,j=1}^{N} b_i^* \mathbb{K}(\omega_i, \omega_j)[a_i^* a_j] b_j \) is a positive element of \(B \) for each choice of finitely many \((\omega_1, a_1), \ldots, (\omega_N, a_N)\) in \(\Omega \times A \) and \(b_1, \ldots, b_N \) in \(B \).

In fact, by the axioms of an \((A,B)\)-correspondence combined with the reproducing property of the kernel elements \(k_\omega \), we have

\[
\sum_{i,j=1}^{N} b_i^* \mathbb{K}(\omega_i, \omega_j)[a_i^* a_j] b_j = \sum_{i,j=1}^{N} b_i^* \langle a_i^* a_j k_{\omega_j}, k_{\omega_i} \rangle_E b_j = \sum_{i,j=1}^{N} \langle a_j k_{\omega_j} b_j, a_i k_{\omega_i} b_i \rangle_E = \sum_{i,j=1}^{N} \langle a_j k_{\omega_j} b_j, \sum_{i=1}^{N} a_i k_{\omega_i} b_i \rangle_E \geq 0.
\]

Actually, we have the following equivalent statements.

Theorem 3.5. Given a function \(\mathbb{K} : \Omega \times \Omega \to \mathcal{L}(A,B) \), the following are equivalent:
1. \mathcal{K} is a completely positive kernel in the sense that the function from $(\Omega \times \mathcal{A}) \times (\Omega \times \mathcal{A}) \to \mathcal{L}(\mathcal{A}, \mathcal{B})$ given by

 $$((\omega, a), (\omega', a')) \mapsto \mathcal{K}(\omega', \omega)[a*a']$$

 is a positive kernel in the sense of Aronszajn: for all $(\omega_1, a_1), \ldots, (\omega_N, a_N)$ in $\Omega \times \mathcal{A}$ and b_1, \ldots, b_N in \mathcal{B} we have

 $$\sum_{i,j=1}^N b_i^* \mathcal{K}(\omega_i, \omega_j)[a_i^* a_j]b_j \geq 0 \text{ in } \mathcal{B}.$$

2. \mathcal{K} has a Kolmogorov decomposition in the sense of [18], i.e., there exists an $(\mathcal{A}, \mathcal{B})$-correspondence E and a mapping $\omega \mapsto k_\omega$ from Ω into E such that

 $$\mathcal{K}(\omega', \omega)[a] = \langle a \cdot k_\omega, k_{\omega'} \rangle_E \text{ for all } a \in \mathcal{A}.$$

3. \mathcal{K} is the reproducing kernel for an $(\mathcal{A}, \mathcal{B})$-reproducing kernel correspondence $E = E(\mathcal{K})$, i.e., there is an $(\mathcal{A}, \mathcal{B})$-correspondence $E = E(\mathcal{K})$ whose elements are \mathcal{B}-valued functions on $\Omega \times \mathcal{A}$ such that the function $k_\omega : (\omega', a') \mapsto \mathcal{K}(\omega', \omega)[a']$ is in $E(\mathcal{K})$ for each $\omega \in \Omega$ and has the reproducing property

 $$\langle a \cdot f, k_\omega \rangle_{E(\mathcal{K})} = \langle f, a^* \cdot k_\omega \rangle_{E(\mathcal{K})} = f(\omega, a) \text{ for all } \omega \in \Omega \text{ and } a \in \mathcal{A}$$

 where $a^* \cdot k_\omega$ is given by

 $$(a^* \cdot k_\omega)(\omega', a') = \mathcal{K}(\omega', \omega)[a'a^*].$$ \hspace{1cm} (3.10)

Proof. For the equivalence of (1) and (2), we refer to Theorem 3.2.3 in [18]. The argument in the paragraph preceding the statement of the theorem shows that (3) \implies (1). To see that (2) \implies (3), assume that E is an $(\mathcal{A}, \mathcal{B})$-correspondence as in (2). Without loss of generality we may assume that

 $$E = \overline{\text{span}}\{a \cdot k_\omega \cdot b : a \in \mathcal{A}, \omega \in \Omega, b \in \mathcal{B}\}.\hspace{1cm} (3.11)$$

We view elements f of E as \mathcal{B}-valued functions on $\Omega \times \mathcal{A}$ by defining

 $$f(\omega, a) = \langle a \cdot f, k_\omega \rangle_E \text{ for each } \omega \in \Omega \text{ and } a \in \mathcal{A}.$$

The nondegeneracy assumption (3.11) says that

 $$f(\omega, a) = 0 \text{ for all } a \in \mathcal{A}, b \in \mathcal{B}, \omega \in \Omega \implies f = 0 \text{ in } E.$$

Hence the map $f \mapsto f(\cdot, \cdot)$ is injective. Finally (3.10) holds by definition. \hfill \Box

We now tailor this general theorem to the case where $\mathcal{B} = \mathcal{L}(\mathcal{E})$ for a Hilbert space \mathcal{E}. Note that \mathcal{E} is a $(\mathcal{L}(\mathcal{E}), \mathbb{C})$-correspondence, i.e., a Hilbert space with a $*$-representation $b \mapsto \varphi(b) \in \mathcal{L}(\mathcal{E})$ of $\mathcal{L}(\mathcal{E})$ (namely, the identity representation). Hence, given that E is an $(\mathcal{A}, \mathcal{L}(\mathcal{E}))$-correspondence, we may form the tensor product $E \otimes_{\mathcal{L}(\mathcal{E})} \mathcal{E}$ to obtain an $(\mathcal{A}, \mathbb{C})$-correspondence, i.e., a Hilbert space which we will denote by \mathcal{H} equipped with an $\mathcal{L}(\mathcal{H})$-valued $*$-representation $\pi : \mathcal{A} \to \mathcal{L}(\mathcal{H})$ of \mathcal{A}. Similarly, if we view $\mathcal{B} = \mathcal{L}(\mathcal{E})$ as a $(\mathcal{L}(\mathcal{E}), \mathcal{L}(\mathcal{E}))$-correspondence, we may form the tensor product $\mathcal{L}(\mathcal{E}) \otimes \mathcal{E}$ to arrive at the Hilbert space \mathcal{E}, via the balancing (3.4), viewed as a $(\mathcal{L}(\mathcal{E}), \mathbb{C})$-correspondence. Let us suppose also that E is a reproducing kernel correspondence. Then via the formula $f \otimes e \in E \otimes \mathcal{E} \mapsto f(\omega, a) \otimes e \in \mathcal{L}(\mathcal{E}) \otimes \mathcal{E}$
for each $\omega \in \Omega$ and $a \in \mathcal{A}$ extended via linearity and continuity to the whole space $E \otimes \mathcal{E}$, we may view each $f \in \mathcal{H} = E \otimes \mathcal{E}$ as a \mathcal{E}-valued function on $\Omega \times \mathcal{A}$ such that point-evaluation $f \mapsto f(\omega, a)$ is continuous, i.e., \mathcal{H} is a reproducing kernel Hilbert space of vector-valued functions on $\Omega \times \mathcal{A}$, but with the additional wrinkle that there is also a representation $a \mapsto \pi(a)$ of \mathcal{A} on \mathcal{H} with $\pi(a)(f \otimes e) = (a \cdot f) \otimes e$ such that

$$(\pi(a)(f \otimes e))(\omega', a') = f(\omega', a' a) \otimes e$$

with reproducing kernel (in the sense of a vector-valued reproducing kernel Hilbert space) $K(\cdot, \cdot)$ of the special form

$$K((\omega', a'), (\omega, a)) = \mathbb{K}(\omega', \omega)[a^* a']$$

for a completely positive kernel $\mathbb{K} : \Omega \times \Omega \to \mathcal{L}(\mathcal{A}, \mathcal{L}(\mathcal{E}))$: for $f \in \mathcal{H}(\mathbb{K})$, $e \in \mathcal{E}$ and $(\omega, a) \in \Omega \times \mathcal{A}$,

$$(f, \mathbb{K}(\cdot, \cdot)[a]e)_{\mathcal{H}} = (f(\omega, a), e)_{\mathcal{E}}$$

where \mathbb{K} is completely positive. This leads us to an alternative reproducing-kernel interpretation of a completely positive kernel $\mathbb{K} : \Omega \times \Omega \to \mathcal{L}(\mathcal{A}, \mathcal{B})$ for the case where $\mathcal{B} = \mathcal{L}(\mathcal{E})$ for a Hilbert space \mathcal{E}.

Theorem 3.6. Suppose that \mathcal{A} is a C^*-algebra, \mathcal{E} is a Hilbert space and that a function $\mathbb{K} : \Omega \times \Omega \to \mathcal{L}(\mathcal{A}, \mathcal{L}(\mathcal{E}))$ is given. The following conditions are equivalent.

1. The function \mathbb{K} is a completely positive kernel in the sense that

$$\sum_{i,j=1}^N (\mathbb{K}(\omega_i, \omega_j)[a_i^* a_j]e_j, e_i) \geq 0$$

for all finite collections $\omega_1, \ldots, \omega_N \in \Omega$, $a_1, \ldots, a_N \in \mathcal{A}$ and $e_1, \ldots, e_N \in \mathcal{E}$ for $N = 1, 2, \ldots$.

2. The kernel \mathbb{K} has a Kolmogorov decomposition: there is a Hilbert space \mathcal{H} together with a $*$-representation $\pi : \mathcal{A} \to \mathcal{L}(\mathcal{H})$ of \mathcal{A} and a mapping $H : \Omega \to \mathcal{L}(\mathcal{H}, \mathcal{E})$ so that

$$\mathbb{K}(\omega', \omega)[a] = H(\omega') \pi(a) H(\omega)^*.$$

3. There is a $(\mathcal{A}, \mathcal{C})$-correspondence, i.e., a Hilbert space $\mathcal{H} = \mathcal{H}(\mathbb{K})$ together with a $*$-representation $a \mapsto \pi(a) \in \mathcal{L}(\mathcal{H})$ of \mathcal{A} whose elements are \mathcal{E}-valued functions on $\Omega \times \mathcal{A}$ such that:

(a) The $*$-representation π is given by

$$(\pi(a)f)(\omega', a') = f(\omega', a' a).$$

(b) The function $k_{\omega} : \Omega \times \mathcal{A} \to \mathcal{L}(\mathcal{E})$ given by

$$k_{\omega}(\omega', a') : e \mapsto \mathbb{K}(\omega', \omega)[a'] e$$

is such that $k_{\omega} e \in \mathcal{H}(\mathbb{K})$ for each $\omega \in \Omega$ and $e \in \mathcal{E}$ and has the reproducing kernel property:

$$(f, \pi(a)^* k_{\omega} e)_{\mathcal{H}(\mathbb{K})} = (f(\omega, a), e)_{\mathcal{E}}.$$
Let us say that the object described in part (3) of Theorem 3.6 a *reproducing kernel Hilbert correspondence* (over the C^*-algebra A with values in the coefficient space E).

Remark 3.7. If $\mathcal{H}(K)$ is a reproducing kernel Hilbert correspondence space as in part (3) of Theorem 3.6, a special situation occurs if the coefficient space E is also equipped with a $*$-representation $\pi_E : A \rightarrow \mathcal{L}(E)$. In this case it may or may not happen that point evaluation is an A-module map, i.e., that

$$(a \cdot f)(\omega', a') = a \cdot f(\omega', a') \quad \text{or equivalently} \quad (\pi(a)f)(\omega', a') = \pi_E(a)f(\omega', a'). \quad (3.12)$$

When (3.12) does occur and if also A has a unit 1_A, one can show that the associated completely positive kernel $K(\omega, \omega')[a]$ has the special property

$$K(\omega, \omega')[a^*a'] = \pi_E(a)^*K(\omega, \omega')[1_A]\pi_E(a') \quad (3.13)$$

and hence complete positivity of K reduces to standard (Aronszajn) positivity for the kernel $K_0 : \Omega \times \Omega \rightarrow \mathcal{L}(E)$ given by

$$K_0(\omega, \omega') = K(\omega, \omega')[1_A].$$

Indeed, the computation

$$\langle K(\omega, \omega')[a^*a']e', e \rangle_E = \langle a^*a' \cdot k_{\omega}e', k_{\omega}e \rangle_{\mathcal{H}(K)}$$

$$= \langle (a^*a' \cdot k_{\omega}e')(\omega), e \rangle_E$$

$$= \langle a^*a' \cdot (k_{\omega}e')(\omega), e \rangle_E \quad \text{(by assumption (3.12))}$$

$$= \langle a'(k_{\omega}e')(\omega), ae \rangle_E$$

$$= \langle (a' \cdot k_{\omega}e')(\omega), ae \rangle_E \quad \text{(by (3.12) again)}$$

$$= \langle a' \cdot k_{\omega}e', k_{\omega}(ae) \rangle_{\mathcal{H}(K)}$$

$$= \langle K(\omega, \omega')(a)e', ae \rangle_E$$

$$= \langle a^*K(\omega, \omega')(a)e', e \rangle_E$$

shows that

$$K(\omega, \omega')[a^*a'] = a^*K(\omega, \omega')[a]. \quad (3.14)$$

On the other hand, the positive-kernel property of the kernel

$$((\omega, a), (\omega', a')) \rightarrow K((\omega, a), (\omega', a')) := K(\omega, \omega')(a^*a')$$

implies that K is Hermitian, i.e., $K((\omega, a), (\omega', a')) = K((\omega', a'), (\omega, a))^*$, i.e.,

$$K(\omega, \omega')(a^*a') = (K(\omega', \omega)[a^*a])^*.$$

In particular,

$$K(\omega, \omega')[a'] = (K(\omega', \omega)[a^*])^*$$

$$= (a^*K(\omega', \omega)[1_A])^* \quad \text{(by (3.14))}$$

$$= K(\omega, \omega')[1_A]a'$$

and hence also

$$K(\omega, \omega')[a'] = K(\omega, \omega')[1_A]a'. \quad (3.15)$$
Combining (3.14) and (3.15) gives (3.13) as claimed.

4. Function-theoretic operator theory associated with a correspondence E

In this section we obtain the analogues of Hardy spaces, Toeplitz operators, Z-transform and Schur class attached to a \mathcal{A}-W^*-correspondence E together with a $*$-representation σ of \mathcal{A}. These results flesh out more fully the function-theoretic aspects of the work of Muhly-Solel [31, 33, 36].

4.1. Hardy Hilbert spaces associated with a correspondence E

In this section we shall consider the situation where $\mathcal{A} = B$; we abbreviate the term $(\mathcal{A}, \mathcal{A})$-correspondence to simply \mathcal{A}-correspondence. We also now restrict our attention to the case where \mathcal{A} is a von Neumann algebra and let E be a \mathcal{A}-W^*-correspondence. This means that E is a \mathcal{A}-correspondence which is also self-dual in the sense that any right \mathcal{A}-module map $\rho: E \to \mathcal{A}$ is given by taking the inner product against some element e_ρ of E: $\rho(e) = \langle e, e_\rho \rangle_E \in \mathcal{A}$. Moreover, the space $\mathcal{L}^a(E)$ of adjointable operators on the W^*-correspondence E is in fact a W^*-algebra, i.e., is the abstract version of a von Neumann algebra with an ultra-weak topology (see [33]).

Since E is a \mathcal{A}-correspondence, we may use Definition 3.1 to define the self-tensor product $E \otimes^2 E = E \otimes_{\mathcal{A}} E$ which is again an \mathcal{A}-correspondence, and, inductively, an \mathcal{A}-correspondence $E \otimes^n E = E \otimes_{\mathcal{A}} (E \otimes^{(n-1)} E)$ for each $n = 1, 2, \ldots$. If we use $a \mapsto \varphi(a)$ to denote the left \mathcal{A}-action $\varphi(a)e = a \cdot e$ on E, we denote the left \mathcal{A}-action on $E \otimes^n E$ by $\varphi^{(n)}$:

$$
\varphi^{(n)}(a): \xi_n \otimes \xi_{n-1} \otimes \cdots \otimes \xi_1 \mapsto (\varphi(a)\xi_n) \otimes \xi_{n-1} \otimes \cdots \otimes \xi_1.
$$

Note that, using the notation in (3.5), we may write $\varphi^{(n)}(a) = \varphi(a) \otimes I_{E \otimes^{n-1} E}$. We formally set $E \otimes^0 E = \mathcal{A}$. Then the Fock space $\mathcal{F}^2(E)$ is defined to be

$$
\mathcal{F}^2(E) = \bigoplus_{n=0}^\infty E \otimes^n E
$$

and is also an \mathcal{A}-correspondence. We denote the left \mathcal{A}-action on $\mathcal{F}(E)$ by φ_∞:

$$
\varphi_\infty(a): \bigoplus_{n=0}^\infty \xi^{(n)} \mapsto \bigoplus_{n=0}^\infty (\varphi^{(n)}(a)\xi^{(n)}) \text{ for } \bigoplus_{n=0}^\infty \xi^{(n)} \in \bigoplus_{n=0}^\infty E \otimes^n E, \quad (4.2)
$$

or, more succinctly,

$$
\varphi_\infty(a) = \text{diag}(a, \varphi^{(1)}(a), \varphi^{(2)}(a), \ldots).
$$

In addition to the von Neumann algebra \mathcal{A} and the \mathcal{A}-correspondence E, suppose that we are also given an auxiliary Hilbert space \mathcal{E} and a nondegenerate $*$-homomorphism $\sigma: \mathcal{A} \to \mathcal{L}(\mathcal{E})$; as this will be the setting for much of the analysis to follow, we refer to such a pair (E, σ) as a correspondence-representation pair.
Then the Hilbert space \mathcal{E} equipped with σ becomes an $(\mathcal{A}, \mathcal{C})$-correspondence with left \mathcal{A}-action given by σ:

$$a \cdot y = \sigma(a)y \text{ for all } a \in \mathcal{A} \text{ and } y \in \mathcal{E}.$$

We let $E \otimes_\sigma \mathcal{E}$ be the associated tensor-product $(\mathcal{A}, \mathcal{C})$-correspondence $E \otimes_A \mathcal{E}$ as in Definition 3.1. As $\mathcal{F}^2(\mathcal{E})$ is also an \mathcal{A}-correspondence, we may also form the $(\mathcal{A}, \mathcal{C})$-correspondence

$$\mathcal{F}^2(\mathcal{E}, \sigma) := \mathcal{F}^2(\mathcal{E}) \otimes_\sigma \mathcal{E} = \bigoplus_{n=0}^\infty (E^\otimes n \otimes_\sigma \mathcal{E}),$$

with left \mathcal{A}-action given by the $*$-representation

$$\varphi_{\infty, \sigma}(a) = \varphi_\infty(a) \otimes I_\mathcal{E}.$$

It turns out that $\mathcal{F}^2(\mathcal{E}, \sigma)$ is also a $(\sigma(\mathcal{A})^\prime, \mathcal{C})$-correspondence, where $\sigma(\mathcal{A})^\prime \subset \mathcal{L}(\mathcal{E})$ denotes the commutant of $\sigma(\mathcal{A})$:

$$\sigma(\mathcal{A})^\prime = \{ b \in \mathcal{L}(\mathcal{E}) : b\sigma(a) = \sigma(a)b \text{ for all } a \in \mathcal{A} \},$$

and where the left $\sigma(\mathcal{A})^\prime$-action is given by the $*$-representation $\iota_{\infty, \sigma}$ of $\sigma(\mathcal{A})^\prime$ on $\mathcal{L}(\mathcal{F}^2(\mathcal{E}, \sigma))$:

$$\iota_{\infty, \sigma}(b) = I_{\mathcal{F}^2(\mathcal{E})} \otimes b \text{ for each } b \in \sigma(\mathcal{A})^\prime,$$

using the notation in (3.5). Note that $b \in \mathcal{L}(\mathcal{E})$ is in $\sigma(\mathcal{A})^\prime$ precisely when b is an \mathcal{A}-module map, so that $I_{\mathcal{F}^2(\mathcal{E})} \otimes b$ is a well defined operator on $\mathcal{F}^2(\mathcal{E}, \sigma)$. Moreover, $\varphi_{\infty, \sigma}(a)$ commutes with $\iota_{\infty, \sigma}(b)$ for each $a \in \mathcal{A}$ and $b \in \sigma(\mathcal{A})^\prime$ since

$$\varphi_{\infty, \sigma}(a)\iota_{\infty, \sigma}(b) = \varphi_\infty(a) \otimes b = \iota_{\infty, \sigma}(b)\varphi_{\infty, \sigma}(a).$$

Thus $\iota_{\infty, \sigma}(b)$ is an \mathcal{A}-module map for each $b \in \sigma(\mathcal{A})^\prime$ and $\varphi_{\infty, \sigma}(a)$ is a $\sigma(\mathcal{A})^\prime$-module map for each $a \in \mathcal{A}$.

We denote by E^σ the set of all bounded linear operators $\mu : \mathcal{E} \to E \otimes_\sigma \mathcal{E}$ which are also \mathcal{A}-module maps:

$$E^\sigma = \{ \mu : \mathcal{E} \to E \otimes_\sigma \mathcal{E} : \mu \sigma(a) = (\varphi(a) \otimes I_\mathcal{E})\mu \},$$

and $(E^\sigma)^*$ for the set of adjoints (which are also \mathcal{A}-module maps):

$$(E^\sigma)^* = \{ \eta : E \otimes_\sigma \mathcal{E} \to \mathcal{E} : \eta^* \in E^\sigma \}. $$

More generally, for a given $\eta \in (E^\sigma)^*$, we may define operators $\eta^n : E^\otimes n \otimes_\sigma \mathcal{E} \to \mathcal{E}$ (generalized powers) by

$$\eta^n = \eta(I_E \otimes \eta) \cdots (I_{E^\otimes n-1} \otimes \eta)$$

where we use the identification

$$E^\otimes n \otimes_\sigma \mathcal{E} = E^\otimes n-1 \otimes_\mathcal{A} (E \otimes_\sigma \mathcal{E})$$

in these definitions. We also set $\eta^0 = I_\mathcal{E} \in \mathcal{L}(\mathcal{E})$. Again the fact that η is an \mathcal{A}-module map ensures that $I_{E^\otimes n} \otimes \eta$ is a well defined operator in $\mathcal{L}(E^\otimes k+1 \otimes_\sigma \mathcal{E})$.
The defining \mathcal{A}-module property of η in (4.6) then extends to the generalized powers η^n in the form
\[\eta^n(\varphi^{(n)}(a) \otimes I_E) = \sigma(a)\eta^n, \]
(4.7)
i.e., η^n is also an \mathcal{A}-module map.

Denote by $\mathbb{D}((E^\sigma)^*)$ the set of strictly contractive elements of $(E^\sigma)^*$:
\[\mathbb{D}((E^\sigma)^*) = \{ \eta \in (E^\sigma)^* : \|\eta\| < 1 \}. \]
Then, for $\eta \in \mathbb{D}((E^\sigma)^*)$ and $b \in \sigma(\mathcal{A})'$, we may define a bounded operator $f \mapsto f^\wedge(\eta, b)$ from $\mathcal{F}^2(E, \sigma)$ into \mathcal{E} by
\[f^\wedge(\eta, b) = \sum_{n=0}^{\infty} \eta^n(\iota_{\infty, \sigma}(b)f_n) = \sum_{n=0}^{\infty} \eta^n(I_{E^\otimes n} \otimes b)f_n \text{ if } f = \oplus_{n=0}^{\infty} f_n. \] (4.8)
Note that the fact that $\|\eta\| < 1$ guarantees that the series in (4.8) converges.

The \mathcal{A}-module properties of $\iota_{\infty, \sigma}(b)$ and each generalized power η^n (see (4.7)) for given $b \in \sigma(\mathcal{A})'$ and $\eta \in \mathbb{D}((E^\sigma)^*)$ imply that the point-evaluation $f \mapsto f^\wedge(\eta, b)$ is also an \mathcal{A}-module map:
\[(\varphi_{\infty, \sigma}(a)f)^\wedge(\eta, b) = \sigma(a)f^\wedge(\eta, b). \]
However, the point-evaluation $f \mapsto f^\wedge(\eta, b)$ is not a $\sigma(\mathcal{A})'$-module map, i.e., there is no guarantee for the general validity of the identity $(\iota_{\infty, \sigma}(b)f)^\wedge(\eta', b') = bf^\wedge(\eta', b')$, but rather we have the property
\[(\iota_{\infty, \sigma}(b)f)^\wedge(\eta', b') = f^\wedge(\eta', b'b). \]

We denote the space of all \mathcal{E}-valued functions on $\mathbb{D}((E^\sigma)^*) \times \sigma(\mathcal{A})'$ of the form $(\eta, b) \mapsto f^\wedge(\eta, b)$ for some $f \in \mathcal{F}^2(E, \sigma)$ by $H^2(E, \sigma)$ with norm $\|f^\wedge\|_{H^2(E, \sigma)}$ chosen so as to make the map $f \mapsto f^\wedge$ a coisometry from $\mathcal{F}^2(E, \sigma)$ to $H^2(E, \sigma)$:
\[H^2(E, \sigma) = \{ f^\wedge : f \in \mathcal{F}^2(E, \sigma) \} \text{ with } \|f^\wedge\|_{H^2(E, \sigma)} = \|P_{(\text{Ker} \Phi)^\perp} f\|_{\mathcal{F}^2(E, \sigma)}. \]
where we denote by Φ (the generalized Fourier or Z-transform for this setting) the transformation from $\mathcal{F}^2(e, \sigma)$ into $H^2(E, \sigma)$ given by
\[\Phi : f \mapsto f^\wedge. \] (4.9)
Then we have the following result.

Theorem 4.1. The space $H^2(E, \sigma)$ is a reproducing kernel Hilbert correspondence $\mathcal{H}(\mathbb{K})$ (as in part (3) of Theorem 3.6) over $\sigma(\mathcal{A})'$ consisting of \mathcal{E}-valued functions on $\mathbb{D}((E^\sigma)^*) \times \sigma(\mathcal{A})'$ with the $*$-representation of $\sigma(\mathcal{A})'$ given by
\[(b \cdot f^\wedge)(\eta', b') = (\iota_{\infty, \sigma}(b)f)^\wedge(\eta', b') \text{ for } b \in \sigma(\mathcal{A})'. \] (4.10)
The completely positive kernel \mathbb{K} associated with $H^2(E, \sigma)$ as in Theorem 3.6
\[\mathbb{K}_{E, \sigma} : \mathbb{D}((E^\sigma)^*) \times \mathbb{D}((E^\sigma)^*) \rightarrow \mathcal{L}(\sigma(\mathcal{A})', \mathcal{L}(\mathcal{E})) \]
is the Szegö kernel for our setting given by
\[\mathbb{K}_{E, \sigma}(\eta, \zeta)[b] = \sum_{n=0}^{\infty} \eta^n(I_{E^\otimes n} \otimes b)(\zeta^n)^* \text{ for } b \in \sigma(\mathcal{A})'. \] (4.11)
Proof. Define $\Phi: F^2(E, \sigma) \to H^2(E, \sigma)$ as in (4.9). By the definition of the norm on $H^2(E, \sigma)$, Φ is a coisometry. For each $b \in \sigma(A)'$ and $\eta \in \mathbb{D}((E^*)^*)$, define an associated controllability operator $C_{b, \eta}^*: F^2(E, \sigma) \to E$ by

$$C_{b, \eta}^*: f \mapsto f^\wedge(\eta, b) \text{ if } f \in F^2(E, \sigma).$$

By definition,

$$\text{Ker } \Phi = \bigcap_{b \in \sigma(A)', \eta \in \mathbb{D}((E^*)^*)} \text{Ker } C_{b, \eta}^*.$$

The initial space of the coisometry Φ is the orthogonal complement of its kernel, namely

$$(\text{Ker } \Phi)^\perp = \text{span}\{\text{Ran } C_{b, \eta}^*: b \in \sigma(A)', \eta \in \mathbb{D}((E^*)^*)\},$$

where the observability operator $C_{b, \eta}^*$ is given by

$$C_{b, \eta}^*: e \mapsto \bigoplus_{n=0}^\infty (I_E \otimes n \otimes b^*)^n e \in F^2(E) \otimes_\sigma E.$$

We compute

$$\langle f^\wedge(\zeta, b), e \rangle_E = \langle C_{b, \zeta} f, e \rangle_E$$

$$= (f, C_{b, \zeta}^* e)_{F^2(E, \sigma)}$$

$$= (f^\wedge, \Phi(C_{b, \zeta}^* e))_{H^2(E, \sigma)}$$

$$= (f^\wedge, b^* \cdot \Phi(C_{I_E, \zeta}^* e))_{H^2(E, \sigma)}$$,

where we use the fact seen above that $C_{b, \zeta}^* e$ is in the initial space of Φ and that $\Phi((I_{F^2(E)} \otimes b)f) = b(\Phi f)$ for each $b \in \sigma(A)'$ and $f \in F^2(e, \sigma)$. Hence the operator

$$k_{E, \sigma, \zeta} := \Phi C_{I_E, \zeta}^*: E \to H^2(E, \sigma)$$

has the reproducing property for $H^2(E, \sigma)$; see part (3.b) in Theorem 3.6. Since Φ is a coisometry and $I_E \in \sigma(A)'$, we obtain that the reproducing kernel $K_{E, \sigma}$ is necessarily given by

$$K_{E, \sigma}(\eta, \zeta)[b] = b \cdot k_{E, \sigma, \zeta}(\eta)$$

$$= C_{b, \eta} \Phi^* \Phi C_{I_E, \zeta}^*$$

$$= \sum_{n=0}^\infty \eta^n (I_E \otimes b)(\zeta^n)^*$$

in agreement with (4.11). \qed

From the proof of Theorem 4.1 we see that we have the identification

$$b^* \cdot k_{E, \sigma, \eta} e = C_{b, \eta}^* e = \oplus_{n=0}^\infty (I_E \otimes b^*)^n e.$$

\footnote{The terminology is motivated by connections with system theory; for a systematic account for the Drury-Arveson and free-semigroup algebra settings, we refer to [10].}
and the initial space for the coisometry \(\Phi: \mathcal{F}(E) \otimes \sigma E \to H^2(E, \sigma) \) can be identified as
\[
[\mathcal{F}(E) \otimes \sigma E]_{\text{initial}} = \text{spans} \{ b \cdot k_{E, \sigma, \eta} e : b \in \sigma(A)^\prime, \eta \in \mathbb{D}((E^\sigma)\ast), e \in E \}. \tag{4.12}
\]

4.2. Analytic Toeplitz algebras associated with a correspondence \(E \)

Given an \(\mathcal{A} \) - \(W^\ast \)-correspondence \(E \), we let \(\mathcal{F}^2(E) \) be the associated Fock space as in (4.1). We have already defined the \(* \)-representation of \(\mathcal{A} \) to \(\mathcal{L}^a(\mathcal{F}^2(E)) \) given by \(a \mapsto \varphi_\infty(a) \) as in (4.2). If we view operators on \(\mathcal{F}^2(E) \) as matrices induced by the decomposition \(\mathcal{F}^2(E) = \bigoplus_{n=0}^\infty E^{\otimes n} \) of \(\mathcal{F}^2(E) \), we see that each \(\varphi_\infty(a) \) has a diagonal representation \(\varphi_\infty(a) = \text{diag}_{n=0,1,\ldots} \varphi(n)(a) \). In addition to the operators \(\varphi_\infty(a) \in \mathcal{L}^a(\mathcal{F}^2(E)) \), we introduce the so-called creation operators on \(\mathcal{F}^2(E) \) given, for each \(\xi \in E \), by the subdiagonal (or shift) block matrix
\[
T_\xi = \begin{bmatrix}
0 & 0 & 0 & \cdots \\
T_\xi^{(0)} & 0 & 0 & \cdots \\
0 & T_\xi^{(1)} & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{bmatrix}
\]
where the block entry \(T_\xi^{(n)} : E^{\otimes n} \rightarrow E^{\otimes n+1} \) is given by
\[
T_\xi^{(n)} : \xi_n \otimes \cdots \otimes \xi_1 \mapsto \xi \otimes \xi_n \otimes \cdots \otimes \xi_1.
\]
The operator \(T_\xi \) is also in \(\mathcal{L}^a(\mathcal{F}^2(E)) \). In summary, both \(T_\xi \) and \(\varphi_\infty(a) \) are \(\mathcal{A} \)-module maps with respect to the right \(\mathcal{A} \)-action on \(\mathcal{F}^2(E) \) for each \(\xi \in E \) and \(a \in \mathcal{A} \). Moreover, one easily checks that
\[
\varphi_\infty(a)T_\xi = T_\alpha\xi = T_{\varphi(\alpha)}\xi \quad \text{and} \quad T_\xi\varphi_\infty(a) = T_{\xi a} \quad \text{for each} \ a \in \mathcal{A} \ \text{and} \ \xi \in E.
\]

We let \(\mathcal{F}^\infty(E) \) denote the weak-* closed algebra generated by the collection of operators
\[
\{ \varphi_\infty(a), T_\xi : a \in \mathcal{A} \ \text{and} \ \xi \in E \}
\]
in the \(W^\ast \)-algebra \(\mathcal{L}^a(\mathcal{F}(E)) \)—we prefer this notation over the notation \(\mathcal{H}^\infty(E) \) used for this object in [31, 33].

Suppose now that we are also given a \(* \)-representation \(\sigma \) of \(\mathcal{A} \) on a Hilbert space \(\mathcal{E} \). Rather than the algebra \(\mathcal{F}^\infty(E) \) of adjointable operators on the \(\mathcal{A} \)-correspondence \(\mathcal{F}^2(E) \), our main focus of interest will be on the algebra \(\mathcal{F}^\infty(E) \otimes I_\mathcal{E} \) of all operators on the Hilbert space \(\mathcal{F}^2(E, \sigma) \) of the form \(R = T \otimes I_\mathcal{E} \) with \(T \in \mathcal{F}^\infty(E) \) acting on the Hilbert space \(\mathcal{F}^2(E, \sigma) \). Note that the operator \(R = T \otimes I_\mathcal{E} \) is properly defined since \(T \) is an \(\mathcal{A} \)-module map with respect to the right \(\mathcal{A} \)-action on \(\mathcal{F}^2(E) \). For convenience we shall use the abbreviated notation
\[
\mathcal{F}^\infty(E, \sigma) = \mathcal{F}^\infty(E) \otimes I_\mathcal{E},
\]
and
\[
\varphi_\infty,\sigma(a) = \varphi_\infty(a) \otimes I_\mathcal{E} \quad \text{and} \quad T_{\xi,\sigma} = T_{\xi} \otimes I_\mathcal{E} \quad \text{for all} \ a \in \mathcal{A} \ \text{and} \ \xi \in E.
\]
The algebra $\mathcal{F}^{\infty}(E, \sigma)$ can also be described as the weak-$*$ closed algebra generated by the collection of operators

$$\{ \varphi_{\infty, \sigma}(a), T_{\xi, \sigma} : a \in \mathcal{A}, \xi \in E \}. \quad (4.13)$$

The following alternative characterization of $\mathcal{F}^{\infty}(E, \sigma)$ will be useful. Here we define E^σ and $\sigma(\mathcal{A})'$ as in (4.5) and (4.3). Note that each element μ of E^σ induces a dual creation operator $T_{\mu, \sigma}^{d}$ in $\mathcal{L}^2(\mathcal{F}^2(E, \sigma))$ given by

$$T_{\mu, \sigma}^{d} = \begin{pmatrix}
0 & 0 & 0 & \cdots \\
T_{\mu, \sigma}^{d}(0) & 0 & 0 & \cdots \\
0 & T_{\mu, \sigma}^{d}(1) & 0 & \cdots \\
\ddots & \ddots & \ddots & \ddots \\
\end{pmatrix}$$

where $T_{\mu, \sigma}^{d}(n) : E^{\otimes n} \otimes \sigma E \to E^{\otimes n+1} \otimes \sigma E$ is given by

$$T_{\mu, \sigma}^{d}(n) : \xi_n \otimes \cdots \otimes \xi_1 \otimes e \mapsto \xi_n \otimes \cdots \otimes \xi_1 \otimes \mu e$$

where as usual we make the identification

$$E^{\otimes n} \otimes (E \otimes \sigma E) = E^{\otimes n+1} \otimes \sigma E.$$

Using the notation in (3.5) we can write $T_{\mu, \sigma}^{d} = I_{\mathcal{F}^2(E)} \otimes \mu$, where we identify $\mathcal{F}^2(E) \otimes \mathcal{A} E$ with $\mathcal{F}^2(E)$, which makes sense because μ is an \mathcal{A}-module map. Also recall that $t_{\infty, \sigma}$ in (4.4) defines a $*$-representation of $\sigma(\mathcal{A})'$ on $\mathcal{F}^2(E, \sigma)$.

Proposition 4.2. An operator $R \in \mathcal{L}(\mathcal{F}^2(E, \sigma))$ is in $\mathcal{F}^{\infty}(E, \sigma)$ if and only if R commutes with each of the operators $I_{\mathcal{F}^2(E)} \otimes \sigma b$ and $T_{\mu, \sigma}^{d}$ for $b \in \sigma(\mathcal{A})'$ and $\mu \in E^\sigma$. Consequently, the operator $R \in \mathcal{L}(\mathcal{F}^2(E, \sigma))$ with infinite block-matrix representation

$$R = [R_{i,j}]_{i,j=0,1,2,\ldots} \quad \text{where } R_{i,j} : E^{\otimes j} \otimes \sigma E \to E^{\otimes i} \otimes \sigma E$$

is in $\mathcal{F}^{\infty}(E, \sigma)$ if and only if R is lower triangular ($R_{i,j} = 0$ for $i < j$) and for $i \geq j$ $R_{i,j}$ satisfies the following compatibility (Toeplitz-like) conditions:

$$R_{i,j}(I_{E^{\otimes j}} \otimes b) = (I_{E^{\otimes i}} \otimes b)R_{i,j} \text{ for all } b \in \sigma(\mathcal{A})', \quad (4.14)$$

$$R_{i+1,j+1}(I_{E^{\otimes j}} \otimes \mu) = (I_{E^{\otimes i}} \otimes \mu)R_{i,j} \text{ for all } \mu \in E^\sigma. \quad (4.15)$$

and hence, inductively,

$$R_{i,j} \mu^j = (I_{E^{\otimes i-j}} \otimes \mu^j)R_{i-j,0}, \quad (4.16)$$

where $\mu^j = ((\mu^*)^j)^*$, with $(\mu^*)^j$ the generalized power of $\mu^* \in (E^\sigma)^*$.

Proof. The first part follows from Theorem 3.9 of [33]. The second part is then a straightforward translation of these commutativity conditions to expressions involving the block entries. \hfill \Box

Taking the cue from Proposition 4.2, we view elements R of $\mathcal{F}^{\infty}(E, \sigma)$ as the analytic Toeplitz operators for this Fock-space/correspondence setting.

While it is in general not the case that $R(T_{\mu, \sigma}^{d})^* = (T_{\mu, \sigma}^{d})^* R$ for $R \in \mathcal{F}^{\infty}(E, \sigma)$ and $\mu \in E^\sigma$, this is almost the case as is made precise in the following proposition.
Proposition 4.3. For \(R \in \mathcal{F}^\infty(E, \sigma) \) and \(\mu \in E^\sigma \), we have
\[
R(T_{\mu, \sigma})^*_{\otimes \infty_{n=1} E^\otimes_{\otimes} E} = (T_{\mu, \sigma})^* R_{\otimes \infty_{n=1} E^\otimes_{\otimes} E},
\] or, in terms of matrix entries, we have inductively
\[
R_{i,j}(I_E \otimes \eta) = (I_E \otimes \eta) R_{i+1,j+1} \text{ for all } i, j = 0, 1, \ldots.
\] for \(\eta = \mu^* \in (E^\sigma)^* \).

Proof. To prove that (4.17) holds for all \(R \in \mathcal{F}^\infty(E, \sigma) \), it suffices to show that it holds for each \(R \) in the generating set (4.13). We are thus reduced to showing that (4.18) holds for all \(R \) of the special form \(\varphi_\infty(a) \) for an \(a \in A \) and \(T_\xi \) for a \(\xi \in E \). This in turn is a routine calculation which we leave to the reader.

Suppose that we are given \(R \in \mathcal{F}^\infty(E, \sigma) \). We regard \(\mathcal{E} \) as a subspace of \(\mathcal{F}^2(E, \sigma) \) via the identification \(y \cong y \oplus 0 \oplus 0 \oplus \cdots \). Then the restriction of \(R \) to \(\mathcal{E} \) defines an operator from \(\mathcal{E} \) to \(\mathcal{F}^2(E, \sigma) \) where we have a point evaluation in \(\mathbb{D}((E^\sigma)^*) \times \sigma(A)' \) defined in (4.8). We may then define an operator \(R^\wedge(\eta) \in \mathcal{L}(\mathcal{E}) \) by
\[
R^\wedge(\eta) e = (Re)^\wedge(\eta, I_\xi).
\] Explicitly, we have
\[
R^\wedge(\eta) = \sum_{n=0}^\infty \eta^n R_{n,0} \in \mathcal{L}(\mathcal{E}).
\]
Note that, as a consequence of Proposition 4.2, the full function \(f(\eta, b) = (Re)^\wedge(\eta, b) \) is then determined from \(R^\wedge(\eta) \) and \(e \in \mathcal{E} \) according to
\[
(Re)^\wedge(\eta, b) = (\iota_\infty, \sigma(b)Re)(\eta, I_\xi) = (R(\iota_\infty, \sigma(b)e))(\eta, I_\xi) = (Rbe)(\eta) = R^\wedge(\eta)(be)
\]
for \(\eta \in \mathbb{D}((E^\sigma)^*) \) and \(b \in \sigma(A)' \). This implies that if we would extend the point evaluation to \(\mathbb{D}((E^\sigma)^*) \times \sigma(A)' \) by \(R^\wedge(\eta, b)e = (Re)^\wedge(\eta, b) \), the result would just give \(R^\wedge(\eta, b) = R^\wedge(\eta)b \).

It is of interest that this transform \(R \rightarrow R^\wedge(\cdot) \) is multiplicative.

Proof. Suppose that \(R \) and \(S \) are two elements of \(\mathcal{F}^\infty(E, \sigma) \). Then
\[
(RS)^\wedge(\eta) = R^\wedge(\eta)S^\wedge(\eta)
\]
for all \(\eta \in \mathbb{D}((E^\sigma)^*) \).

2. Suppose that \(R \) is an operator in \(\mathcal{F}^\infty(E, \sigma) \) and that \(f \) is an element of \(\mathcal{F}^2(E, \sigma) \). Then
\[
(Rf)^\wedge(\eta, b) = R^\wedge(\eta)f^\wedge(\eta, b)
\]
for all \(\eta \in \mathbb{D}((E^\sigma)^*) \) and \(b \in \sigma(A)' \).

Proof. Suppose that \(R = [R_{i,j}]_{i,j=0,1,\ldots} \) is an operator in \(\mathcal{F}^\infty(E, \sigma) \) and that \(f = \oplus_{j=0}^\infty f_j \) is an element of \(\mathcal{F}^2(E, \sigma) \). We first note that a special case of (4.18) is
\[
R_{\ell,0} \eta = (I_{E^\otimes E} \otimes \eta) R_{\ell+1,1}.
\]
Iteration of (4.18) in turn leads to
\[
R_{\ell,0} \eta^\ell = I_{E^\otimes E} \otimes \eta^\ell R_{\ell,j+1} : E^\otimes E \otimes E \rightarrow E^\otimes E \otimes E.
\]
Then we compute for \(\eta \in D((E^\sigma)^*) \) and \(b \in \sigma(A)' \) that
\[
R^\wedge(\eta)f^\wedge(\eta, b) = \left(\sum_{\ell=0}^\infty \eta^\ell R^\ell,0 \right) \left(\sum_{j=0}^\infty \eta^j (I_{E^\sigma} \otimes b)f_j \right)
\]
\[
= \sum_{\ell,j=0}^\infty \eta^\ell R^\ell,0 \eta^j (I_{E^\sigma} \otimes b)f_j
\]
\[
= \sum_{\ell,j=0}^\infty \eta^{\ell+j} R^{\ell+j,j}(I_{E^\sigma} \otimes b)f_j \text{ (by (4.20))}
\]
\[
= \sum_{\ell,j=0}^\infty \eta^{\ell+j}(I_{E^{\otimes \ell+j}} \otimes b)R_{\ell+j,j}f_j \text{ (by (4.14))}
\]
\[
= \sum_{n=0}^\infty \eta^n (I_{E^{\otimes n}} \otimes b) \left(\sum_{j=0}^n R_{n,j}f_j \right)
\]
\[
= \sum_{n=0}^\infty \eta^n (I_{E^{\otimes n}} \otimes b)[Rf]_n = (Rf)^\wedge(\eta, b)
\]
and part (2) of the Proposition follows. Part (1) follows as the special case where \(b = I_E \) and \(f = Se \) for arbitrary \(e \in E \). \(\square \)

Remark 4.5. We note that a consequence of the formula (4.19) is that the operator
\[
M_{R^\wedge}: f^\wedge(\eta, b) \mapsto R^\wedge(\eta)f^\wedge(\eta, b)
\]
commutes with the \(\sigma(A)' \)-left action on \(H^2(E, \sigma) \):
\[
M_{R^\wedge}(b \cdot f^\wedge) = b \cdot M_{R^\wedge}f^\wedge \text{ where } (b \cdot f)^\wedge(\eta', b') = f^\wedge(\eta', b'b)
\]
for all \(b, b' \in \sigma(A)' \) and \(\eta' \in D((E^\sigma)^*) \). This can also be seen as a consequence of applying the Z-transform to the identity
\[
R_{\iota,\infty,\sigma}(b) = \iota_{\infty,\sigma}(b)R \text{ for all } b \in \sigma(A)'.
\]
given in Proposition 4.2.

Proposition 4.4 leads immediately to the following corollary.

Corollary 4.6. 1. The kernel of the Fourier transform \(\Phi: f \mapsto f^\wedge \) in \(F^2(E, \sigma) \)
\[
\text{Ker } \Phi = \{ f \in F^2(E, \sigma): f^\wedge(\eta, b) = 0 \text{ for all } \eta \in D((E^\sigma)^*) \text{ and } b \in \sigma(A)' \}
\]
is invariant under the analytic Toeplitz operators:
\[
f^\wedge(\eta, b) = 0 \text{ for all } \eta \in D((E^\sigma)^*) \text{ and } b \in \sigma(A)', R \in F^\infty(E, \sigma)
\]
\[
\Rightarrow (Rf)^\wedge(\eta, b) = 0 \text{ for all } \eta \in D((E^\sigma)^*) \text{ and } b \in \sigma(A)'.
\]
2. The initial space \([\mathcal{F}^2(E,\sigma)]_{\text{initial}} \) of the Fourier transform \(\Phi \) is invariant under the adjoints of the analytic Toeplitz operators:
\[
f \in [\mathcal{F}^2(E,\sigma)]_{\text{initial}}, \ R \in \mathcal{F}^{\infty}(E,\sigma) \implies R^*f \in [\mathcal{F}^2(E,\sigma)]_{\text{initial}}.
\]
Explicitly, the action of \(R^* \) on a generic vector in the spanning set (4.12) for \([\mathcal{F}^2(E) \otimes \sigma E]_{\text{initial}} \) is given by
\[
R^*(b^* \cdot k_{E,\sigma,\eta})e = b^* \cdot k_{E,\sigma,\eta}R^*(\eta)^*e.
\]

Proof. If \(f^\wedge(\eta,b) = 0 \) for all \(\eta \) and \(b \), then, by (4.19) we see immediately that
\[
(Rf)^\wedge(\eta,b) = R^*f^\wedge(\eta,b) = 0
\]
for all \(\eta \) and \(b \) as well as for any \(R \in \mathcal{F}^{\infty}(E,\sigma) \). The first part of the second statement then follows by simply taking adjoints.

To verify the second part of the second statement, it suffices to verify on the generators \(R = T_\xi \) and \(R = \varphi(a) \) for \(\xi \in E \) and \(a \in A \); this in turn is straightforward. \(\square \)

Remark 4.7. We note that the definition of \(R^\wedge(\eta) \) involves only the first column of \(R \). From the relations (4.16) and (4.14) one can see that the first column of \(R \) already uniquely determines the action of \(R \) on all of \([\mathcal{F}^2(E,\sigma)]_{\text{initial}}\).

Remark 4.8. Let \(\mu \in E^\sigma \) and \(\eta \in (E^\sigma)^* \) and \(b \in (\sigma(A))' \). Then an easy verification using the relations \(\mu \sigma(a) = (\varphi(a) \otimes I_E)\mu \) and \(\sigma(a)\eta = \eta(\varphi(a) \otimes I_E) \) shows that
\[
\eta(I_E \otimes b)\mu \in \sigma(A)'. \quad (4.21)
\]
This observation has several consequences.

1. Given \(\mu \in E^\sigma \) and \(\eta \in (E^\sigma)^* \) we may define a mapping \(\theta_{\eta,\mu} \) on \(\sigma(A)' \) by
\[
\theta_{\eta,\mu}(b) = \eta(I_E \otimes b)\mu.
\]
Iteration of this map gives
\[
\theta^2_{\eta,\mu}(b) = \eta(I_E \otimes (I_E \otimes b)\mu)\mu = \eta^2(I_{E^{\otimes 2}} \otimes b)\mu^2
\]
and more generally
\[
\theta^n_{\eta,\mu}(b) = \eta^n(I_{E^{\otimes n}} \otimes b)\mu^n
\]
where we make use of the generalized power \(\eta^n \) for an element \(\eta \) of \((E^\sigma)^*\) (and set \(\mu^n = ((\mu^*)^*)': E \to E^{\otimes n} \otimes \sigma E \)). For \(\eta, \zeta \in \mathbb{D}(E^\sigma)' \), we may take \(\mu = \zeta^* \) and then we have \(\|\theta_{\eta,\zeta^*}\| < 1 \). Then we may use the geometric series to compute the inverse of \(I - \theta_{\eta,\zeta^*} \) to get
\[
(I - \theta_{\eta,\zeta^*})^{-1}(b) = \sum_{n=0}^{\infty} (\theta_{\eta,\zeta^*})^n(b) = \sum_{n=0}^{\infty} \eta^n(I_{E^{\otimes n}} \otimes b)(\zeta^n)^*.
\]
We conclude that the Szegő kernel (4.11) can also be written as
\[
\mathbb{K}_{E,\sigma}(\eta,\zeta)[b] = (I - \theta_{\eta,\zeta^*})^{-1}(b).
\]
This is the form of the Szegő kernel used in [33, 36].
2. Suppose that we are given two elements \(\eta, \zeta \in E^\sigma \). The special case of (4.21) with \(b = 1_E \) and \(\eta = \mu^* \) for a \(\mu' \in E^\sigma \) enables us to define a \(\sigma(\mathcal{A})' \)-valued inner product on \(E^\sigma \):
\[
⟨\mu, \mu'⟩_{E^\sigma} = \mu^* \mu \in \sigma(\mathcal{A})' \quad \text{for} \quad \mu, \mu' \in E^\sigma.
\]
Moreover one can check that \(E^\sigma \) has a well-defined right \(\sigma(\mathcal{A})' \)-action
\[
(\mu \cdot b)(e) = \mu(be)
\]
and a well-defined left \(\sigma(\mathcal{A})' \)-action
\[
(b \cdot \mu)(e) = (I_E \otimes b)\mu(e).
\]
It is then straightforward to check that \(E^\sigma \) is a \(\sigma(\mathcal{A})' \)-correspondence. This observation plays a key role in the duality theory in [33] (see also Proposition 4.2 above).

Next we introduce the space
\[
H^\infty(E, \sigma) = \{ R^\land : R \in \mathcal{L}(E^\sigma) \},
\]
where we interpret \(R^\land \) as a function mapping \(\mathbb{D}(E^\sigma)^* \) into \(\mathcal{L}(E) \). Then \(H^\infty(E, \sigma) \) is closed under addition \(((R_1 + R_2)^\land = R_1^\land + R_2^\land) \), scalar multiplication \((\lambda R^\land = \lambda R^\land) \) and pointwise multiplication (Proposition 4.4 (1)). Moreover, part (2) of Proposition 4.4 implies that if \(S \in H^\infty(E, \sigma) \) defines a multiplication operator \(M_S \) on \(H^2(E, \sigma) \) by
\[
(M_S f^\land)⟨\eta, b⟩ = S(\eta) f(\eta, b) \quad \text{for each} \quad \eta \in \mathbb{D}(E^\sigma)^*, b \in \sigma(\mathcal{A})', f^\land \in H^2(E, \sigma).
\]

(4.22)

In fact, we have the following result.

Proposition 4.9. A function \(S : \mathbb{D}(E^\sigma)^* \rightarrow \mathcal{L}(E) \) is in \(H^\infty(E, \sigma) \) if and only if \(S \) defines a multiplication operator \(M_S \) on \(H^2(E, \sigma) \) by (4.22). In case, \(S \in H^\infty(E, \sigma) \), we have \(\| M_S \| \leq \| R^\land \| \) for each \(R \in \mathcal{F}^\infty(E, \sigma) \) with \(S = R^\land \) and there exists a \(R \in \mathcal{F}^\infty(E, \sigma) \) with \(S = R^\land \) such that \(\| M_S \| = \| R^\land \| \). Moreover, if \(S \in H^\infty(E, \sigma) \), then \(M_S \) is a \(\sigma(\mathcal{A}) \)-module map that in addition commutes with the operators
\[
\Phi(I_{F(E)}) \otimes \mu^* \quad \text{for each} \quad \mu \in E^\sigma.
\]
Here \(\Phi \) is the coisometry from \(\mathcal{F}^\infty(E, \sigma) \) into \(H^2(E, \sigma) \) given by \(\Phi : f \mapsto f^\land \).

Proof. We already observed that \(S \in H^\infty(E, \sigma) \) guarantees that \(M_S \) in (4.22) defines a multiplication operator on \(H^2(E, \sigma) \). Moreover, for \(R \in \mathcal{F}^\infty(E, \sigma) \) with \(S = R^\land \) we have
\[
(M_S f^\land)⟨\eta, b⟩ = (M_S f)(\eta, b) = S(\eta) f^\land(\eta, b) = R^\land(\eta) f(\eta, b) = (R f)^\land(\eta, b) = (\Phi R f)(\eta, b)
\]
for each \(f \in \mathcal{F}^2(E, \sigma) \), \(\eta \in \mathbb{D}(E^\sigma)^* \) and \(b \in \sigma(\mathcal{A})' \). Hence
\[
M_S \Phi = \Phi R.
\]
In particular we have \(M_S = \Phi R \Phi^* \) and thus \(\| M_S \| \leq \| R^\land \| \) since \(\Phi \) is a coisometry.
Now assume that S defines a multiplication operator M_S on $H^2(E, \sigma)$ by (4.22). The definition of M_S and of the left action on $H^2(E, \sigma)$ in (4.10) shows that, for $b, b' \in \sigma(A)'$ and $\eta \in \mathbb{D}(\mathbb{D}^\times)^*$, we have

$$(M_Sb^\wedge f^\wedge)(\eta, b) = S(\eta)f^\wedge(\eta, bb') = (b'M_Sf^\wedge)(\eta, b) \text{ for each } f^\wedge \in H^2(E, \sigma).$$

Hence M_S is a $\sigma(A)'$-module map.

We now show that there exists $R \in \mathcal{F}^\infty(E, \sigma)$ with $R^\wedge = S$. We first note that

$$((I_{\mathcal{F}^2(E)} \otimes \mu)f^\wedge(\eta, b) = \sum_{n=1}^{\infty} \eta^n(I_{E^\otimes_n} \otimes b)(I_{E^\otimes_{n-1}} \otimes \mu)f_{n-1} = \sum_{n=1}^{\infty} \eta^{n-1}(I_{E^\otimes_{n-1}} \otimes \eta(I_E \otimes b)\mu)f_{n-1} \quad (4.23)$$

where we use the observation from Remark 4.8 that $\eta(I_E \otimes b)\mu$ is in $\sigma(A)'$.

From (4.24), it readily follows that $I_{\mathcal{F}^2(E)} \otimes \mu$ on $\mathcal{F}^2(E, \sigma)$ leaves Ker Φ invariant. The same holds for the operator $I_{\mathcal{F}^2(E)} \otimes b$. Consequently, denoting by $P(= \Phi^* \Phi)$ the projection on $\mathcal{G} = (\ker \Phi)^\perp$, we note that

$$PX = XP \text{ for } X = I_{\mathcal{F}^2(E)} \otimes \mu, I_{\mathcal{F}^2(E)} \otimes b.$$

We show that the operator $\Phi^*M_S\Phi$ commutes with $I_{\mathcal{F}^2(E)} \otimes b'$ for all $b' \in (\sigma(A))'$. To see this, let $f \in \mathcal{F}^2(E, \sigma)$ and $\Phi^*M_S\Phi(I_{\mathcal{F}^2(E)} \otimes b')f = g$. Due to (4.24), we have $g^\wedge(\eta, b) = S(\eta, bb')$. Now if we let $\Phi^*M_S\Phi f = h$, it follows that $h^\wedge(\eta, b) = S(\eta)f^\wedge(\eta, b)$ and consequently,

$$((I_{\mathcal{F}^2(E)} \otimes b')\Phi^*M_S\Phi f)^\wedge(\eta, b) = S(\eta)f^\wedge(\eta, bb')$$

and the claim follows. A similar computation using (4.24) shows that $P(I_{\mathcal{F}^2(E)} \otimes \mu)A = AP(I_{\mathcal{F}^2(E)} \otimes \mu)|\mathcal{G}$ for all $\mu \in E^\sigma$, where $A = \Phi^*M_S\Phi|\mathcal{G}$.

We recall now that the maps $\mu \in E^\sigma, b \in \sigma(A)'$ form an isometric covariant representation of the $\sigma(A)'$-correspondence E^σ (see pages 369-370 in [33]—the precise definition is covariant representation is given in the text surrounding formulas (4.26)-(4.28) below). We may now apply the commutant lifting theorem for covariant representations of a correspondence due to Muhly-Solel (see Theorem 4.4, [31]) to obtain an operator that commutes with the operators $I_{\mathcal{F}^2(E)} \otimes \mu$ and $I_{\mathcal{F}^2(E)} \otimes b$ (which implies $R \in \mathcal{F}^\infty(E)$ by Proposition 4.2) which moreover satisfies $PR = AP$. This immediately implies that $R^\wedge = S$. Furthermore, we can choose R such that $\|R\| = \|M_S\|$. \hfill \Box

We note that any $R \in \mathcal{F}^\infty(E, \sigma)$ is of the form $\tilde{R} \otimes I_E$ for a $\tilde{R} \in \mathcal{F}^\infty(E)$. Moreover, the map $\tilde{R} \mapsto R = \tilde{R} \otimes I_E$ is an $\mathcal{L}(\mathcal{F}^2(E, \sigma))$-valued representation of $\mathcal{F}^\infty(E)$ which actually extends to a $*$-representation $T \mapsto T \otimes I_E$ of all of $\mathcal{L}(\mathcal{F}^2(E))$—the restriction of $T \mapsto T \otimes I_E$ to $T \in \mathcal{F}^\infty(E)$ is called the induced
representation of $\mathcal{F}^\infty(E)$ in the terminology of [31, 33]. The content of Proposition 4.4 is that, for each $\eta \in \mathcal{D}((E^\sigma)^*)$, the map $R \mapsto R^\eta(\eta)$ is an $\mathcal{L}(E)$-valued representation of $\mathcal{F}^\infty(E, \sigma)$. It follows that the composition

$$\pi_\eta(\tilde{R}) = (\tilde{R} \otimes I_E)^\eta(\eta)$$

(4.25)
is an (even completely contractive) representation of $\mathcal{F}^\infty(E)$ (see [33]). For some $\eta \in (E^\sigma)^*$ of norm equal to 1, π_η still defines a representation of $\mathcal{F}(E)$. It is the case that each η in the closed unit ball of $(E^\sigma)^*$ gives rise to a completely contractive representation of $T_\eta(E)$ (the norm-closure of the span of left multipliers $\varphi_{\infty}(a)$ ($a \in \mathcal{A}$) and creation operators T_ξ ($\xi \in E$ in $\mathcal{L}^a(\mathcal{F}^2(E))$), while it is not clear for which such η the representation can be extended to $\mathcal{F}^\infty(E)$—this is one of the open problems in the theory (see [33]). It is the case that each completely contractive representation π of $\mathcal{F}^\infty(E)$ comes from an $\eta \in \mathcal{D}((E^\sigma)^*)$ for some weak-* continuous $*$-representation $\sigma: \mathcal{A} \to \mathcal{L}(E)$. Indeed, given a completely contractive representation $\pi: \mathcal{F}^\infty(E) \to \mathcal{L}(E)$, one can construct σ and η as follows. Define $\sigma: \mathcal{A} \to \mathcal{L}(E)$ by

$$\sigma(a) = \pi(\varphi_{\infty}(a)).$$

(4.26)

Then define $\eta: E \to \mathcal{L}(E)$ by

$$\eta(\xi) = \pi(T_\xi).$$

(4.27)

We wish to verify that

$$\eta(\varphi(a)\xi \cdot a') = \sigma(a)\eta(\xi)\sigma(a'),$$

(4.28)
i.e., that the pair (η, σ) is a covariant representation of E in the terminology of Muhly-Solel [31, 33]. As a first step for the verification of (4.28), one can easily check that

$$T_{\varphi(a)\xi \cdot a'} = \varphi_{\infty}(a)T_\xi\varphi_{\infty}(a')$$

for $a \in \mathcal{A}$, $\xi \in E$.

We then compute

$$\eta(\varphi(a)\xi \cdot a') = \pi(T_{\varphi(a)\xi \cdot a'})$$

$$= \pi(\varphi_{\infty}(a)T_\xi\varphi_{\infty}(a'))$$

$$= \pi(\varphi_{\infty}(a))\pi(T_\xi)\pi(\varphi_{\infty}(a'))$$

$$= \sigma(a)\eta(\xi)\sigma(a')$$

and (4.28) follows. As in [31], a covariant representation (η, σ) of E determines an element $\eta: E \otimes_{\sigma} E \to E$ of $(E^\sigma)^*$ according to the formula

$$\eta(\xi \otimes e) = \eta(\xi)e.$$

(4.29)

Here note that the property $\eta(\xi \cdot a') = \eta(\xi)\sigma(a')$ is what is needed to verify that (4.29) is well-defined while the property $\eta(\varphi(a)\xi) = \sigma(a)\eta(\xi)$ is what is needed to verify that η is in $(E^\sigma)^*$, i.e., that η has the \mathcal{A}-module-map property

$$\eta(\varphi(a) \otimes I_E) = \sigma(a)\eta.$$

There is a converse: given an element $\eta \in \mathcal{D}((E^\sigma)^*)$, we may use (4.29) to define η so that (η, σ) is a completely contractive covariant representation
Proposition 4.10. Suppose that we are given an \(\eta\) given by \(\eta\). Then (4.31)

\[
\pi(\tilde{\eta}) = (\tilde{R} \otimes I_E)^\wedge(\eta\sigma)
\]

holds for the cases where

\[\tilde{R} = \varphi_\infty(a)\] for some \(a \in \mathcal{A}\), \(\tilde{R} = T_\xi\) for some \(\xi \in E\).

Under the assumption that \(\pi\) is continuous with respect to the weak-* topologies on \(\mathcal{F}^\infty(E)\) and \(\mathcal{L}(E)\), it then follows that (4.30) holds for all \(\tilde{R} \in \mathcal{F}^\infty(E)\), i.e., we recover \(\pi\) as \(\pi = \pi_{\eta\sigma}\) where in general \(\pi_{\eta\sigma}\) is given by (4.25).

It is of interest to apply this construction to the induced representation \(\pi_{\text{ind}}: \tilde{R} \mapsto \tilde{R} \otimes I_E\) of \(\mathcal{F}^\infty(E)\) into \(\mathcal{L}(\mathcal{F}^2(E, \sigma))\). We collect this result in the following Proposition.

Proposition 4.10. Suppose that we are given an \(\mathcal{A}\)-correspondence \(E\) together with a representation \(\sigma: \mathcal{A} \to \mathcal{L}(E)\) for a Hilbert space \(E\). Let \(\pi_{\text{ind}}: \mathcal{F}^\infty(E) \to \mathcal{L}(\mathcal{F}^2(E, \sigma))\) be the induced representation as in (4.31). Define \(\eta_{\text{ind}}: E \to \mathcal{L}(\mathcal{F}^2(E, \sigma))\) and \(\sigma_{\text{ind}}: \mathcal{A} \to \mathcal{L}(\mathcal{F}^2(E, \sigma))\) by

\[
\eta_{\text{ind}}(\xi) = T_{\xi,\sigma}, \quad \sigma_{\text{ind}}(a) = \varphi_\infty,\sigma(a).
\]

Then \((\eta_{\text{ind}}, \sigma_{\text{ind}})\) is an (isometric) covariant representation of \(E\) with element \(\eta_{\text{ind}}: E \otimes \mathcal{F}^2(E, \sigma) \to \mathcal{F}^2(E, \sigma)\) of \((E^{n=1})^*\) associated with \((\eta_{\text{ind}}, \sigma_{\text{ind}})\) as in (4.29) given by

\[
\eta_{\text{ind}}: \xi \otimes \left[\bigoplus_{n=0}^{\infty} \xi(n) \otimes e_n\right] \mapsto 0 \oplus \left[\bigoplus_{n=1}^{\infty} \xi(n) \otimes (n-1) \otimes e_{n-1}\right].
\]

Moreover, we recover \(R = \tilde{R} \otimes I_E \in \mathcal{F}^\infty(E, \sigma)\) via the point evaluation

\[
\tilde{R} \otimes I_E = (\tilde{R} \otimes I_{\mathcal{F}^2(E, \sigma)})^\wedge(\eta_{\text{ind}}).
\]

Proof. The proof is a simple specialization of the general construction sketched in the paragraph preceding the statement of the proposition. \(\square\)

It will be convenient to work also with the analytic Toeplitz operators acting between \(H^2(E, \sigma)\)-spaces of different multiplicity. For this purpose, we suppose that \(\mathcal{U}\) and \(\mathcal{V}\) are two additional auxiliary Hilbert spaces (to be thought of as an input space and output space respectively). We consider higher multiplicity versions of \(H^2(E, \sigma)\) by tensoring with an auxiliary Hilbert space (which is to be thought of as adding multiplicity):

\[
H^2_\mathcal{U}(E, \sigma) := H^2(E, \sigma) \otimes_\mathbb{C} \mathcal{U}, \quad H^2_\mathcal{V}(E, \sigma) := H^2(E, \sigma) \otimes_\mathbb{C} \mathcal{V}.
\]
Here we view \mathcal{U} and \mathcal{Y} as (\mathbb{C}, \mathbb{C})-correspondences and apply the tensor-product construction of Definition 3.1 (2). The space $H^2_{\mathcal{U}}(E, \sigma)$ then is a reproducing kernel $(\sigma(A)' , \mathcal{L}(\mathcal{E} \otimes \mathcal{U}))$-correspondence on $\mathbb{D}((E^\sigma)^*)$ where the point evaluation at a point $(\eta, b) \in \mathbb{D}((E^\sigma)^*) \times \sigma(A)'$ of a function $f^\wedge \otimes u \in H^2_{\mathcal{U}}(E, \sigma)$ (with $f^\wedge \in H^2(E, \sigma)$ and $u \in \mathcal{U}$) is given by $(f^\wedge \otimes u)(\eta, b) = f^\wedge(\eta, b) \otimes u \in \mathcal{E} \otimes \mathcal{U}$. Moreover, note that the left $\sigma(A)'$-action is given by $b \mapsto b \otimes I_{\mathcal{U}}$. The completely positive kernel $K_{(E, \sigma) \otimes \mathcal{U}}$ associated with it as in Theorem 3.6 is given by

$$K_{(E, \sigma) \otimes \mathcal{U}}(\eta, \zeta)[b] = K_{E, \sigma}(\eta, \zeta)[b] \otimes I_{\mathcal{U}},$$

where $K_{E, \sigma}$ denotes the kernel for $H^2(E, \sigma)$ defined in Theorem 4.1. Similar statements hold for $H^2_{\mathcal{U}}(E, \sigma)$, where the analogous kernel is denoted by $K_{(E, \sigma) \otimes \mathcal{Y}}$.

We now define a higher-multiplicity version of the algebra of analytic Toeplitz operators $H^\infty(E, \sigma)$ to be the linear space

$$H^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma) := H^\infty(E, \sigma) \otimes \mathcal{L}(\mathcal{U}, \mathcal{Y}).$$

This space consists of $\mathcal{L}(\mathcal{E} \otimes \mathcal{U}, \mathcal{E} \otimes \mathcal{Y})$-valued functions on $\mathbb{D}((E^\sigma)^*)$, with point evaluation of an element $S \otimes N \in H^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma) = H^\infty(E, \sigma) \otimes \mathcal{L}(\mathcal{U}, \mathcal{Y})$ at $\eta \in \mathbb{D}((E^\sigma)^*)$ given by $(S \otimes N)(\eta) = S(\eta) \otimes N$. Moreover, the functions in $H^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma)$ define multiplication operators in $\mathcal{L}(H^2_{\mathcal{U}}(E, \sigma), H^2_{\mathcal{U}}(E, \sigma))$, in the same way as $H^\infty(E, \sigma)$. For $S \otimes N \in H^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma)$, $S \in H^\infty(E, \sigma)$ and $N \in \mathcal{L}(\mathcal{U}, \mathcal{Y})$, the multiplication operator $M_{S \otimes N}$ becomes $M_{S \otimes N} = MS \otimes N$.

In addition there are Fock space versions of all these spaces, namely

$$\mathcal{F}^\infty_\mathcal{U}(E, \sigma) := \mathcal{F}^2(E, \sigma) \otimes \mathcal{U}, \quad \mathcal{F}^\infty_\mathcal{L}(E, \sigma) := \mathcal{F}^2(E, \sigma) \otimes \mathcal{L}(\mathcal{U}, \mathcal{Y}).$$

Point evaluation for elements in $\mathcal{F}^\infty_\mathcal{U}(E, \sigma)$ and points in $\mathbb{D}((E^\sigma)^*) \times \sigma(A)'$ (and similarly for elements in $\mathcal{F}^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma)$) is determined by attaching to $f \otimes u \in \mathcal{F}^\infty_\mathcal{U}(E, \sigma)$, $f \in \mathcal{F}^2(E, \sigma)$ and $u \in \mathcal{U}$, and $(\eta, b) \in \mathbb{D}((E^\sigma)^*) \times \sigma(A)'$ the value $(f \otimes u)(\eta, b) = f^\wedge(\eta, b) \otimes u$, so that the map

$$\Phi_\mathcal{U} : f_u \mapsto f^\infty_u$$

defines a coisometry from $\mathcal{F}^\infty_\mathcal{U}(E, \sigma)$ onto $H^2_{\mathcal{U}}(E, \sigma)$. The analogous coisometry for $\mathcal{F}^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma)$ is denoted by $\Phi_\mathcal{Y}$. Similarly we determine point evaluation for elements in $\mathcal{F}^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma)$ and points in $\mathbb{D}((E^\sigma)^*)$ by attaching to $R \otimes X \in \mathcal{F}^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma)$, $R \in \mathcal{F}^\infty(E, \sigma)$ and $X \in \mathcal{L}(\mathcal{U}, \mathcal{Y})$, and $\eta \in \mathbb{D}((E^\sigma)^*)$ the value

$$(R \otimes X)^\wedge(\eta) := R^\wedge(\eta) \otimes X \in \mathcal{L}(\mathcal{E} \otimes \mathcal{U}, \mathcal{E} \otimes \mathcal{Y}).$$

(4.32)

Then $H^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma)$ is recovered as

$$\{R^\wedge : R \in \mathcal{F}^\infty_{\mathcal{L}(\mathcal{U}, \mathcal{Y})}(E, \sigma)\},$$

where R^\wedge should be interpreted as a function mapping $\mathbb{D}((E^\sigma)^*)$ into $\mathcal{L}(\mathcal{E} \otimes \mathcal{U}, \mathcal{E} \otimes \mathcal{Y})$, while the space of multiplication operators in $\mathcal{L}(H^2_{\mathcal{U}}(E, \sigma), H^2_{\mathcal{U}}(E, \sigma))$ defined
by $H^\infty_{\mathcal{L}(U,Y)}(E, \sigma)$ is given by

\[\{ \Phi_{\gamma} R \Phi_{\delta}^* : R \in \mathcal{F}_{\mathcal{L}(U,Y)}^\infty(E, \sigma) \} . \]

In fact, it is easy to check that Proposition 4.9 implies that for $S \in H^\infty_{\mathcal{L}(U,Y)}(E, \sigma)$ we have $M_S = \Phi_{\gamma} R \Phi_{\delta}^*$ whenever $R \in \mathcal{F}_{\mathcal{L}(U,Y)}^\infty(E, \sigma)$ satisfies $S = R^\gamma$, so that $\| M_S \| \leq \| R \|$, and that there exists a $R \in \mathcal{F}_{\mathcal{L}(U,Y)}^\infty(E, \sigma)$ with $S = R^\gamma$ and $\| M_S \| = \| R \|$.

Alternatively, $\mathcal{F}_{\mathcal{L}(U,Y)}^\infty(E, \sigma)$ can be characterized as bounded operators from $\mathcal{F}_{\mathcal{L}(U,Y)}(E, \sigma)$ to $\mathcal{F}_{\mathcal{L}(Y,Z)}^\infty(E, \sigma)$ with block-matrix representation

\[R = [R_{i,j}]_{i,j=0,1,...} \text{ with } R_{i,j} : E^\otimes i \otimes \sigma U \to E^\otimes i \otimes \sigma E \otimes Y \]

subject to

\[
\begin{align*}
R_{i,j}(I_{E^\otimes i} \otimes b \otimes I_U) &= (I_{E^\otimes i} \otimes b \otimes I_Y) R_{i,j} \text{ for } b \in \sigma(A)', \\
R_{i+1,j+1}(I_{E^\otimes i} \otimes \eta^* \otimes I_U) &= (I_{E^\otimes i} \otimes \eta^* \otimes I_Y) R_{i,j} \text{ for } \eta^* \in E'^* .
\end{align*}
\]

For such $R \in \mathcal{F}_{\mathcal{L}(U,Y)}^\infty(E, \sigma)$ point evaluation in $\eta \in \mathcal{D}((E'^*)^*)$ can be written as

\[R^\gamma(\eta) = \sum_{n=0}^{\infty} (\eta^n \otimes I_Y) R_{n,0} . \]

In addition it is routine to see that part (1) of Proposition 4.4 can be extended to the following statement: if $S \in \mathcal{F}_{\mathcal{L}(U,Y)}^\infty(E, \sigma)$ and $R \in \mathcal{F}_{\mathcal{L}(Y,Z)}^\infty(E, \sigma)$, then $RS \in \mathcal{F}_{\mathcal{L}(U,Z)}^\infty(E, \sigma)$ and

\[(RS)^\gamma(\eta) = R^\gamma(\eta) S^\gamma(\eta) . \quad (4.33) \]

Remark 4.11. Suppose that $R \in \mathcal{F}_{\mathcal{L}(U,Y)}^\infty(E, \sigma)$ has the form

\[R = \tilde{R} \otimes \sigma I_E \otimes X \quad (4.34) \]

where $\tilde{R} \in \mathcal{F}^\infty(E)$ and $X \in \mathcal{L}(U,Y)$. In particular the point evaluation (4.32) defines $R^\gamma(\eta) \in \mathcal{L}(E \otimes U, E \otimes Y)$ for each $\eta \in \mathcal{D}((E'^*)^*)$. Suppose now that $\sigma' : A \to \mathcal{L}(E')$ is another $*$-representation of A and $\eta' \in \mathcal{D}((E'^*)^*)$. Then we may define a related function $\eta' \mapsto R'^\gamma(\eta') \in \mathcal{L}(E' \otimes U, E' \otimes Y)$ by

\[R'^\gamma(\eta') = (\tilde{R} \otimes \sigma' I_{E'} \otimes X)^\gamma(\eta') . \]

While not all elements R of $\mathcal{F}_{\mathcal{L}(U,Y)}^\infty(E, \sigma)$ are of the special form (4.34), finite linear combinations of elements of the special form (4.34) are weak-$*$ dense in $\mathcal{F}_{\mathcal{L}(U,Y)}^\infty(E, \sigma)$. By using linearity and a limiting process, one can then make sense of $R'^\gamma(\eta') \in \mathcal{L}(E' \otimes U, E' \otimes Y)$ for any $\eta' \in \mathcal{D}((E'^*)^*)$. This fact will be useful for the formulation of condition (1$''$) in Theorem 5.1 below.
5. The Schur class associated with \((E, \sigma)\)

Given a correspondence-representation pair \((E, \sigma)\) (where \(\sigma: A \rightarrow \mathcal{L}(E)\)) along with two auxiliary Hilbert spaces \(U\) and \(Y\), we define the associated Schur class \(S_{E,\sigma}(U, Y)\) by

\[
S_{E,\sigma}(U, Y) = \{S: \mathbb{D}((E^\sigma)^*) \rightarrow \mathcal{L}(E \otimes U, E \otimes Y): S(\eta) = R^\wedge(\eta), \text{ for all } \eta \in \mathbb{D}((E^\sigma)^*), \text{for some } R \in \mathcal{F}_{E,U,Y}^\infty(E, \sigma) \text{ with } \|R\| \leq 1\}.
\]

(5.1)

We have the following characterization of the Schur class \(S_{E,\sigma}(U, Y)\) analogous to the characterization of the classical Schur class given in Theorem 1.1 and to the multivariable extensions in Theorems 2.1 and 2.3. When specialized to the classical case (see Section 6.1 below), (5.1) gives the classical Schur class as defined in the Introduction, but from a different point of view. Rather than simply holomorphic, contractive, \(\mathcal{L}(U, Y)\)-valued function on the unit disk, (5.1) asks us to think of such functions as analytic functions \(F(z) \sim \sum_{n=0}^{\infty} F_n z^n\) on \(D\) whose Taylor coefficients \(\{F_n\}_{n \in \mathbb{Z}_+}\) induce a Toeplitz matrix

\[
T_F = \begin{bmatrix}
F_0 & 0 & 0 & \ldots \\
F_1 & F_0 & 0 & \ldots \\
F_2 & F_1 & F_0 & \ldots \\
\vdots & \ddots & \ddots & \ddots \\
\end{bmatrix}
\]

which defines a contraction operator from \(\ell_2^U(\mathbb{Z}_+)\) to \(\ell_2^Y(\mathbb{Z}_+)\). Thus the label (1) in Theorem 5.1, when specialized to the classical case, corresponds to a somewhat different statement than (1) in Theorem 1.1. The other labels (1'), (1''), (2) and (3) in Theorem 5.1 correspond exactly to the corresponding statements in Theorems 1.1, 2.1 and 2.3.

Theorem 5.1. Suppose that we are given a correspondence-representation pair \((E, \sigma)\) (where \(\sigma: A \rightarrow \mathcal{L}(E)\)) along with auxiliary Hilbert spaces \(U\) and \(Y\) and an operator-valued function \(S: \mathbb{D}((E^\sigma)^*) \rightarrow \mathcal{L}(E \otimes U, E \otimes Y)\). Then the following conditions are equivalent:

1. \(S \in S_{E,\sigma}(U, Y)\), i.e., there exists an \(R \in \mathcal{F}_{E,U,Y}^\infty(E, \sigma)\) with \(\|R\| \leq 1\) such that \(S(\eta) = R^\wedge(\eta)\) for all \(\eta \in \mathbb{D}((E^\sigma)^*)\).
1'. The multiplication operator \(M_S: f(\eta, b) \mapsto S(\eta)f(\eta, b)\) maps \(H^2_U(E, \sigma)\) contractively into \(H^2_Y(E, \sigma)\).
1''\) \(S\) is such that \(S(\eta) = R^\wedge(\eta)\) for all \(\eta \in \mathbb{D}((E^\sigma)^*)\) for an \(R \in \mathcal{F}_{E,U,Y}^\infty(E, \sigma)\) with the additional property: for each representation \(\sigma': A \rightarrow \mathcal{L}(E')\) and \(\eta' \in \mathbb{D}((E')^*)\) it happens that

\[
\|R'^\wedge(\eta')\| \leq 1,
\]

where \(R'^\wedge(\eta')\) is defined as in Remark 4.11.
(2) The function $\mathbb{K}_S : \mathbb{D}(E^\sigma)^* \times \mathbb{D}(E^\sigma)^* \to \mathcal{L}(\sigma(A)', \mathcal{L}(E \otimes Y))$ defined by

$$
\mathbb{K}_S(\eta, \zeta)[b] := \mathbb{K}_{(E, \sigma) \otimes Y}(\eta, \zeta)[b] - S(\eta)\mathbb{K}_{(E, \sigma) \otimes U}(\eta, \zeta)[b]S(\zeta)^*
$$

is completely positive, or more explicitly, there exists an auxiliary Hilbert space \mathcal{H}, an operator-valued function $H : \mathbb{D}(E^\sigma)^* \to \mathcal{L}(\mathcal{H}, E \otimes Y)$ and a *-representation π of $\sigma(A)'$ on \mathcal{H} so that

$$
\left(\sum_{n=0}^\infty \eta^n(I_{E^n} \otimes b)(\zeta^n)^* \otimes I_Y - S(\eta) \left[\sum_{n=0}^\infty \eta^n(I_{E^n} \otimes b)(\zeta^n)^* \otimes I_U \right] S(\zeta)^* \right) H(\eta) \pi(b) H(\zeta)^* = H(\eta) \pi(b) H(\zeta)^*
$$

for all $\eta, \zeta \in \mathbb{D}(E^\sigma)^*$ and $b \in \sigma(A)'$.

(3) There exists an auxiliary Hilbert space \mathcal{H}, a *-representation $\pi : \sigma(A)' \to \mathcal{L}(\mathcal{H})$, and a coisometric colligation

$$
U = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix} : \begin{bmatrix} \mathcal{H} \\ E \otimes \mathcal{U} \end{bmatrix} \to \begin{bmatrix} E^\sigma \otimes \mathcal{H} \\ E \otimes Y \end{bmatrix}
$$

which is a $\sigma(A)'$-module map, i.e.,

$$
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \left(\begin{bmatrix} (I_E \otimes b) \otimes I_{\mathcal{H}} & 0 \\ 0 & b \otimes I_Y \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \begin{bmatrix} h \\ u \end{bmatrix} = \begin{bmatrix} (I_E \otimes b) \otimes I_{\mathcal{H}} h & 0 \\ 0 & b \otimes I_Y \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} h \\ u \end{bmatrix}
$$

for $h \in \mathcal{H}$ and $u \in E \otimes \mathcal{U}$, so that S can be realized as

$$
S(\eta) = D + C(I - L_{\eta^*} A)^{-1} L_{\eta^*} B.
$$

Here $L_{\eta^*} : \mathcal{H} \to E^\sigma \otimes \mathcal{H}$ is given by

$$
L_{\eta^*} h = \eta^* \otimes h \text{ for each } h \in \mathcal{H}.
$$

Proof. Both (1) \implies (1') and (1') \implies (1) follow immediately after extending Proposition 4.9 to the case with the added multiplicity as mentioned at the end of Section 4.

(1) \implies (1''): Given $\eta' \in \mathbb{D}(E^\sigma)^*$ (so $\|\eta'\| < 1$), by the dilation result in [33, Theorem 2.13] (see also [32]) we know that η' has a dilation to an induced representation $\eta_{\text{ind}} : \mathcal{F}^\infty(E) \to \mathcal{L}(\mathcal{F}^2(E, \sigma_{\text{ind}}))$ associated with a representation $\sigma_{\text{ind}} : \mathcal{A} \to \mathcal{L}(\mathcal{E}_{\text{ind}})$. As R is contractive by assumption, it then follows that $R_{\text{ind}}(\eta_{\text{ind}})$ is also contractive. Since η_{ind} is a dilation of η, we then also have

$$
\|R_{\text{ind}}(\eta')\| = \|P_{E \otimes Y} R_{\text{ind}}(\eta_{\text{ind}})_{E \otimes \mathcal{U}}\| \leq \|R_{\text{ind}}(\eta_{\text{ind}})\| = \|R\| \leq 1
$$

and (1'') follows.

(1'') \implies (2): This implication requires an adaptation of the GNS/HB construction to the setting of completely positive (rather than classical positive) kernels. If $\mathbb{K}(\omega', \omega)[a]$ is a completely positive kernel, then

$$
K((\omega', a'), (\omega, a)) = \mathbb{K}(\omega, \omega')[a^* a']
$$
is a positive kernel in the classical sense on $\Omega \times A$. In this way one can reduce to the classical setting and adapt the GNS/HB construction in [23] to the situation here. We leave complete details for another occasion.

(1') \implies (1'): Assume that $R \in \mathcal{F}_{(E,Y)}^\pi(E,\sigma)$ and that $S = R^\Lambda$. From Proposition 4.10 extended to the higher multiplicity setting, we see that we recover R via the point-evaluation calculus as

$$R = R^\Lambda(\eta_{\text{ind}}).$$

Hence we also recover R as the strong limit

$$R = \lim_{r \uparrow 1} R^\Lambda(r\eta_{\text{ind}}).$$

The assumption (1'') tells us that

$$\|R^\Lambda(r\eta_{\text{ind}})\| \leq 1$$

for each $r < 1$. Hence $\|R\| \leq 1$.

(1') \implies (2): Assume that M_S is as in (1'). From the definitions we see that

$$(b \cdot M_S f^\Lambda)(\eta', b') = S(\eta') f^\Lambda(\eta', b'b) = (M_S(b \cdot f^\Lambda))(\eta', b')$$

and hence any multiplication operator M_S is a $\sigma(A)'$-module map. The computation

$$\langle M_S f, b \cdot (k_{E,\sigma,\zeta} \otimes I_Y)(e \otimes y) \rangle_{H_2^2(E,\sigma)} = (b^* \cdot M_S f)(k_{E,\sigma,\zeta} \otimes I_Y)(e \otimes y)_{H_2^2(E,\sigma)}$$

$$= \langle M_S(b^* \cdot f), (k_{E,\sigma,\zeta} \otimes I_Y)(e \otimes y) \rangle_{H_2^2(E,\sigma)}$$

$$= \langle S(\zeta)(b^* \cdot f)(\zeta), e \otimes y \rangle_{E \otimes Y}$$

$$= \langle b^* \cdot f, (k_{E,\sigma,\zeta} \otimes I_Y)S(\zeta)^*(e \otimes y) \rangle_{H_2^2(E,\sigma)}$$

$$= \langle f, b \cdot (k_{E,\sigma,\zeta} \otimes I_Y)S(\zeta)^*(e \otimes y) \rangle_{H_2(E,\sigma)}$$

shows that

$$M_S^2 : b \cdot (k_{E,\sigma,\zeta} \otimes I_Y)(e \otimes y) \mapsto b \cdot (k_{E,\sigma,\zeta} \otimes I_Y)S(\zeta)^*(e \otimes y). \quad (5.6)$$

Since $\|M_S\| \leq 1$ by assumption, for any finite collection of $b_j \in \sigma(A')$, $\zeta_j \in \mathbb{D}(E^{\otimes j})$ and $e_j \otimes y_j \in E \otimes Y$ ($j = 1, \ldots, N$), we have

$$\left\| \sum_{j=1}^n b_j \cdot (k_{E,\sigma,\zeta_j} \otimes I_Y)(e_j \otimes y_j) \right\|^2 - \left\| M_S^2 \sum_{j=1}^n b_j \cdot (k_{E,\sigma,\zeta_j} \otimes I_Y)(e_j \otimes y_j) \right\|^2 \geq 0. \quad (5.7)$$

Expanding out inner products and using (5.6) and the basic general identities

$$\langle b' \cdot (k_{E,\sigma,\zeta} \otimes I_Y)(e' \otimes y'), b \cdot (k_{E,\sigma,\eta} \otimes I_Y)(e \otimes y) \rangle_{H_2^2(E,\sigma)} =$$

$$\langle \mathbb{K}_{(E,\sigma)\otimes Y}(\eta,\zeta)[b^*b'](e' \otimes y'), e \otimes y \rangle_{E \otimes Y},$$

$$\langle b' \cdot (k_{E,\sigma,\zeta} \otimes I_Y)S(\zeta)^*(e' \otimes y'), b \cdot (k_{E,\sigma,\eta} \otimes I_Y)S(\eta)^*(e \otimes y) \rangle_{H_2^2(E)} =$$

$$\langle S(\eta)\mathbb{K}_{(E,\sigma)\otimes Y}(\eta,\zeta)[b^*b']S(\zeta)^*(e' \otimes y'), e \otimes y \rangle_{E \otimes Y}$$
we see that the left hand side of (5.7) is equal to
\[
\sum_{i,j=1}^{N} (\mathbb{K}_S(\xi_i, \xi_j) [b_i^* b_j] (e_i \otimes y_j), e_i \otimes y_i)_{\mathcal{E} \otimes \mathcal{Y}}
\]
and we conclude that \(\mathbb{K}_S \) is a completely positive kernel as wanted. The characterization given in (5.2) follows from part (2) of Theorem 3.6.

(2) \(\implies \) (3): The argument here is an adaptation of the proof of Theorem 3.5 in [36] to our setting. Assume that (2) holds. By Remark 4.8, the equality (5.2) can be rewritten as
\[
(I - \theta_{\eta, \zeta}^{-1}) (b \otimes I_Y) - S(\eta) [(I - \theta_{\eta, \zeta}^{-1}) (b \otimes I_U)] S(\zeta)^* = H(\eta) \pi(b) H(\zeta)^*.
\]
Replace \(b \) by \([I - \theta_{\eta, \zeta}^{-1}] (b) = b - \theta_{\eta, \zeta}^{-1}(b) \) to rewrite this last expression as an Agler decomposition (see [1])
\[
b \otimes I_Y - S(\eta)(b \otimes I_U) S(\zeta)^* = H(\eta) \pi(b - \eta (I_E \otimes b) \zeta^*) H(\zeta)^*.
\]
(5.8)
Rearranging and conjugating by two generic vectors \(y \) and \(y' \) in \(\mathcal{E} \otimes \mathcal{Y} \) then gives us
\[
y^* H(\eta) \pi(b) H(\zeta)^* y' + y^* S(\eta)(b \otimes I_U) S(\zeta)^* y' = y^* H(\eta) \pi(b - \eta (I_E \otimes b) \zeta^*) H(\zeta)^* y' + y^* (b \otimes I_Y) y'.
\]
(5.9)
From Remark 4.8 we know that \(E^\sigma \) is a \(\sigma(\mathcal{A})' \)-correspondence. We may also view the Hilbert space \(\mathcal{H} \) as a \((\sigma(\mathcal{A})', \mathbb{C}) \)-correspondence with the left \(\sigma(\mathcal{A})' \)-action given by the representation \(\pi \). We may then form the tensor-product \((\sigma(\mathcal{A})', \mathbb{C}) \)-correspondence \(E^\sigma \otimes \mathcal{H} \) as in Definition 3.1. Explicitly, the \(\mathbb{C} \)-valued inner product on \(E^\sigma \otimes \mathcal{H} \) is given by
\[
\langle \mu \otimes h, \mu' \otimes h' \rangle_{E^\sigma \otimes \mathcal{H}} = \langle \pi(\mu^* \mu) h, h' \rangle_{\mathcal{H}} = h^* \pi(\mu^* \mu) h.
\]
It follows that the first term on the right-hand side of (5.9) can be written as
\[
y^* H(\eta) \pi(\eta (I_E \otimes b) \zeta^*) H(\zeta)^* y' = \langle (I_E \otimes b) \zeta^* \otimes H(\zeta)^* y', \eta^* \otimes H(\eta)^* y \rangle_{E^\sigma \otimes \mathcal{H}}.
\]
(5.10)
If we replace \(b \) with \(b^* b' \) (where \(b, b' \) are two elements of \(\sigma(\mathcal{A})' \)), use (5.10) and do some rearranging, we see that the equality (5.9) can be expressed in terms of inner products
\[
\langle (b')^* H(\zeta)^* y', \pi(b) H(\eta)^* y \rangle_{\mathcal{H}} + \langle (b' \otimes I_U) S(\zeta)^* y', (b \otimes I_U) S(\eta)^* y \rangle_{E^\sigma \otimes \mathcal{H}} = \langle (I_E \otimes b') \zeta^* \otimes H(\zeta)^* y', (I_E \otimes b) \eta^* \otimes H(\eta)^* y \rangle_{E^\sigma \otimes \mathcal{H}} \quad (5.11)
\]
Introduce subspaces \(\mathcal{D}_V \subset (E^\sigma \otimes \mathcal{H}) \otimes (\mathcal{E} \otimes \mathcal{Y}) \) and \(\mathcal{R}_V \subset \mathcal{H} \otimes (\mathcal{E} \otimes \mathcal{U}) \) by
\[
\mathcal{D}_V = \text{span} \left\{ \left((I_E \otimes b) \eta^* \otimes H(\eta)^* y \right)_{b \otimes I_Y} : y \in \mathcal{E} \otimes \mathcal{Y}, \eta \in \mathbb{D}((E^\sigma)^*), b \in \sigma(\mathcal{A})' \right\}
\]
\[
\mathcal{R}_V = \text{span} \left\{ \left(\pi(b) H(\zeta)^* y \right)_{b \otimes I_U} S(\eta)^* y : y \in \mathcal{E} \otimes \mathcal{Y}, \eta \in \mathbb{D}((E^\sigma)^*), b \in \sigma(\mathcal{A})' \right\}.
\]
Note that both \mathcal{D}_V and \mathcal{R}_V are invariant under the left action of $\sigma(A)'$ on $(E^* \otimes \mathcal{H}) \oplus (E \otimes \mathcal{Y})$ and on $\mathcal{H} \oplus (E \otimes \mathcal{U})$ respectively, i.e. \mathcal{D}_V and \mathcal{R}_V are $\sigma(A)'$-submodules of $(E^* \otimes \mathcal{H}) \oplus (E \otimes \mathcal{Y})$ and $\mathcal{H} \oplus (E \otimes \mathcal{U})$ respectively. The import of (5.11) is that the formula

$$V : \begin{bmatrix} (I_E \otimes b)\eta^* \otimes H(\eta)^* y \\ (b \otimes I_2)\eta^* y \end{bmatrix} \mapsto \begin{bmatrix} \pi(b)H(\zeta)^* y \\ (b \otimes I_\mathcal{U})S(\eta)^* y \end{bmatrix}$$

(5.12)

extends by linearity and continuity to a well-defined unitary operator from \mathcal{D}_V onto \mathcal{R}_V. One easily checks that

$$V(b \cdot d) = b \cdot Vd$$

for $b \in \sigma(A)'$ and $d \in \mathcal{D}_V$.

By restricting in (5.12) to $b = I_E \in \sigma(A)'$ and $\eta = 0 \in \mathbb{D}(E^*)$ we see that

$${\mathcal{X}} := (E^* \otimes \mathcal{H}) \oplus (E \otimes \mathcal{Y}) \otimes \mathcal{D}_V \subset (E^* \otimes \mathcal{H}) \oplus \{0\}.$$}

Moreover, because \mathcal{D}_V is invariant under the left $\sigma(A)'$-action we can see \mathcal{X} as a $(\sigma(A)', \mathcal{C})$-correspondence, where the left action is obtained by restricting the left action on $E^* \otimes \mathcal{H}$ to \mathcal{X}. Hence we can form the $(\sigma(A)', \mathcal{C})$-correspondence $\mathcal{K} = \mathcal{H} \oplus (\mathcal{F}^2(E^*) \otimes \mathcal{X})$. Note that

$$E^* \otimes \mathcal{K} = E^* \otimes (\mathcal{H} \oplus (\mathcal{F}^2(E^*) \otimes \mathcal{X})) = (E^* \otimes \mathcal{H}) \oplus (E^* \otimes \mathcal{F}^2(E^*) \otimes \mathcal{X}).$$

So we can define an operator U from $\mathcal{K} \oplus (E \otimes \mathcal{U})$ to $(E^* \otimes \mathcal{K}) \oplus (E \otimes \mathcal{Y})$ via

$$U^* = \begin{bmatrix} V P_{\mathcal{D}_V} & 0 & 0 & \cdots \\ P_{\mathcal{X}} & 0 & 0 & \cdots \\ 0 & I_{E^* \otimes \mathcal{X}} & 0 & \cdots \\ 0 & 0 & I_{(E^*)^2 \otimes \mathcal{X}} & \cdots \end{bmatrix} \begin{bmatrix} (E^* \otimes \mathcal{H}) \oplus (E \otimes \mathcal{Y}) \\ E^* \otimes \mathcal{X} \\ (E^*)^2 \otimes \mathcal{X} \\ (E^*)^2 \otimes \mathcal{X} \end{bmatrix} = \begin{bmatrix} \mathcal{H} \oplus (\mathcal{E} \otimes \mathcal{U}) \\ \mathcal{X} \\ E^* \otimes \mathcal{X} \\ E^* \otimes \mathcal{X} \end{bmatrix}.$$

(5.13)

Here $P_{\mathcal{D}_V}$ and $P_{\mathcal{X}}$ stand for the projections onto \mathcal{D}_V and \mathcal{X} respectively. One easily checks that U^* is an isometric $(\sigma(A)'$)-module map. In other words, U is a coisometry, and a $(\sigma(A)')$-module map. The construction in (5.13) is closely related to the dilation result in [31]; see also Section 3 in [34] for more details.

Next we decompose U as follows:

$$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{H} \\ \mathcal{E} \otimes \mathcal{U} \end{bmatrix} \mapsto \begin{bmatrix} E^* \otimes \mathcal{H} \\ E \otimes \mathcal{Y} \end{bmatrix}.$$

The definition of V and the construction of U imply that

$$\begin{bmatrix} A^* & C^* \\ B^* & D^* \end{bmatrix} \begin{bmatrix} ((I_E \otimes b)\eta^*) \otimes H(\eta)^* y \\ (b \otimes I_\mathcal{Y})\eta^* y \end{bmatrix} = \begin{bmatrix} \pi(b)H(\zeta)^* y \\ (b \otimes I_\mathcal{U})S(\eta)^* y \end{bmatrix}.$$

By specifying this for $b = I_E$ and observing that

$$\eta^* \otimes H(\eta)^* y = L_\eta^* H(\eta)^* y,$$
we get
\[A^*L_\eta H(\eta)^* + C^* = H(\eta)^* \quad \text{and} \quad B^*L_\eta H(\eta)^* + D^* = S(\eta)^*. \quad (5.14) \]
Moreover, for \(h \in \mathcal{H} \) we have
\[
\|L_\eta h\|^2 = \|(\eta^* \otimes h)\|^2 = \|(\eta^* \otimes h)\|^2 = \|\pi(\eta^*h)^a_2 h\|^2 \\
\leq \|\pi(\eta^*h)^a_2\|^2 \|h\|^2 \leq \|\eta\|^2 \|h\|^2.
\]
This proves that \(\|L_\eta\| \leq \|\eta\| < 1 \). Hence \(I - A^*L_\eta \) is invertible and (5.14) shows that
\[H(\eta)^* = (I_K - A^*L_\eta)^{-1}C^*, \]
and thus,
\[S(\eta)^* = D^* + B^*L_\eta(I_K - A^*L_\eta)^{-1}C^*. \]
By taking adjoints we arrive at (5.5).

(3) \(\implies \) (2): Assume that (3) holds. We prove that \(\mathcal{K}_S \) admits an Agler decomposition as in (5.8) with \(H(\eta) := C(I - L_\eta^*, A)^{-1} \). That this is equivalent to the complete positivity of the kernel \(\mathcal{K}_S \) can be seen via the change of variable used in the derivation of (5.8). The fact that \(\mathcal{U} \) is a coisometric \(\sigma(\mathcal{A})'-\)module map can also be written as
\[
D(b \otimes I_\mathcal{Y})D^* + C\pi(b)C^* = b \otimes I_\mathcal{Y}, \quad B(b \otimes I_\mathcal{U})D^* = -A\pi(b)C^*, \\
A\pi(b)A^* + B(b \otimes I_\mathcal{U})B^* = (I_E \otimes b) \otimes I_K, \quad D(b \otimes I_\mathcal{U})B^* = -C\pi(b)A^*.
\]
Note that
\[H(\eta) = C(I - L_\eta^*, A)^{-1} = C + C(I - L_\eta^*, A)^{-1}L_\eta^*, A = C + H(\eta)L_\eta^*, A \]
and
\[S(\eta)^* = D + H(\eta)L_\eta^*, B. \]
Hence
\[
H(\eta)\pi(b)H(\zeta)^* = (C + H(\eta)L_\eta^*, A)\pi(b)(C^* + A^*L_\zeta^*, H(\zeta)^*) \\
= C\pi(b)C^* + C\pi(b)A^*L_\zeta^*, H(\zeta)^* + H(\eta)L_\eta^*, A\pi(b)C^* \\
+ H(\eta)L_\eta^*, A\pi(b)A^*L_\zeta^*, H(\zeta)^* \\
= b \otimes I_\mathcal{Y} - D(b \otimes I_\mathcal{U})D^* - D(b \otimes I_\mathcal{U})B^*L_\zeta^*, H(\zeta)^* \\
- H(\eta)L_\eta^*, B(b \otimes I_\mathcal{U})D^* - H(\eta)L_\eta^*, B(b \otimes I_\mathcal{U})B^*L_\zeta^*, H(\zeta)^* \\
+ H(\eta)L_\eta^*, ((I_E \otimes b) \otimes I_K)\zeta^*, H(\zeta)^* \\
= b \otimes I_\mathcal{Y} - D(b \otimes I_\mathcal{U})S(\zeta)^* - H(\eta)L_\eta^*, B(b \otimes I_\mathcal{U})S(\zeta)^* \\
+ H(\eta)\pi(\eta(I_E \otimes b)\zeta^*)H(\zeta)^* \\
= b \otimes I_\mathcal{Y} - S(\eta)(b \otimes I_\mathcal{U})S(\zeta)^* + H(\eta)\pi(\eta(I_E \otimes b)\zeta^*)H(\zeta)^*.
\]
In this way we have proved that (5.8) holds.

(2) \(\implies \) (1'): Assume that (2) holds. Consider the formula
\[
(M_S)^*: b^* \cdot (k_{E,\sigma,\zeta} \otimes I_\mathcal{Y})y \mapsto b^* \cdot (k_{E,\sigma,\zeta} \otimes I_\mathcal{U})S(\zeta)^*y \quad (5.15)
\]
for \(b \in \sigma(A)' \), \(\zeta \in \mathbb{D}((E^\sigma)^*) \) and \(y \in E \otimes Y \). Then the complete positivity of the kernel \(K_S \) is exactly what is needed to see that the formula (5.15) can be extended by linearity and continuity to define a contraction operator \((M_S)^*\) from \(H^2_E(E, \sigma) \) into \(H^2_U(E, \sigma) \) which is also a \(\sigma(A)' \)-module map:

\[
b^* \cdot (M^*_S f) = M^*_S (b^* \cdot f) \text{ for all } b \in \sigma(A)' \text{ and } f \in H^2_E(E, \sigma).
\]

Here we are using that the span of the collection of kernel functions

\[
\{ b^* \cdot (k_{E,\sigma,\zeta} \otimes I_{Y})y : b \in \sigma(A)', \zeta \in \mathbb{D}((E^\sigma)^*), y \in E \otimes Y \}
\]

dense in \(H^2_E(E, \sigma) \). Then the computation

\[
\langle (M_S f)(\zeta, b), y \rangle_{E \otimes Y} = \langle M_S f, b^* \cdot (k_{E,\sigma,\zeta} \otimes I_{Y})y \rangle_{H^2_E(E, \sigma)}
\]

\[
= \langle f, M^*_S (k_{E,\sigma,\zeta} \otimes I_{Y})y \rangle_{H^2_E(E, \sigma)}
\]

\[
= \langle f, b^* \cdot (k_{E,\sigma,\zeta} \otimes I_{Y})S(\zeta)^*y \rangle_{H^2_U(E, \sigma)}
\]

\[
= \langle f(\zeta, b), S(\zeta)^*y \rangle_{E \otimes U}
\]

\[
= \langle S(\zeta)^*f(\zeta, b), y \rangle_{E \otimes Y}
\]

shows that \(M_S \) is indeed the operator of multiplication by \(S \). \(\square \)

6. Examples

In this section we illustrate the general theory for some more concrete special cases. For simplicity we consider here only examples of the theory developed in Sections 3, 4 and 5 with \(U = Y = \mathbb{C} \). Unlike what one might expect, this does not lead to scalar versions of the results discussed in Sections 1 and 2, but rather to square versions, that is, we regain Theorems 1.1, 2.1 and 2.3 for the case \(U = Y \), but not necessarily equal to \(\mathbb{C} \).

6.1. The classical case

In this example, we take \(A = \mathcal{L}(G) \) for a given Hilbert space \(G \). Let \(E = \mathcal{L}(G) \) viewed a correspondence over itself in the standard way:

\[
a \cdot \xi = a\xi, \quad \xi \cdot a = \xi a \text{ (the operator multiplication in } \mathcal{L}(G)) \text{ for } a \in A, \xi \in E,
\]

\[
\langle \xi', \xi \rangle = \xi'^*\xi \text{ for } \xi', \xi \in E.
\]

Note that the inner product is the \(\mathcal{L}(G) \)-inner product when considered as a correspondence over itself. Since

\[
\xi_0 \otimes \cdots \otimes \xi_0 \otimes \cdots \otimes \xi_0 = \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes \cdots \otimes \xi_0 \cdots \xi_0,
\]

we can identify \(E^\otimes n \) with \(E = \mathcal{L}(G) \) and then the Fock space \(\mathcal{F}^2(E) \) has the form

\[
\mathcal{F}^2(E) = \oplus_{n=0}^\infty E^{\otimes n} = l^2_{\mathcal{L}(G)}(\mathbb{Z}_+).
\]

The abstract analytic Toeplitz algebra \(\mathcal{F}^\infty(E) \) is the collection of all lower triangular Toeplitz matrices with \(\mathcal{L}(G) \)-block entries acting as bounded operators on \(l^2_{\mathcal{L}(G)}(\mathbb{Z}_+) \).
Now suppose we are given a Hilbert space E_0, let $E = G \otimes E_0$ and σ be the representation of $A = L(G)$ on $L(E)$ given by $\sigma(a) = a \otimes I_{E_0}$. Then
\[
\sigma(A)' = \{ b \in L(E) : b \sigma(a) = \sigma(a) b \text{ for all } a \in A \}
\]
\[
= \{ b \in L(E) : b(a^0 \otimes I_{E_0}) = (a^0 \otimes I_{E_0}) b \text{ for all } a^0 \in L(G) \}
\]
\[
= \{ I_G \otimes b^0 : b^0 \in L(E_0) \}
\]
and hence $\sigma(A)'$ can be identified with $L(E_0)$.

We next note that
\[
F^2(E, \sigma) = F^2(E) \otimes_{\sigma} E = l^2_0 (G) (Z_+) \otimes_{\sigma} (G \otimes E_0) = l^2_0 (Z_+) \otimes E_0 = l^2_0 (Z_+).
\]
The representations $\varphi_{\infty, \sigma} : A = L(G) \rightarrow L(l^2_0 (Z_+))$ and $\iota_{\infty, \sigma} : \sigma(A)' = L(E_0) \rightarrow L(l^2_0 (Z_+))$ are given by
\[
\varphi_{\infty, \sigma}(a) = I_{l^2_0 (Z_+)} \otimes a \otimes I_{E_0}, \quad \iota_{\infty, \sigma}(b^0) = I_{l^2_0 (Z_+)} \otimes I_G \otimes b^0.
\]
We next compute
\[
(E')^* = \{ \eta : E \otimes_{\sigma} E \rightarrow E : \eta(a \otimes I_\xi) = (a \otimes I_\xi) \eta, a \in L(G) \}
\]
\[
= \{ \eta : L(G) \otimes_{\sigma} G \otimes E_0 \rightarrow G \otimes E_0 : \eta(a \otimes I_\xi) = (a \otimes I_\xi) \eta, a \in L(G) \}
\]
\[
= \{ \eta : G \otimes E_0 \rightarrow G \otimes E_0 : \eta(a \otimes I_{E_0}) = (a \otimes I_{E_0}) \eta, a \in L(G) \}
\]
\[
= \{ I_G \otimes \eta^0 : \eta^0 \in L(E_0) \}. \quad \text{(E')}^*
\]
We conclude that $(E')^*$ can be identified with $L(E_0)$.

The creation operators and dual creation operators then have the form
\[
T_{\xi, \sigma} = S \otimes \xi \otimes I_{E_0} \text{ for } \xi \in A = L(G),
\]
\[
T_{\mu^0, \sigma}^0 = S \otimes I_G \otimes \mu^0 \text{ for } \mu^0 \in L(E_0) \cong E_0^\sigma
\]
where S is the standard shift operator on $l^2(Z_+)$:
\[
S : \{ c_n \}_{n \in Z_+} \mapsto \{ c'_n \}_{n \in Z_+}, \quad \text{where } c'_0 = 0, c'_n = c_{n-1} \text{ for } n \geq 1.
\]
Note that the commutativity properties laid out in Proposition 4.2 are now transparent for this example.

Then, for $f = \oplus_{n=0}^\infty f_n \in F^2(E, \sigma)$, the Fourier transform $\Phi f = f^\wedge$ is given by
\[
f^\wedge(\eta^0, b^0) = \sum_{n=0}^{\infty} (I_G \otimes (\eta^0)^n b^0) f_n \in E
\]
for $\eta \in B(L(E_0))$ (the open unit ball of $L(E_0)$) and $b^0 \in L(E_0)$. One can check that Φ is injective. It follows that Φ is a unitary transformation from $l^2_0 (Z_+)$ onto a Hilbert space $H^2(E, \sigma)$ of E-valued functions on $B(L(E_0)) \times L(E_0)$ carrying a $L(E_0)$-representation:
\[
\pi_{H^2(E, \sigma)}(b^0) : f^\wedge(\eta^0, b^0) \mapsto f^\wedge(\eta^0, b^0 b^0). \quad (B \subseteq H^2(E, \sigma))
\]
In fact $f^\wedge(\eta^0, I_{E_0}) = 0$ for all $\eta^0 \in B(L(E_0))$ already forces f to be zero in $l^2_0 (Z_+)$ so the function f^\wedge is determined completely by its single-variable restriction $f^\wedge_1 :=
One can work with the space $\tilde{H}^2(E, \sigma) = \{ f^{\wedge 1} : f \in \ell^2_0 \}$ instead. One can identify $\tilde{H}^2(E, \sigma)$ with functions of the form

$$g(\eta^0) = \sum_{n=0}^{\infty} (I_G \otimes (\eta^0)^n)g_n$$

where $\otimes_{n=0}^{\infty} g_n \in \ell^2_0(\mathbb{Z}_+)$ with $\|g\|_{\tilde{H}^2(E, \sigma)} = \|\otimes_{n=0}^{\infty} g_n\|_{\ell^2_0(\mathbb{Z}_+)}$ and with the $\sigma(A') \cong \mathcal{L}(E_0)$-left action given by

$$(b^0 \cdot g)(\eta) = \sum_{n=0}^{\infty} (I_G \otimes (\eta^0)^n)(I \otimes b^0)g_n$$

if $g(\eta^0) = \sum_{n=0}^{\infty} (I_G \otimes (\eta^0)^n)g_n$.

An element S of $\mathcal{F}^\infty(E, \sigma)$ is an operator on $\ell^2_0(\mathbb{Z}_+)$ having a lower-triangular Toeplitz matrix representation

$$R = [R_{i-j}, i, j = 0, 1, \ldots]$$

where each R_n is an operator on \mathcal{E} of the form $R_n = R^0_n \otimes I_{E_0}$ for an operator $R^0_n \in \mathcal{L}(\mathcal{G})$ with $R^0_n = 0$ for $n < 0$. Given such an R, the associated $\mathcal{L}(\mathcal{E})$-valued function $R^{\wedge} : \mathcal{L}(E_0) \to \mathcal{L}(\mathcal{E})$ is then given by

$$R^{\wedge}(\eta^0) = \sum_{n=0}^{\infty} R^0_n \otimes (\eta^0)^n.$$

The Schur class $S(E, \sigma)$ for this case can be identified with the set of functions $S : \mathbb{B}(\mathcal{L}(E_0)) \to \mathcal{L}(\mathcal{E})$ with a presentation of the form

$$S(\eta^0) = \sum_{n=0}^{\infty} S^0_n \otimes (\eta^0)^n$$ (6.1)

for which the associated Toeplitz matrix

$$[S^0_{i-j}, i, j = 0, 1, \ldots]$$

defines a contraction operator on $\ell^2_0(\mathbb{Z}_+)$. If we use the single-variable version $\tilde{H}^2(E, \sigma)$ of the Hardy space, the condition in part (2) of Theorem 5.1 means not only that

$$M_S : f^{\wedge 1}(\eta^0) \mapsto S(\eta^0)f^{\wedge 1}(\eta^0)$$

maps $\tilde{H}^2(E, \sigma)$ contractively into $\tilde{H}^2(E, \sigma)$, but also that M_S is a $\mathcal{L}(E_0)$-module map:

$$M_S(b \cdot f^{\wedge 1}) = b \cdot M_S f^{\wedge 1}.$$

The realization formula (5.4) and (5.5) from part (3) of Theorem 5.1 tells us that such functions S are characterized by having a realization of the form

$$S(\eta^0) = D + C(I - \pi(\eta^0)A)^{-1}\pi(\eta^0)B$$ (6.2)

where

$$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{H} \\ \mathcal{E} \end{bmatrix} \to \begin{bmatrix} \mathcal{H} \\ \mathcal{E} \end{bmatrix}$$
is a unitary operator and \(\pi \) is a \(*\)-representation of \(\mathcal{L}(\mathcal{E}_0) \) to \(\mathcal{L}(\mathcal{H}) \) which is also a \(\mathcal{L}(\mathcal{E}_0) \)-module map:

\[
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \pi(b^0) \\ 0 \end{bmatrix} = \begin{bmatrix} \pi(b^0) \\ 0 \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}.
\]

(6.3)

Here we use that \(E^\sigma \otimes_\pi \mathcal{H} \) can be identified with \(\mathcal{H} \) since \((I_{\mathcal{G}} \otimes (\eta^0)^*) \otimes h = I_{\mathcal{E}} \otimes \pi((\eta^0)^*)h) \).

We note that is easy to see that a realization as in (6.2) implies that \(S \) has a presentation of the form (6.1). Indeed, if \(U \) is unitary and satisfies (6.3), since \(A \) commutes with \(\pi(\eta^0) \) we see that \((\pi(\eta^0)A)^n = A^n \pi(\eta^0)^n \). Hence expansion of the inverse in (6.2) as a geometric series and repeated usage of (6.3) gives

\[
S(\eta^0) = \sum_{n=0}^{\infty} S_n(I \otimes (\eta^0)^n)
\]

where

\[
S_0 = D, \quad S_n = CA^{n-1}B \text{ for } n \geq 1.
\]

Additional usage of (6.3) gives us

\[
S_n(I \otimes \eta^0) = (I \otimes \eta^0)S_n \text{ for all } \eta^0 \in \mathcal{L}(\mathcal{E}_0)
\]

from which we conclude that \(S_n \) has the form \(S_n = S_n^0 \otimes I_{\mathcal{E}_0} \) for operators \(S_n^0 \) acting on \(\mathcal{G} \), and hence \(S(\eta^0) \) has the form as in (6.1).

Conversely, if \(S : \mathcal{B}(\mathcal{E}_0) \to \mathcal{L}(\mathcal{E}) \) is of the form (6.1), it follows that \(S^0(\lambda) = \sum_{n=0}^{\infty} S_n^0 \lambda^n \) is in the classical Schur class \(\mathcal{S}(\mathcal{G}, \mathcal{G}) \). By the classical realization theorem we can write

\[
S^0(\lambda) = D^0 + \lambda C^0(I - \lambda A^0)^{-1}B^0
\]

where

\[
U^0 = \begin{bmatrix} A^0 & B^0 \\ C^0 & D^0 \end{bmatrix} : \begin{bmatrix} \mathcal{H}^0 \\ \mathcal{G} \end{bmatrix} \to \begin{bmatrix} \mathcal{H}^0 \\ \mathcal{G} \end{bmatrix}
\]

is coisometric (or even unitary). Then

\[
U = U^0 \otimes I_{\mathcal{E}_0} = \begin{bmatrix} A^0 \otimes I_{\mathcal{E}_0} & B \otimes I_{\mathcal{E}_0} \\ C^0 \otimes I_{\mathcal{E}_0} & D^0 \otimes I_{\mathcal{E}_0} \end{bmatrix} : \begin{bmatrix} \mathcal{H} \\ \mathcal{E} \end{bmatrix} \to \begin{bmatrix} \mathcal{H} \\ \mathcal{E} \end{bmatrix}
\]

(where we set \(\mathcal{H} = \mathcal{H}^0 \otimes \mathcal{E}_0 \)) with

\[
\pi(b) = I_{\mathcal{E}_0} \otimes b \in \mathcal{L}(\mathcal{H}) \text{ for } b \in \mathcal{L}(\mathcal{E}_0)
\]

provides a realization for \(S \) as in (6.2). Thus the general theory provides a new kind of realization result, but one can easily derive this result directly from the classical realization theorem.

Two special cases of the above analysis are of interest.

1. If we take \(\mathcal{G} = \mathcal{E}, \mathcal{E}_0 = \mathbb{C} \) in the example, we have \(\mathcal{F}^2(\mathcal{E}) = l_2^{\mathcal{L}(\mathcal{E})(\mathbb{Z}_+)} \)

with \(\mathcal{F}^{\infty}(\mathcal{E}) \) equal to the collection of all lower triangular Toeplitz matrices with \(\mathcal{L}(\mathcal{E}) \)-block entries acting on \(l_2^{\mathcal{L}(\mathcal{E})(\mathbb{Z}_+)} \). In this case \(\sigma(A)' = CI_{\mathcal{E}} \) and \((E^\sigma)^* = I_{\mathcal{E}} \otimes \mathbb{C} \) is isomorphic to \(\mathbb{C} \); thus \(\mathbb{D}((E^\sigma)^*) \) may be identified with the
open unit disk \mathbb{D} of C. Moreover $\mathcal{F}(E) \otimes_{\sigma} \mathcal{E} = l^2_\mathcal{E}(\mathbb{Z}_+)$ and for a given $\lambda \in \mathbb{D}$, we have the bounded point-evaluation:

$$f = \oplus_{n=0}^{\infty} f_n \in \mathcal{F}(E) \otimes_{\sigma} \mathcal{E} = l^2_\mathcal{E}(\mathbb{Z}_+) \to \widehat{f}(\lambda) = \sum_{n=0}^{\infty} f_n \lambda^n \in H^2_\mathcal{E}(\mathbb{D}).$$

Then

$$H^2(E, \sigma) = H^2_\mathcal{E}(\mathbb{D})$$

and

$$H^\infty(E, \sigma) = H^\infty_\mathcal{E}(\mathbb{D}) \otimes I_\mathcal{E} = H^\infty_\mathcal{E}(\mathbb{D}).$$

Hence $S \in H^\infty(E, \sigma)$ means, for $\lambda \in \mathbb{D}$, that $S(\lambda) = \sum_{n=0}^{\infty} S_n \lambda^n$ with $S_n \in \mathcal{L}(\mathcal{E})$. The operators in $H^\infty(E, \sigma)$ with norm at most equal to 1 form the classical Schur class. If we apply the general theorem 5.1 for this case, we simply recover Theorem 1.1 (where $\mathcal{U} = \mathcal{Y} = \mathcal{G}$).

2. If we take $\mathcal{G} = \mathbb{C}, \mathcal{E}_0 = \mathcal{E}$, then $\mathcal{F}^2(E) = l^2(\mathbb{Z}_+), \mathcal{F}^\infty(E)$ is the collection of all lower triangular Toeplitz matrices acting on $l^2(\mathbb{Z}_+)$. In this case $\sigma(A)' = \mathcal{L}(\mathcal{E})$ and

$$(E^\sigma)^* = \{ \eta: \mathbb{C} \otimes_{\sigma} \mathcal{E} \to \mathcal{E}: \eta(a \otimes I_\mathcal{E}) = a\eta, a \in \mathbb{C} \}.$$

Since $\mathbb{C} \otimes_{\sigma} \mathcal{E}$ can be identified with \mathcal{E} in the obvious way, $(E^\sigma)^*$ amounts to $\mathcal{L}(\mathcal{E})$. We also have $\mathcal{F}^2(E) \otimes_{\sigma} \mathcal{E} = l^2_\mathcal{E}(\mathbb{Z}_+)$. For a given $\eta \in \mathbb{D}((E^\sigma)^*) = \mathcal{B}(\mathcal{L}(\mathcal{E}))$ and $b \in \sigma(A)' = \mathcal{L}(\mathcal{E})$ we have the bounded point evaluation:

$$f = \oplus_{n=0}^{\infty} f_n \in \mathcal{F}(E) \otimes_{\sigma} \mathcal{E} = l^2_\mathcal{E}(\mathbb{Z}_+) \to f^\Lambda(\eta, b) = \sum_{n=0}^{\infty} \eta^n b f_n.$$

We may view this $H^2(E, \sigma)$ simply as functions of the form $\eta \mapsto \sum_{n=0}^{\infty} \eta^n f_n$ with $\oplus_{n=0}^{\infty} f_n \in l^2_\mathcal{E}$ which also carries an $\mathcal{L}(\mathcal{E})$-action:

$$f(\eta) \mapsto (b \cdot f)(\eta) = \sum_{n=0}^{\infty} \eta^n b f_n \text{ if } f(\eta) = \sum_{n=0}^{\infty} \eta^n f_n$$

or

$$b \cdot f = \sum_{n=0}^{\infty} S^n b P_\mathcal{E} S^m f$$

where $P_\mathcal{E}$ is the projection onto the constant functions and S is the operator-argument shift operator $(Sf)(\eta) = \eta \cdot f(\eta)$. If we identify $S = S^0 \otimes I_\mathcal{E} \in H^\infty(E, \sigma) = H^\infty \otimes I_\mathcal{E}$ with the scalar-valued function $S^0 \in H^\infty(\mathbb{D})$, then the associated function with operator argument

$$\eta \mapsto S^0(\eta) = \sum_{n=0}^{\infty} \eta^n (S_n^0 \otimes I_\mathcal{E}) \in \mathcal{L}(\mathcal{E})$$

(6.4)

corresponds to the functional calculus for scalar holomorphic functions with operator argument usually defined via the holomorphic functional calculus (see e.g. [48]). The positivity of the kernel

$$K_S(\eta, \zeta) = (I - \eta^* \zeta)^{-1} - S(\zeta)(I - \eta^* \zeta)^{-1} S(\eta)^*$$
guarantees that the multiplication operator

\[M_S : f(\eta) \mapsto S(\eta) f(\eta) \]

is contractive on \(H^2(E, \sigma) \) while complete positivity of the enlarged kernel

\[K_S(\eta, \zeta)[b] = \sum_{n=0}^{\infty} \eta^n b \zeta^* n - S(\eta) \left(\sum_{n=0}^{\infty} \eta^n b \zeta^* n \right) S(\zeta)^* \]

guarantees in addition that \(S \) has the form (6.4) and that the associated multiplication operator \(M_S \) commutes with the \(L(E) \)-action:

\[b \cdot (M_S f) = M_S (b \cdot f) \text{ for } b \in L(E), \ f \in H^2(e, \sigma). \]

The realization result (the equivalence of (1) and (3) in Theorem 5.1) follows from the classical realization result for scalar-valued Schur-class functions in the same way as was explained above for the general case of this example.

6.2. Free semigroup algebras

In this example, we take \(A = L(G) \) for a given Hilbert space \(G \) and \(E \) to be the \(d \)-fold column space \(\bigoplus_{j=1}^{d} L(G) \) over \(L(G) \) viewed as a correspondence over \(L(G) \) in the standard way (see [31, 43]):

\[
\begin{pmatrix}
\xi_1 \\
\vdots \\
\xi_d
\end{pmatrix}
= \begin{pmatrix}
a \xi_1 \\
\vdots \\
a \xi_d
\end{pmatrix}, \quad
\begin{pmatrix}
\xi_1 \\
\vdots \\
\xi_d
\end{pmatrix} \cdot a = \begin{pmatrix}
\xi_1 a \\
\vdots \\
\xi_d a
\end{pmatrix}, \quad
\left< \begin{pmatrix}
\xi_1 \\
\vdots \\
\xi_d
\end{pmatrix}, \begin{pmatrix}
\xi_1 \\
\vdots \\
\xi_d
\end{pmatrix} \right> = \sum_{j=1}^{d} \xi_j^* \xi_j
\]

for \(\xi = \begin{pmatrix}
\xi_1 \\
\vdots \\
\xi_d
\end{pmatrix}, \xi' = \begin{pmatrix}
\xi_1' \\
\vdots \\
\xi_d'
\end{pmatrix} \in E \) and \(a \in L(G) \).

(6.5)

One can then identify \(E^\otimes n \) with the column space \(\bigoplus_{|\alpha|=n} L(G) \) where \(\alpha = i_n \cdots i_1 \) is in the free semigroup \(F_d \) with notation as in Subsection 2.2. Then the associated Fock space is

\[F^2(E) = \bigoplus_{n=0}^{\infty} E^\otimes n = \bigoplus_{n=0}^{\infty} \left[\bigoplus_{\alpha \in F_d: |\alpha|=n} L(G) \right] \]

can equally well be viewed as

\[F^2(E) = \bigoplus_{\alpha \in F_d} L(G) =: \ell_2^L(G)(F_d). \]

Then the analytic Toeplitz algebra \(F^\infty(E) \) can be identified as

\[F^\infty(E) = L_d \otimes L(G), \]

where \(L_d \) is the free semigroup algebra discussed by Davidson and Pitts in [21] and is also the ultraweak closure of Popescu’s noncommutative disk algebra (see [38]).
Then \(\eta \) is a block row-matrix \(\eta = \begin{bmatrix} \eta_1 & \cdots & \eta_d \end{bmatrix} \) mapping \(E \otimes \mathcal{E} \cong \mathcal{E}^d \) into \(\mathcal{E} \) with the additional property that
\[
[\eta_1 \ \cdots \ \eta_d] \ \text{diag} \ (a \otimes I_{\mathcal{E}_0}) = (a \otimes I_{\mathcal{E}_0}) \ [\eta_1 \ \cdots \ \eta_d] \ \text{for all} \ a \in \mathcal{L}(\mathcal{G}).
\]
It follows that \(\eta_j (a \otimes I_{\mathcal{E}_0}) = (a \otimes I_{\mathcal{E}_0}) \eta_j \) and hence that \(\eta_j = I_{\mathcal{G}} \otimes \eta_j^0 \) for some \(\eta_j^0 \in \mathcal{L}(\mathcal{E}_0) \) for \(j = 1, \ldots, d \) and we have an identification
\[
(E^*)^* \cong \mathcal{L}(\mathcal{E}_0^d, \mathcal{E}_0).
\]
One can check that the creation and dual creation operators are given by

\[T_{\xi,\sigma} = \sum_{j=1}^{d} S_j \otimes \xi_j \otimes I_{\mathcal{E}_0} \text{ for } \xi = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_d \end{bmatrix} \in \mathcal{L}(\mathcal{G})^d = E, \]

\[T_{\mu^0,\sigma} = \sum_{j=1}^{d} S_j \otimes I_{\mathcal{G}} \otimes \mu_j^0 \text{ for } \mu^0 = \begin{bmatrix} \mu_1^0 \\ \vdots \\ \mu_d^0 \end{bmatrix} \in \mathcal{L}(\mathcal{E}_0, \mathcal{E}_0^d) \cong E^\sigma. \]

For \(\eta^0 = [\eta_1^0 \ldots \eta_d^0] \in \mathbb{B}(\mathcal{L}(\mathcal{E}_0^d, \mathcal{E}_0)) \cong \mathbb{D}((E^\sigma)^*) \) and \(b^0 \in \mathcal{L}(\mathcal{E}_0) \cong \sigma(\mathcal{A})' \), we have the bounded point-evaluation operator on \(\mathcal{F}^2(E, \sigma) = \ell^2_E(\mathcal{F}_d) \):

\[f = \oplus_{\alpha \in \mathcal{F}_d} f_{\alpha} \mapsto f^\wedge(\eta^0, b^0) := \sum_{\alpha \in \mathcal{F}_d} (I_{\mathcal{G}} \otimes (\eta^0)^\alpha b^0) f_{\alpha} \]

(6.6)

where \((\eta^0)^\alpha = \eta_{i_1}^0 \ldots \eta_{i_d}^0 \) for \(\alpha = i_{n_1} \ldots i_1 \in \mathcal{F}_d \). To continue a detailed analysis, we now consider in turn two divergent special cases.

Case 1: \(\mathcal{E}_0 = \mathbb{C} \) so \(\mathcal{E} = \mathcal{G} \): In this case we identify \(\mathbb{D}((E^\sigma)^*) \cong \mathbb{B}(\mathcal{L}(\mathcal{E}_0^d, \mathcal{E}_0)) \) with the unit ball in \(\mathbb{C}^d \)

\[\mathbb{B}^d := \left\{ \lambda = (\lambda_1, \ldots, \lambda_d) \in \mathbb{C}^d : \sum_{j=1}^{d} |\lambda_j|^2 < 1 \right\}. \]

The point-evaluation map

\[f^\wedge(\lambda, b) = \sum_{n \in \mathbb{Z}_+^d} \left[\sum_{\alpha \in \mathcal{F}_d : |\alpha| = n} b f_{\alpha} \right] \lambda^n = b \cdot f^\wedge(\lambda, I_{\mathcal{E}}) \]

(6.7)

where we use the standard \((\mathcal{L}(\mathcal{E}), \mathbb{C}) \)-correspondence structure on \(\mathcal{E} \). Also here we use the standard commutative multivariable notation

\[\lambda^n = \lambda_1^{n_1} \ldots \lambda_d^{n_d} \text{ if } n = (n_1, \ldots, n_d) \in \mathbb{Z}_+^d. \]

From (6.7) we see that we are in the situation of Remark 3.7 and completely positivity of the kernel

\[\mathbb{K}(\lambda, \lambda') = \sum_{n \in \mathbb{Z}_+^d} (\lambda^n I_{\mathcal{E}})(b^* b')(\lambda')^n I_{\mathcal{E}} \]

associated with \(H^2(E, \sigma) \) for this case reduces to classical Aronszajn positivity for the Drury-Arveson kernel

\[k(\lambda, \lambda') = \sum_{n \in \mathbb{Z}_+^d} \lambda^n(\lambda')^n = \frac{1}{1 - \langle \lambda, \lambda' \rangle}. \]
In this case the Fourier transform map $\Phi: f \mapsto f^{\wedge}$ has a kernel with the cokernel given by the symmetric Fock space spanned by symmetric tensors
\[
\left\{ \sum_{\alpha \in F_d: |\alpha|=n} [\delta_{\alpha,\alpha'}]_{\alpha',\in F_d} e: e \in \mathcal{E} \right\}
\]
where $\delta_{\alpha,\alpha'}$ is the standard Kronecker delta
\[
\delta_{\alpha,\alpha'} = \begin{cases}
1 & \text{if } \alpha = \alpha', \\
0 & \text{otherwise.}
\end{cases}
\]
Then it is known (see [22, 6, 10]) that the image of Φ in this case, i.e., the space $H^2(E, \sigma)$ of all functions on the ball of the form f^{\wedge} for an $f \in \ell_2^d(F_d)$, is exactly the Arveson-Drury space and the associated space $H^\infty(E, \sigma)$ is exactly the multiplier space $M(E)$ of the Arveson space. When we specialize the general Theorem 5.1 to this case we simply recover Theorem 2.1 for the case $U=\mathcal{Y}=E$.

Case 2: $\mathcal{G} = \mathbb{C}$ and $E = E_0$ is a separable, infinite-dimensional Hilbert space:
In this case the generalized unit disk $D((E^\sigma)^*) = \mathcal{B}(\mathcal{L}(E^d, \mathcal{E}))$ consists of row contractions
\[
\eta = [\eta_1 \cdots \eta_d]: E^d \rightarrow \mathcal{E}.
\]
The Fock correspondence $\mathcal{F}^2(E) = \ell^2(F_d)$ has scalar coefficients while the Hilbert Fock space $\mathcal{F}^2(E, \sigma) = \ell_2^d(F_d)$ has E-valued coefficients. The point-evaluation map (6.6) has the form
\[
f = \{f_\alpha\}_{\alpha \in F_d} \mapsto f^{\wedge}(\eta, b) = \sum_{\alpha \in F_d} \eta^\alpha b f_\alpha.
\]
The completely positive kernel associated with $H^2(E, \sigma)$ for this case is
\[
K_{E,\sigma}(\eta, \zeta)[b] = \sum_{\alpha \in F_d} \eta^\alpha [b] \zeta^\alpha.
\]
where $b \in \sigma(A)' = \mathcal{L}(\mathcal{E})$.

The analytic Toeplitz algebra $\mathcal{F}^\infty(E)$ is the free semigroup algebra L_d acting on $\mathcal{F}^2(E) = \ell^2(F_d)$ having noncommutative Toeplitz matrix representation
\[
R = [R_{\alpha,\beta}]_{\alpha,\beta \in F_d} \text{ where } R_{\alpha,\beta} = R_{\alpha,\beta}^{-1},
\]
where the matrix entries $R_{\alpha,\beta}$ are scalars. Here \emptyset refers to the empty word in F_d (the unit element for the semigroup F_d) and we use the convention
\[
\alpha \beta^{-1} = \begin{cases}
\alpha' & \text{if } \alpha = \alpha\beta, \\
\text{undefined} & \text{otherwise},
\end{cases}
\]
\[
R_{\text{undefined}} = 0.
\]
Then it is easily seen that $R \otimes E \in \mathcal{L}(\ell_2^d(F_d))$ is simply the infinite-multiplicity inflation of R:
\[
R \otimes I_E = [R \otimes I_E]_{\alpha,\beta} \text{ where } [R \otimes I_E]_{\alpha,\beta} = R_{\alpha,\beta} \otimes I_E.
\]
The point-evaluation $\eta \mapsto (R \otimes_\sigma I_\mathcal{E})^\wedge(\eta)$ for $R \otimes_\sigma I_\mathcal{E} \in \mathcal{F}_\infty(\mathcal{E}, \sigma)$ and $\eta = [\eta_1 \cdots \eta_d] \in \mathcal{B}(\mathcal{L}(\mathcal{E}^d, \mathcal{E}))$ is given by

$$(R \otimes_\sigma I_\mathcal{E})^\wedge(\eta) = \sum_{\alpha \in \mathcal{F}_d} \eta^\alpha (R_\alpha \otimes I_\mathcal{E}).$$

Viewing the operator $R_\alpha \otimes I_\mathcal{E}$ as simply multiplication by the scalar R_α, we can rewrite this as

$$(R \otimes I_\mathcal{E})^\wedge(\eta) = \sum_{\alpha \in \mathcal{F}_d} R_\alpha \eta^\alpha. \tag{6.8}$$

As a consequence of the fact that there are no polynomial identities valid for matrices of all sizes (see [44, pp. 22-23]), it follows that the point-evaluation map $R \in \mathcal{F}_\infty(\mathcal{E}) = \mathcal{L}_d \mapsto (\eta \in \mathcal{B}(\mathcal{L}(\mathcal{E}^d, \mathcal{E})) \mapsto (R \otimes_\sigma I_\mathcal{E})^\wedge(\eta) \in \mathcal{L}(\mathcal{E}))$ is injective.

For a $*$-representation of $\mathcal{L}(\mathcal{E})$ into $\mathcal{L}(\mathcal{H})$ for a Hilbert space \mathcal{H}, one can check that

$$\left[\begin{array}{c} \mu_1 \\ \vdots \\ \mu_d \end{array} \right] \otimes h \cong \left[\begin{array}{c} \pi(\mu_1)h \\ \vdots \\ \pi(\mu_d)h \end{array} \right] \tag{6.9}$$

gives an identification of $E^\sigma \otimes \mathcal{H}$ with \mathcal{H}^d. For a colligation U to be of the form (5.3) and to satisfy (5.4) means that there is a Hilbert space \mathcal{H} together with a $*$-representation $\pi: \mathcal{L}(\mathcal{E}) \rightarrow \mathcal{L}(\mathcal{H})$ such that, after the identification of $E^\sigma \otimes_\pi \mathcal{H}$ with \mathcal{H}^d via (6.9),

$$U = \left[\begin{array}{cc} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \end{array} \right]: \left[\begin{array}{c} \mathcal{H} \\ \mathcal{E} \end{array} \right] \rightarrow \left[\begin{array}{c} \mathcal{H} \\ \mathcal{E} \end{array} \right] \tag{6.10}$$

subject to

$$\left[\begin{array}{c} \pi(b) \\ \vdots \\ \pi(b) \end{array} \right] \left[\begin{array}{cc} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \end{array} \right] = \left[\begin{array}{cc} A_1 & B_1 \\ \vdots & \vdots \\ A_d & B_d \end{array} \right] \left[\begin{array}{cc} \pi(b) & 0 \\ 0 & b \end{array} \right],$$

or, equivalently,

$$A_j \pi(b) = \pi(b)A_j, \quad B_jb = \pi(b)B_j \quad \text{for} \quad j = 1, \ldots, d,$$

$$C\pi(b) = bC, \quad Db = bD, \tag{6.11}$$

for all $b \in \mathcal{L}(\mathcal{E})$. For $\eta = [\eta_1 \cdots \eta_d] \in \mathcal{D}((E^\sigma)^*) = \mathcal{B}(\mathcal{L}(\mathcal{E}^d, \mathcal{E}))$, one can check that the operator $L_\eta: \mathcal{H} \rightarrow E^\sigma \otimes_\pi \mathcal{H}$ given by $L_\eta: h \mapsto \eta^* \otimes h$, after the
identification (6.9), is simply the column contraction

\[
L_\eta^* : h \mapsto \begin{bmatrix} \eta_1^* \\ \vdots \\ \eta_d^* \end{bmatrix} h
\]

with adjoint equal to

\[
L_\eta = \begin{bmatrix} \eta_1 & \cdots & \eta_d \end{bmatrix} : \mathcal{H}^d \to \mathcal{H}.
\]

Suppose that \(S \in H^\infty(E, \sigma) \) for this example of \((E, \sigma)\). Then the realization formula for \(S \in \mathcal{F}_\infty^\infty(E, \sigma) \) given by (5.5) for this case becomes

\[
S(\eta) = D + C(I - \eta A)^{-1}\eta B \quad \text{for} \quad \eta = [\eta_1 \cdots \eta_d] \in \mathcal{B}(\mathcal{L}(E^d, E))
\]

(6.12)

where the coisometric \(U \) is as in (6.10). Using the relations (6.11) and using the expansion

\[
(I - \eta A)^{-1} = \sum_{n=0}^\infty (\eta A)^n,
\]

we see that (6.12) can be rewritten as

\[
S(\eta) = D + \sum_{\alpha \in \mathcal{F}_d} \sum_{j=1}^d C A^\alpha B \eta^\alpha \eta_j.
\]

Moreover, again from the relations (6.11) we see that

\[(CA^\alpha B_j)b = b(CA^\alpha B_j) \quad \text{and} \quad Db = bD \quad \text{for all} \quad b \in \mathcal{L}(\mathcal{E}),
\]

i.e., \(CA^\alpha B_j = s_{\alpha j} \) for all \(\alpha \in \mathcal{F}_d \) and \(j = 1, \ldots, d \) as well as \(D =: s_0^0 \) are all scalar operators:

\[s_{\alpha} = s_{\alpha 0}^0 I_{\mathcal{E}} \quad \text{where} \quad s_{\alpha}^0 \in \mathbb{C}.
\]

From the complete positive kernel condition in Theorem 5.1, it is easily seen that \(S(\eta) = \sum_{\alpha \in \mathcal{F}_d} s_{\alpha} \eta^\alpha \) is contractive for each row contraction \(\eta = [\eta_1 \cdots \eta_d] \in \mathcal{B}(\mathcal{L}(E^d, E)) \). Thus the formal power series

\[
S^0(z) = \sum_{\alpha \in \mathcal{F}_d} s_{\alpha 0}^0 z^\alpha
\]

is in the formal noncommutative Schur class with scalar coefficients \(S_{nc,d}(\mathbb{C}, \mathbb{C}) \) introduced in Section 2.2.

Conversely, if \(S^0(z) = \sum_{\alpha \in \mathcal{F}_d} s_{\alpha 0}^0 z^\alpha \) is in the formal noncommutative Schur class \(S_{nc,d}(\mathbb{C}, \mathbb{C}) \), then part (3) of Theorem 2.3 assures us that \(S(z) \) has a realization of the form

\[
S^0(z) = D^0 + C^0(I - Z(z)A^0)^{-1}Z(z)B^0
\]

(6.13)
for a coisometric (even unitary) colligation

\[
U^0 = \begin{bmatrix}
A_0^0 & B_0^1 \\
\vdots & \vdots \\
A_d^0 & B_d^1 \\
C_0^0 & D_0^1
\end{bmatrix} : \mathcal{H}_0 \rightarrow \begin{bmatrix} \mathcal{H}^0 \\ \vdots \\ \mathcal{H}_0 \end{bmatrix}.
\]

Let us form a new tensored colligation \(U\) of the form

\[
U = \begin{bmatrix}
A_1 & B_1 \\
\vdots & \vdots \\
A_d & B_d \\
C & D
\end{bmatrix} : \mathcal{H} \rightarrow \begin{bmatrix} \mathcal{H} \\ \mathcal{E} \end{bmatrix}
\]

where we set

\[
\mathcal{H} = \mathcal{H}_0 \otimes \mathcal{E}, \quad A_j = A_j^0 \otimes I_\mathcal{E}, \quad B_j = B_j^0 \otimes I_\mathcal{E}, \quad C = C^0 \otimes I_\mathcal{E}, \quad D = D^0 \otimes I_\mathcal{E}
\]

where \(j = 1, \ldots, d\). We may define a \(*\)-representation \(\pi : \mathcal{L}(\mathcal{E}) \rightarrow \mathcal{L}(\mathcal{H})\) by

\[
\pi(b) = I_{\mathcal{H}_0} \otimes b.
\]

Then it is easily seen that this \(U\) satisfies (6.10) and (6.11). Moreover, from these relations and the realization (6.13) for the formal noncommutative Schur-class function \(S^0(z)\), we see that we have a realization for the associated function \(\eta \mapsto S^0(\eta)\) of the form (6.12):

\[
S(\eta) := \sum_{\alpha \in \mathcal{F}_d} s_\alpha^0 \eta^\alpha = D + C(I - L_{\eta}^* A)^{-1} L_{\eta}^* B.
\]

We conclude: there is a one-to-one correspondence between formal power series

\[
S^0(z) = \sum_{\alpha \in \mathcal{F}_d} s_\alpha^0 z^\alpha
\]

in the noncommutative scalar-coefficient Schur class \(S_{ac,d}(\mathbb{C}, \mathbb{C})\) and functions \(\eta \mapsto S(\eta)\) in the Muhly-Solel class \(H^\infty(\mathcal{E}, \sigma)\) for the particular choice of \((\mathcal{E}, \sigma)\) (described in (6.5) with \(\mathcal{G} = \mathbb{C}\) and \(\mathcal{E}_0 = \mathcal{E}\) infinite-dimensional), given by

\[
S^0(z) = \sum_{\alpha \in \mathcal{F}_d} s_\alpha^0 z^\alpha \mapsto \left(\eta \mapsto S(\eta) := \sum_{\alpha \in \mathcal{F}_d} \eta^\alpha (s_\alpha^0 I_\mathcal{E}) \right).
\]

Here we have made explicit the correspondence between condition (3) in Theorem 2.3 for \(S^0(z)\) versus condition (3) in Theorem 5.1 for \(S(\eta)\). An amusing exercise would be to understand directly the equivalence between any of the other conditions in Theorem 2.3 for \(S^0(z)\) and the corresponding condition for \(S(\eta)\) in Theorem 5.1.
6.3. Analytic crossed-product algebras

We discuss here a particular case of analytic crossed-product algebras (see Example 2.6 in [31] as well as the references there). This particular case has strong connections with time-varying system theory and was discussed in connection with point-evaluation and generalized Nevanlinna-Pick interpolation in [35] (see Examples 2.5, 2.6 and 2.25 there). Here we wish to draw out the connections between the realization theorem (the equivalence of (1) and (3) in Theorem 5.1 for this case) and a result from [4] that any lower-triangular contractive operator on $l^2(\mathbb{Z})$ can be realized as the input-output map of a linear time-varying input/state/output system. For simplicity we discuss in detail only the multiplicity-free case ($U = Y = \mathbb{C}$).

We take the algebra \mathcal{A} to be the algebra $\ell^\infty(\mathbb{Z})$ with coordinate-wise multiplication with correspondence E equal to $\mathcal{A} = \ell^\infty(\mathbb{Z})$ as a set. Let α be the automorphisms $\alpha(a)(k) = a(k-1)$ ($k \in \mathbb{Z}$) for $a: \mathbb{Z} \to \mathbb{C}$ in \mathcal{A}. We consider E as a correspondence over \mathcal{A} with left and right action given by

$$(a \cdot \xi) = (a(a))(k) = a(k-1)\xi(k), \quad (\xi \cdot a)(k) = (\xi(a))(k) = \xi(k)a(k)$$

and with the \mathcal{A}-valued inner product

$$\langle \xi', \xi \rangle_E(k) = \overline{\xi(k)}\xi'(k)$$

(6.14)

for $d \in \mathbb{Z}$, $a \in \mathcal{A} = \ell^\infty(\mathbb{Z})$ and $\xi', \xi \in E = \ell^\infty(\mathbb{Z})$. Then it is easily seen that $E^{\otimes n}$ is the correspondence over \mathcal{A} identified again with $E = \ell^\infty(\mathbb{Z})$ as a set with \mathcal{A}-valued inner product as in (6.14) but with left and right \mathcal{A}-action given by

$$(a \cdot \xi^{(n)})(k) = (a^n(a)^{(n)})(k) = a(k-n)\xi(k), \quad (\xi^{(n)} \cdot a)(k) = (\xi^{(n)}a)(k) = \xi^{(n)}(k)a(k)$$

for $k \in \mathbb{Z}$, $\xi^{(n)} \in E^{\otimes n} = \ell^\infty(\mathbb{Z})$ and $a \in \mathcal{A} = \ell^\infty(\mathbb{Z})$. The Fock space $\mathcal{F}^2(E)$ is then the correspondence $\oplus_{n=0}^\infty \ell^\infty(\mathbb{Z})$ with left and right \mathcal{A}-action given by

$$a \cdot (\oplus_{n=0}^\infty \xi^{(n)}) = \oplus_{n=0}^\infty a^n(a)^{(n)}\xi^{(n)}, \quad (\oplus_{n=0}^\infty \xi^{(n)}) \cdot a = \oplus_{n=0}^\infty a\xi^{(n)}.$$

More generally, when \mathcal{A} is a general von Neumann algebra and α is an automorphism of \mathcal{A}, this construction gives rise to analytic crossed-product algebras which have been studied by a number of authors over the past several decades (see [31, 33, 35] and the references therein).

An appealing alternative representation of the correspondence, as explained in Example 2.6 in [35], is as follows. View \mathcal{A} as the algebra \mathcal{D} of all diagonal operators acting on $l^2(\mathbb{Z})$, let U be the bilateral shift operator $Ue_k = e_{k+1}$ (where $e_k(k')$ is the Kronecker delta function) and let $E = UD \subset \mathcal{L}(l^2(\mathbb{Z}))$. Then define the left and right actions of $\mathcal{A} = \mathcal{D}$ on $E = UD$ simply by left and right operator multiplications with the inner product given by

$$\langle UD_1, UD_2 \rangle_E = D_2^*D_1 \in \mathcal{D}.$$
One can easily check that the identification map
\[E \rightarrow \text{E}_n \rightarrow \mathcal{L}(\ell^2) \]
with action equal to a shifting of the subdiagonals.

One can easily check that the identification map
\[UD_2 \otimes UD_1 \in U\mathcal{D} \rightarrow UD_2U D_1 = U^2(U^*D_2U)D_1 \in U^2\mathcal{D}. \]
is unitary from \(E \otimes E \) to \(U^2\mathcal{D} \). After this identification, the left and right \(\mathcal{D} \)-action on \(E \otimes E \cong U^2\mathcal{D} \) is again given by left and right operator multiplication. More generally, we view \(E^{\otimes n} \) as \(U^n\mathcal{D} \) with left and right \(\mathcal{D} \)-action given by operator multiplication and with inner product inherited from \(\mathcal{L}(\ell^2) \):
\[
(U^nD_1,U^nD_2)_{E^{\otimes n}} = D_2^*U^{n*}U^nD_1 = D_2^*D_1 \in \mathcal{D}.
\]
The Fock space \(\mathcal{F}^2(E) \) can then be identified with lower triangular matrices \(T \) with diagonal expansion \(T = \sum_{n=0}^{\infty} U^nD_n \) (\(D_n \in \mathcal{D} \)) such that
\[
\sum_{n=0}^{N} D_n^*D_n \text{ is bounded above in } \mathcal{D}.
\]

The Toeplitz algebra \(\mathcal{F}^\infty(E) \) consists of all lower triangular matrices \(R \) which give rise to bounded operators on \(\ell^2(\mathbb{Z}) \). As elements of \(\mathcal{F}^\infty(E) \), they act on \(\mathcal{F}^2(E) \) (lower triangular matrices satisfying (6.15)) via multiplication on the left. We can view this algebra as generated by a single creation operator \(T_I \) (the creation operator associated with the identity matrix \(I \in \mathcal{D} \), namely the bilateral shift operator \(U \)), together with the diagonal operators \(\mathcal{D} \). Note that \(U \) is really a unilateral shift operator since it is restricted to the space \(\mathcal{F}^2(E) \) of lower triangular matrices (with action equal to a shifting of the subdiagonals).

We now set \(\mathcal{E} = \ell^2(\mathbb{Z}) \) and let \(\sigma \) be the identity representation of \(\mathcal{D} \) on \(\mathcal{E} = \ell^2(\mathbb{Z}) \). Then \(E^{\otimes n} \otimes_\sigma \mathcal{E} \) can be identified with \(\mathcal{E} = \ell^2(\mathbb{Z}) \) in the natural way
\[\iota: U^nD \otimes e \mapsto De. \]

When this is done the left action of \(\mathcal{A} = \mathcal{D} \) becomes
\[d \cdot e = U^{n*}dU^ne \]
since
\[\iota(d \cdot (U^nD \otimes e)) = \iota(dU^nD \otimes e) = \iota(U^n(U^{n*}dU^n)D \otimes e) = U^{n*}dU^ne = U^{n*}dU^n\iota(U^nD \otimes e). \]

Hence we identify \(\mathcal{F}^2(E,\sigma) = \mathcal{F}^2(E) \otimes_\sigma \mathcal{E} \) with
\[\mathcal{F}^2(E,\sigma) = \ell^2(\mathbb{Z}+) \]
with left action by \(\mathcal{A} = \mathcal{D} \) given by
\[b \cdot \{e_n\}_{n \in \mathbb{Z}+} = \{U^{*n}bU^ne_n\}_{n \in \mathbb{Z}+}. \]
One can see that the image of the generating creation operator $T_f = U \otimes I_E$ after these identifications is the unilateral shift operator $S \otimes I_{\ell^2(\mathbb{Z})}$ acting on $\mathcal{F}^2(E, \sigma) = \ell^2_{\ell^2(\mathbb{Z})}(\mathbb{Z}_+)$:

$$T_f = [t_{i,j}]_{i,j \in \mathbb{Z}_+}, \text{ where } t_{i,j} = \begin{cases} I_{\ell^2(\mathbb{Z})} & \text{if } i = j + 1, \\ 0 & \text{otherwise.} \end{cases}$$

The elements R of $\mathcal{F}^\infty(E, \sigma) \subset L(\ell^2_{\ell^2(\mathbb{Z})}(\mathbb{Z}_+))$ can then be identified as the following algebra of sparse matrices: there is a sequence $\{d_n\}_{n \in \mathbb{Z}} \subset \mathcal{D}$ of diagonal operators on $\ell^2(\mathbb{Z})$ so that R has the form

$$R = [R_{i,j}]_{i,j \in \mathbb{Z}_+}, \text{ where } R_{i,j} = \begin{cases} U^{\ast} d_{i-j} U^j & \text{for } i \geq j, \\ 0 & \text{otherwise,} \end{cases} \quad (6.16)$$

or, in block-matrix form,

$$R = \begin{bmatrix} d_0 & 0 & 0 & \cdots \\ d_1 & U^* d_0 U & 0 & \cdots \\ d_2 & U^* d_1 U & U^{*2} d_0 U^2 & \cdots \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix}.$$

We identify $(E^\sigma)^*$ for this example as follows. The space $(E^\sigma)^*$ consists of operators $\eta: E \otimes_\sigma E \to E$ such that $\eta(\varphi(a) \otimes I_E) = \sigma(a)\eta$. For the present situation, both $E \otimes_\sigma E$ and E are identified with $\ell^2(\mathbb{Z})$ but the left action by an element $d \in A = \mathcal{D}$ is given by multiplication by $U^* d U$ in the first case and by multiplication by d in the second. Thus the operator $\eta \in \mathcal{L}(\ell^2(\mathbb{Z}))$ is required to satisfy

$$\eta U^* D U = D \eta$$

which means that ηU^* is diagonal, so $(E^\sigma)^*$ is identified with weighted shift operators

$$(E^\sigma)^* \cong \{ \eta = D\eta U = U(U^* D\eta U) \in \mathcal{L}(\ell^2(\mathbb{Z})): D \eta \in \mathcal{D} \} = U \mathcal{D}. \quad (6.17)$$

Recall that there is a representation of $\mathcal{F}^\infty(E^\sigma)$ on $\mathcal{F}^2(E, \sigma)$ (where E^σ is viewed as a $\sigma(A)'$-correspondence). For our situation here, $\sigma(A)' = A = \mathcal{D}$ considered as acting on $E = \ell^2(\mathbb{Z})$ and the representation of $\sigma(A)'$ on $\mathcal{F}(E, \sigma) = \ell^2_{\ell^2(\mathbb{Z})}(\mathbb{Z}_+)$ turns out to be the diagonal action:

$$b \cdot (\oplus_{n=0}^\infty e_n) = \oplus_{n=0}^\infty b e_n \text{ for } b \in \mathcal{D}, \oplus_{n=0}^\infty e_n \in \ell^2_{\ell^2(\mathbb{Z})}(\mathbb{Z}_+). \quad (6.18)$$

For purposes of getting a generating set for $\mathcal{F}^\infty(E^\sigma)$, it suffices to consider the single creation operator associated with $\eta^* = U^*$: the associated action on $\mathcal{F}^2(E, \sigma)$ turns out to be

$$T_{U^*, \sigma}^d = [t'_{i,j}]_{i,j \in \mathbb{Z}_+} \text{ where } t'_{i,j} = \begin{cases} U^* & \text{if } j = i + 1, \\ 0 & \text{otherwise.} \end{cases} \quad (6.19)$$

According to the duality result from [33], an operator R on $\ell^2_{\ell^2(\mathbb{Z})}(\mathbb{Z}_+)$ is of the form (6.16) if and only if R commutes with the scalar-diagonal operators (6.18).
and the E^σ-creation operator (6.19); an amusing exercise for the reader is to verify this fact directly for this example.

We now identify the Z-transform and compute the function spaces $H^2(E, \sigma)$ and $H^\infty(E, \sigma)$ as follows. By (6.17) we have an identification of $(E^\sigma)^*$ with the space of weighted shift operators UD in $\mathcal{L}(\ell^2(Z))$. After carrying out the identifications $E^{\otimes n} \otimes \sigma \mathcal{E} = \ell^2(Z)$, one can check that the generalized power $\eta^n : E^{\otimes n} \otimes \sigma \mathcal{E} \to \mathcal{E}$ of an $\eta \in (E^\sigma)^* = UD$ coincides with the usual power η^n as an element of the operator algebra $\mathcal{L}(\ell^2(Z))$. Therefore, for $f = \{ f_n \}_{n \in \mathbb{Z}_+} \in \ell^2_{\ell^2(Z)}(\mathbb{Z}_+)$ and $\eta = D_\eta U \in \mathbb{B}((E^\sigma)^*)$ (with $D_\eta \in \mathcal{D}$), we have

$$f^\wedge(\eta, b) = \sum_{n=0}^\infty \eta^n b f_n = \sum_{n=0}^\infty (D_\eta U)^n b f_n.$$

If we restrict the second variable $b \in \sigma(A)' = \mathcal{D}$ to be $b = I_{\ell^2(Z)}$, we have the restricted Fourier transform

$$\Phi^1 : f = \{ f_n \}_{n \in \mathbb{Z}_+} \mapsto f^\wedge(\eta, I_{\ell^2(Z)}) = \sum_{n=0}^\infty \eta^n f_n = \sum_{n=0}^\infty (D_\eta U)^n f_n.$$

We assert that the restricted Z-transform $\Phi^1 : f \mapsto f^\wedge := f^\wedge(\cdot, I_{\ell^2(Z)})$ is injective. Indeed, if $f^\wedge(\eta) = 0$ for all η, evaluating at $\eta = 0$ gives that $f_0 = 0$ and hence $F^\wedge(\eta) = \eta \cdot \sum_{n=0}^\infty f_{n+1} \eta^n = 0$. Choosing η invertible and premultiplying by η^{-1} then gives that

$$\sum_{n=0}^\infty f_{n+1} \eta^n = 0$$

for all invertible η. By approximating a noninvertible η by invertible η's, we see that (6.20) actually holds for all $\eta \in \mathbb{B}((E^\sigma)^*)$. Iteration of the same argument now gives that $f_n = 0$ for all $n \in \mathbb{Z}_+$, i.e., $f = \{ f_n \}_{n \in \mathbb{Z}_+}$ is the zero element of $\ell^2_{\ell^2(Z)}(\mathbb{Z}_+)$, and the assertion follows. Note that the $\sigma(A)' = \mathcal{D}$-action on $F^2(E, \sigma)$ is given by

$$d \cdot \{ f_n \}_{n \in \mathbb{Z}_+} = \{ df_n \}_{n \in \mathbb{Z}_+} \text{ for } d \in \mathcal{D}.$$

The completely positive kernel K associated with the reproducing kernel Hilbert correspondence $H^2(E, \sigma) = \Phi(\ell^2_{\ell^2(Z)}(\mathbb{Z}_+))$ is

$$K(\eta, \zeta)[b] = \sum_{n=0}^\infty \eta^n b \zeta^{*n} \text{ for } \eta, \zeta \in \mathbb{B}((E^\sigma)^*) = \mathbb{B}(UD) \text{ and } b \in \mathcal{D}.$$

Note that $\Phi^* K(\cdot, \zeta)[b] e = b \zeta e$ where $b \zeta e = \{ b \zeta^{*n} e \}_{n \in \mathbb{Z}_+} \in \ell^2_{\ell^2(Z)}(\mathbb{Z}_+)$.

We conclude that the subcollection

$$\{ b \zeta e : b \in \mathcal{D}, \zeta \in \mathbb{B}(UD), e \in \ell^2(Z) \}$$

has dense span in $\ell^2_{\ell^2(Z)}(\mathbb{Z}_+)$.

Vol. 99 (9999) Multivariable generalizations of the Schur class 57
An element R of $\mathcal{F}^\infty(E)$ is identified with a lower triangular matrix representing a bounded operator on $\ell^2(\mathbb{Z})$: it is convenient to represent such a matrix via a generalized Fourier series along subdiagonals:

$$R \sim \sum_{n=0}^{\infty} U^n d_n \text{ where } d_n \in \mathcal{D}. \quad (6.21)$$

(The Cesàro averages of the partial sums of the series converges to R in the weak-$*$ topology but we shall not need this.) Then $R \otimes I_{\ell^2(\mathbb{Z})}$, after the identification of $\mathcal{F}^2(E) \otimes_{\sigma} \ell^2(\mathbb{Z})$ with $\ell^2(\mathbb{Z}_+)$, is identified with the operator acting on $\ell^2(\mathbb{Z}_+)$ with the sparse matrix representation (6.16). For $\eta \in \mathbb{B}((E^*)^*) = \mathbb{B}(U\mathcal{D})$, the associated point evaluation of $R \otimes I_{\ell^2(\mathbb{Z})}$ is then given by

$$(R \otimes I_{\ell^2(\mathbb{Z})}) \langle \eta \rangle = \sum_{n=0}^{\infty} \eta^n R_n,0$$

$$= \sum_{n=0}^{\infty} \eta^n d_n \quad (6.22)$$

if R is given by (6.21). In particular, formally we recover R from $(R \otimes I_{\ell^2(\mathbb{Z})}) \langle \eta \rangle$ as

$$R = (R \otimes I_{\ell^2(\mathbb{Z})}) \langle \eta \rangle.$$

More precisely, we interpret the right-hand side of (6.23) as

$$(R \otimes I_{\ell^2(\mathbb{Z})}) \langle \eta \rangle = \lim_{r \uparrow 1} (R \otimes I_{\ell^2(\mathbb{Z})}) \langle r \eta \rangle. \quad (6.23)$$

The realization theorem (the equivalence of (1) and (3) in Theorem 5.1) assures us that any function of the form $(R \otimes I_{\ell^2(\mathbb{Z})}) \langle \eta \rangle$ with $\|R\| \leq 1$ can be realized as follows. Suppose first that \mathcal{H} is a $(\sigma(A)' = \mathcal{D}, \mathbb{C})$-correspondence, i.e., \mathcal{H} is a Hilbert space and there is a $*$-representation π of $\sigma(A)' = \mathcal{D}$ with values in $L(\mathcal{H})$. Noting that $U^* d \otimes_{\mathcal{H}} h = U^* \otimes_{\mathcal{H}} \pi(d) h \cong \pi(d) h$ for $\mu = U^* d \in E^* = U^* \mathcal{D}$ (so $d \in \mathcal{D} = \sigma(A)'$) and $h \in \mathcal{H}$, we see that $E^* \otimes_{\mathcal{H}} \mathcal{H}$ can be identified with \mathcal{H}, but at the price that the left $(\sigma(A)' = \mathcal{D})$-action on \mathcal{H} is given by $\pi^{(1)}$: $b \mapsto \pi(U b U^*)$ rather than by π. With this identification, we see that the unitary colligation U in (5.3) and (5.4) for this case has the form

$$U = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{H} \\ \ell^2(\mathbb{Z}) \end{bmatrix} \to \begin{bmatrix} \mathcal{H} \\ \ell^2(\mathbb{Z}) \end{bmatrix}$$

subject to

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \pi(b) \\ 0 \end{bmatrix} = \begin{bmatrix} \pi^{(1)}(b) \\ 0 \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ for all } b \in \sigma(A)' = \mathcal{D},$$

or, equivalently,

$$A \pi(b) = \pi(U b U^*) A, \quad B b = \pi(U b U^*) B, \quad C \pi(b) = b C, \quad D b = b D \quad (6.24)$$
for all $b \in \mathcal{D}$. The realization theorem then tells us that any $(R \otimes I_{\ell^2(\mathbb{Z})})^\wedge$ (where $R \in \mathcal{L}(\ell^2(\mathbb{Z}))$ is lower-triangular and contractive) can be realized as

$$(R \otimes I_{\ell^2(\mathbb{Z})})^\wedge(\eta) = D + C(I - \pi(\eta U^*)A)^{-1}\pi(\eta U^*)B. \quad (6.25)$$

Let us now consider a time-varying input/state/output linear system of the form

$$\Sigma : \begin{cases} x(n + 1) = A(n)x(n) + B(n)u(n) \\ y(n) = C(n)x(n) + D(n)u(n). \end{cases} \quad (6.26)$$

determined by the time-varying system matrix

$$U(n) = \begin{bmatrix} A(n) & B(n) \\ C(n) & D(n) \end{bmatrix} : \mathcal{H}(n) \rightarrow \mathcal{H}(n + 1).$$

We say that the system is conservative (respectively, dissipative) if each $U(n)$ is unitary (respectively, contractive). Let us assume that we have a dissipative time-varying linear system with time-varying system matrix $U(n) = \begin{bmatrix} A(n) & B(n) \\ C(n) & D(n) \end{bmatrix}$. Then it can be shown that, given an input string $\{u(n)\}_{n \in \mathbb{Z}}$ in $\ell^2(\mathbb{Z})$, there is a unique system trajectory $(u(n), x(n), y(n))$, i.e., solution of the system equations (6.26), such that $\lim_{n \rightarrow -\infty} x(n) = 0$ with the resulting output string $\{y(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$. In this way there is defined an input-output map T_Σ on $\ell^2(\mathbb{Z})$ such that $T_\Sigma : \{u(n)\}_{n \in \mathbb{Z}} \mapsto \{y(n)\}_{n \in \mathbb{Z}}$.

Let us introduce an aggregate state space

$$\mathcal{H} = \oplus_{n \in \mathbb{Z}} \mathcal{H}(n) \quad (6.27)$$

and an aggregate system matrix

$$U = \begin{bmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{bmatrix} : \mathcal{H}(\ell^2(\mathbb{Z})) \rightarrow \mathcal{H}(\ell^2(\mathbb{Z})) \quad (6.28)$$

with \mathcal{A}, \mathcal{B}, \mathcal{C} and \mathcal{D} specified by block-matrix entries

$$(A)_{i,j} = A(j)\delta_{i,j+1}, \quad (B)_{i,j} = B(j)\delta_{i,j+1}, \quad (C)_{i,j} = C(j)\delta_{i,j}, \quad (D)_{i,j} = D(j)\delta_{i,j}. \quad (6.29)$$

If the operator \mathcal{A} has spectral radius strictly less than 1 as an operator on \mathcal{H}, then one can compute that T_Σ is given by

$$T_\Sigma = \mathcal{D} + \mathcal{C}(I - \mathcal{A})^{-1}\mathcal{B} \in \mathcal{L}(\ell^2(\mathbb{Z})). \quad (6.30)$$

Even if \mathcal{A} does not have spectral radius strictly less than 1, there are various ways whereby one can still make sense of the formula (6.30); one such is via a limit

$$T_\Sigma = \lim_{r \uparrow 1} \mathcal{D} + \mathcal{C}(I - r\mathcal{A})^{-1}(r\mathcal{B}).$$

From the representation (6.30) for T_Σ one can compute that T_Σ has the diagonal decomposition

$$T_\Sigma = \sum_{n=0}^{\infty} U^n d_n \quad \text{where} \quad d_0 = \mathcal{D} \quad \text{and} \quad d_n = U^n \mathcal{C} \mathcal{A}^{n-1} \mathcal{B} \quad \text{for} \quad n \geq 1.$$
Hence an application of (6.22) gives us

$$(T \Sigma \otimes I_{\ell^2(Z)})^\wedge (\eta) = D + \sum_{n=1}^{\infty} \eta^n U^{*n} \mathcal{C} \mathcal{A}^{n-1} \mathcal{B}. \quad (6.31)$$

Given \mathcal{H} in the form (6.27), we may define a representation π of D by

$$\pi(b) : \oplus_{n \in \mathbb{Z}} \mathcal{h}(n) \mapsto \oplus_{n \in \mathbb{Z}} b(n) \mathcal{h}(n) \text{ for } b = \text{diag}_{n \in \mathbb{Z}} \{b(n)\} \in D.$$

Note that if $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ are as in (6.29), then U as in (6.28) satisfies the D-module property (6.24) (with $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ in place of A, B, C, D). By a careful induction argument making use of these relations, one can show that

$$\mathcal{C}(\pi(\eta U^*) \mathcal{A})^{k-1} \pi(\eta U^*) = \eta^k U^{**} \mathcal{C} \mathcal{A}^{k-1} \text{ for } k = 1, 2, \ldots.$$

One can then show that

$$\mathcal{D} + \mathcal{C}(I - \pi(\eta U^*))^{-1} \pi(\eta U^*) \mathcal{B} = \mathcal{D} + \sum_{n=1}^{\infty} \mathcal{C}(\pi(\eta U^*) \mathcal{A})^{n-1} \pi(\eta U^*) \mathcal{B}$$

$$= \mathcal{D} + \sum_{n=1}^{\infty} \eta^n U^{*n} \mathcal{C} \mathcal{A}^{n-1} \mathcal{B}$$

$$= (T \Sigma \otimes I_{\ell^2(Z)})^\wedge (\eta),$$

i.e., the aggregate colligation $U = \begin{bmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{bmatrix}$ arising from the realization of $T \Sigma$ as the input-output map for the time-varying linear system (6.26) gives rise to a realization of the form (6.25) for the function $(T \Sigma \otimes I_{\ell^2(Z)})^\wedge$ in the Muhly-Solel Schur class for this special setting.

This suggests a different approach to the realization theorem (the equivalence of (1) and (3) in Theorem 5.1) for this particular case. Given a contractive lower-triangular operator R on $\ell^2(\mathbb{Z})$, it is known (see [4, Theorem 6.2]) that one can realize R as the input-output map $R = T \Sigma$ of a conservative time-varying input/state/output linear system as in (6.26); the solution in [4] is given via a time-varying analogue of the Pavlov functional model, or, alternatively, via a time-varying analogue of the Sz.-Nagy-Foias or de Branges-Rovnyak functional model. Once we have realized R as $R = T \Sigma$ with Σ as in (6.26), we get $(R \otimes I_{\ell^2(Z)})^\wedge$ realized in the form (6.25) and hence we have recovered the implication (1) \implies (3) of Theorem 5.1. We conclude that the Muhly-Solel realization theorem for this case, after some translation, has essentially the same content as the conservative realization theorem for linear time-varying systems in [4].

References

[19] L. de Branges and J. Rovnyak, Canonical models in quantum scattering theory, in:
 Perturbation Theory and its Applications in Quantum Mechanics (C. Wilcox, ed.)

[20] K. Davidson, C*-Algebras by Example, Fields Institute Monographs Vol. 6, American
 Mathematical Society, Providence, 1996.

[21] K. Davidson and D. Pitts, The algebraic structure of non-commutative analytic

[22] K.R. Davidson and D.R. Pitts, Nevanlinna–Pick interpolation for non-commutative
 analytic Toeplitz algebras, Integral Equations Operator Theory 31 (1998), no. 3,
 321–337.

[23] M. Dritschel, S. Marcantognini, S. McCullough, Interpolation in Semigroupoid Alge-

[24] S.W. Drury, A generalization of von Neumann’s inequality to the complex ball,

[25] J. Eschmeier and M. Putinar, Spherical contractions and interpolation problems on

 (2004), 75-117

[29] V.M. Manuilov and E.V. Troitsky, Hilbert C*-Modules, Translations of Mathematical

[30] P.S. Muhly, A finite-dimensional introduction to operator algebra, in Operator al-

[31] P.S. Muhly and B. Solel, Tensor algebras over C*-correspondences: representations,

[33] P.S. Muhly and B. Solel, Hardy algebras, W*-correspondences and interpolation

[34] P.S. Muhly and B. Solel, Canonical models for representations of Hardy algebras,
 Integral Equations and Operator Theory 53 (2995), 411-452.

[35] P.S. Muhly and B. Solel, Hardy algebras associated with W*-correspondences (point
 evaluation and Schur class functions), in Operator Theory, systems theory and scat-

[36] P.S. Muhly and B. Solel, Schur class operator functions and automorphisms of Hardy
 algebras, preprint.

Joseph A. Ball
Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
e-mail: ball@math.vt.edu

Animikh Biswas
Department of Mathematics, UNCC, NC 24061-0123, USA
e-mail: abiswas@uncc.edu

Quanlei Fang
Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
e-mail: qlfang@math.vt.edu

Sanne ter Horst
Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
e-mail: terhorst@math.vt.edu