Oefenopgaven

ontleend aan:

Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, *Linear Algebra*

Charles W. Curtis, Linear Algebra: An Introductory Approach

Exercise 1.

Label the following statements as true or false. Justify your answers.

- (i) Every vector space contains a zero vector.
- (ii) A vector space may have more than one zero vector.
- (iii) In any vector space, ax = bx implies that a = b (for scalars a and b and a vector x).
- (iv) In any vector space, ax = ay implies that x = y (for vectors x and y and a scalar a).

Exercise 2.

In any \mathbb{F} -vector space V, show that (a+b)(x+y) = ax + ay + bx + by for any $x, y \in V$ and any $a, b \in \mathbb{F}$.

Exercise 3.

A real-valued function f defined on the real line is called an *even function* if f(-x) = f(x) for each real number x. Prove that the set of even functions defined on the real line with the usual operations of addition and scalar multiplication for functions is a vector space.

Exercise 4.

Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and $c \in \mathbb{R}$, define

$$(a_1, a_2) + (b_1, b_2) := (a_1 + b_1, a_2 b_2)$$
 and $c(a_1, a_2) := (ca_1, a_2).$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.

Exercise 5.

Let $V := \{(a_1, a_2) \mid a_1, a_2 \in \mathbb{F}\}$, where \mathbb{F} is a field. Define addition of elements of V coordinate wise, and for $c \in \mathbb{F}$ and $(a_1, a_2) \in V$, define

$$c(a_1, a_2) := (a_1, 0).$$

Is V a vector space over \mathbb{F} with these operations? Justify your answer.

Exercise 6.

Let $V := \{(a_1, a_2) \mid a_1, a_2 \in \mathbb{R}\}$. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in \mathbb{R}$, define

 $(a_1, a_2) + (b_1, b_2) := (a_1 + 2b_1, a_2 + 3b_2)$ and $c(a_1, a_2) := (ca_1, ca_2).$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.

Exercise 7.

Let $V := \{(a_1, a_2) \mid a_1, a_2 \in \mathbb{R}\}$. Define addition of elements of V coordinate wise, and for $(a_1, a_2) \in V$ and $c \in \mathbb{R}$, define

$$c(a_1, a_2) := \begin{cases} (0, 0) & \text{if } c = 0\\ (ca_1, \frac{a_2}{c}) & \text{if } c \neq 0. \end{cases}$$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.

Exercise 8.

Let V and W be vector spaces over a field \mathbb{F} . Let

$$Z := \{ (v, w) \mid v \in V \text{ and } w \in W \}.$$

Prove that Z is a vector space over \mathbb{F} with the operations

 $(v_1, w_1) + (v_2, w_2) := (v_1 + v_2, w_1 + w_2)$ and $c(v_1, w_1) := (cv_1, cw_1)$.

Exercise 9.

Label the following statements as true or false. Justify your answers.

- (i) If V is a vector space and W is a subset of V that is a vector space, then W is a subspace (= lineaire deelruimte) of V.
- (ii) The empty set is a subspace of every vector space.
- (iii) If V is a vector space other than the zero vector space, then V contains a subspace W such that $W \neq V$.
- (iv) The intersection of any two subsets of V is a subspace of V.
- (v) Let W be the xy-plane of \mathbb{R}^3 ; that is $W = \{(x, y, 0) \mid x, y \in \mathbb{R}\}$. Then $W = \mathbb{R}^2$.

Exercise 10.

Determine whether the following sets are subspaces of \mathbb{R}^3 under the operations of addition and scalar multiplication defined on \mathbb{R}^3 . Justify your answers.

- (i) $W_1 := \{(x, y, z) \in \mathbb{R}^3 \mid x = 3y \text{ and } z = -y\}$
- (ii) $W_2 := \{(x, y, z) \in \mathbb{R}^3 \mid x = z + 2\}$
- (iii) $W_3 := \{(x, y, z) \in \mathbb{R}^3 \mid 2x 7y + z = 0\}$

- (iv) $W_4 := \{(x, y, z) \in \mathbb{R}^3 \mid x 4y z = 0\}$
- (v) $W_5 := \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y 3z = 1\}$
- (vi) $W_6 := \{(x, y, z) \in \mathbb{R}^3 \mid 5x^2 3y^2 + 6z^2 = 1\}$

Exercise 11.

Prove that $U_1 := \{(x_1, \ldots, x_n) \in \mathbb{F}^n \mid x_1 + \ldots + x_n = 0\}$ is a subspace of \mathbb{F}^n , but $U_2 := \{(x_1, \ldots, x_n) \in \mathbb{F}^n \mid x_1 + \ldots + x_n = 1\}$ is not.

Exercise 12.

Let S be a nonempty set and \mathbb{F} a field. Let \mathbb{F}_0^S denote the set of all functions $f: S \to \mathbb{F}$ such that $f(x) \neq 0$ only for finitely many elements of S. Prove that \mathbb{F}_0^S is a subspace of the vector space of all functions from S to \mathbb{F} .

Exercise 13.

Prove that a subset W of a vector space V is a subspace of V if and only if $0 \in W$ and $ax + y \in W$ whenever $a \in \mathbb{F}$ and $x, y \in W$.

Exercise 14.

In each part, determine whether the given vector v is contained in the span (= opspansel) $L(v_1, v_2)$) of the vectors v_1 and v_2 .

- (i) $v = (2, -1, 1), v_1 = (1, 0, 2), v_2 = (-1, 1, 1)$
- (ii) $v = (-1, 2, 1), v_1 = (1, 0, 2), v_2 = (-1, 1, 1)$
- (iii) $v = (-1, 1, 1, 2), v_1 = (1, 0, 1, -1), v_2 = (0, 1, 1, 1)$
- (iv) $v = (2, -1, 1, -3), v_1 = (1, 0, 1, -1), v_2 = (0, 1, 1, 1)$

Exercise 15.

Show that the vectors (1,1,0), (1,0,1) and (0,1,1) generate \mathbb{F}^3 .

Exercise 16.

Label the following statements as true or false. Justify your answers.

- (i) If $S := (v_1, \ldots, v_n)$ is linearly dependent, then each vector in S is a linear combination of other vectors in S.
- (ii) Subsets of linearly dependent sets are linearly dependent.
- (iii) Subsets of linearly independent sets are linearly independent.

Exercise 17.

Determine whether the following sets are linearly dependent or linearly independent.

(i) ((1, -1, 2), (1, -2, 1), (1, 1, 4)) in \mathbb{R}^3 .

(ii) ((1, -1, 2), (2, 0, 1), (-1, 2, -1)) in \mathbb{R}^3 .

Exercise 18.

Let S := ((1, 1, 0), (1, 0, 1), (0, 1, 1)) be a 3-tupel of vectors in the vector space \mathbb{F}^3 .

- (i) Show that S is linearly independent if $\mathbb{F} = \mathbb{R}$.
- (ii) Show that S is linearly dependent if $\mathbb{F} = \mathbb{F}_2$.

Exercise 19.

Let u and v be distinct vectors in a vector space V. Show that (u, v) is linearly dependent if and only if u or v is a multiple of the other.

Exercise 20.

Give an example of three linearly dependent vectors in \mathbb{R}^3 such that none of the three is a multiple of another.

Exercise 21.

Let $f, g \in \mathbb{R}^{\mathbb{R}}$ be the functions defined by $f(x) := e^{rx}$ and $g(x) := e^{sx}$, where $r \neq s$. Prove that (f, g) is linearly independent in $\mathbb{R}^{\mathbb{R}}$.

Exercise 22.

Label the following statements as true or false. Justify your answers.

- (i) The zero vector space has no basis.
- (ii) Every vector space that is generated by a finite set has a basis.
- (iii) Every vector space has a finite basis.
- (iv) A vector space cannot have more than one basis.
- (v) If a vector space has a finite basis, then the number of vectors in every basis is the same.
- (vi) Suppose that V is a finite-dimensional vector space, that S_1 is a linearly independent subset of V, and that S_2 is a subset of V that generates V. Then S_1 cannot contain more vectors than S_2 .
- (vii) If S generates the vector space V, then every vector in V can be written as a linear combination of vectors in S in only one way.
- (viii) Every subspace of a finite-dimensional space is finite-dimensional.
- (ix) If V is a vector space having dimension n, and if S is a subset of V with n vectors, then S is linearly independent if and only if S spans V (= is een volledig stelsel).

Exercise 23.

Determine which of the following tupels are bases for \mathbb{R}^3 .

- (i) ((1,0,-1), (2,5,1), (0,-4,3))
- (ii) ((2, -4, 1), (0, 3, -1), (6, 0, -1))
- (iii) ((1, 2, -1), (1, 0, 2), (2, 1, 1))
- (iv) ((-1,3,1), (2,-4,-3), (-3,8,2))
- (v) ((1, -3, -2), (-3, 1, 3), (-2, -10, -2))

Exercise 24.

The vectors $u_1 = (2, -3, 1)$, $u_2 = (1, 4, -2)$, $u_3 = (-8, 12, -4)$, $u_4 = (1, 37, -17)$ and $u_5 = (-3, -5, 8)$ generate \mathbb{R}^3 . Find a subset of u_1 , u_2 , u_3 , u_4 , u_5 that is a basis for \mathbb{R}^3 .

Exercise 25.

Let W denote the subspace of \mathbb{R}^5 consisting of all the vectors having coordinates that sum to zero. The vectors

$$\begin{aligned} &u_1 = (2, -3, 4, -5, 2), & u_2 = (-6, 9, -12, 15, -6), \\ &u_3 = (3, -2, 7, -9, 1), & u_4 = (2, -8, 2, -2, 6), \\ &u_5 = (-1, 1, 2, 1, -3), & u_6 = (0, -3, -18, 9, 12), \\ &u_7 = (1, 0, -2, 3, -2), & u_8 = (2, -1, 1, -9, 7) \end{aligned}$$

generate W. Find a subset of u_1, u_2, \ldots, u_8 that is a basis for W.

Exercise 26.

The vectors $v_1 = (1, 1, 1, 1)$, $v_2 = (0, 1, 1, 1)$, $v_3 = (0, 0, 1, 1)$ and $v_4 = (0, 0, 0, 1)$ from a basis for \mathbb{F}^4 . Find the unique representation of an arbitrary vector (x_1, x_2, x_3, x_4) in \mathbb{F}^4 as a linear combination of v_1 , v_2 , v_3 and v_4 .

Exercise 27.

Let u and v be distinct vectors of a vector space V. Show that if (u, v) is a basis for V and a and b are nonzero scalars, then both (u + v, au) and (au, bv) are also bases for V.

Exercise 28.

Let u, v and w be distinct vectors of a vector space V. Show that if (u, v, w) is a basis for V, then (u + v + w, v + w, w) is also a basis for V.

Exercise 29.

The set of solutions to the system of linear equations

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_1 - 3x_2 + x_3 = 0$$

is a subspace of \mathbb{R}^3 . Find a basis for this subspace.

Exercise 30.

Let U and W be subspaces of a vector space V having dimensions m and n, respectively, where $m \ge n$.

- (i) Prove that $\dim(U \cap W) \leq n$.
- (ii) Prove that $\dim(U+W) \leq m+n$.

Exercise 31.

Determine which of the following subsets of \mathbb{R}^n are subspaces.

- (i) All vectors (x_1, \ldots, x_n) such that $x_1 = 1$.
- (ii) All vectors (x_1, \ldots, x_n) such that $x_1 = 0$.
- (iii) All vectors (x_1, \ldots, x_n) such that $x_1 + 2x_2 = 0$.
- (iv) All vectors $(x_1, ..., x_n)$ such that $x_1 + x_2 + ... + x_n = 1$.
- (v) All vectors (x_1, \ldots, x_n) such that $a_1x_1 + a_2x_2 + \ldots + a_nx_n = 0$ for fixed a_1, \ldots, a_n in \mathbb{R} .
- (vi) All vectors (x_1, \ldots, x_n) such that $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$ for fixed a_1, \ldots, a_n, b in \mathbb{R} .
- (vii) All vectors (x_1, \ldots, x_n) such that $x_1^2 = x_2$.

Exercise 32.

Test the following tupels of vectors in \mathbb{R}^2 and \mathbb{R}^3 to determine whether or not they are linearly independent.

- (i) ((1,1),(2,1))
- (ii) ((1,1),(2,1),(1,2))
- (iii) ((0,1),(1,0))
- (iv) ((0,1), (1,0), (x,y))
- (v) ((1,1,2), (3,1,2), (-1,0,0))
- (vi) ((3, -1, 1), (4, 1, 0), (-2, -2, -2))
- (vii) ((1,1,0), (0,1,1), (1,0,1), (1,1,1))

Exercise 33.

Find a set of linearly independent generators of the subspace of \mathbb{R}^3 consisting of all solutions of the equation

$$x_1 - x_2 + x_3 = 0.$$

Exercise 34.

Let v in \mathbb{R}^n be a linear combination of vectors u_1, \ldots, u_r in \mathbb{R}^n , and let each

vector u_i , $1 \le i \le r$, be a linear combination of vectors w_1, \ldots, w_s . Prove that v is a linear combination of w_1, \ldots, w_s .

Exercise 35.

Determine whether (1, 1, 1) belongs to the subspace of \mathbb{R}^3 generated by (1, 3, 4), (4, 0, 1), (3, 1, 2). Explain your reasoning.

Exercise 36.

Determine whether (2, 0, -4, -2) belongs to the subspace of \mathbb{R}^4 generated by (0, 2, 1, -1), (1, -1, 1, 0), (2, 1, 0, -2).

Exercise 37.

Let U and W be two-dimensional subspaces of \mathbb{R}^3 . Prove that $\dim(U \cap W) \ge 1$.

Exercise 38.

Let

$$v_1 = (2, 1, 0, -1), \quad v_2 = (1, -3, 2, 0), \quad v_3 = (-2, 0, 6, 1),$$

 $v_4 = (4, 8, -4, -3), \quad v_5 = (1, 10, -6, -2), \quad v_6 = (3, -1, 2, 4),$

and let

$$U := L(v_1, v_2, v_3, v_4), \qquad W := L(v_4, v_5, v_6).$$

Find dim U, dim W, dim(U + W) and dim $(U \cap W)$. Also, determine a basis of $U \cap W$.

Webpagina: http://www.math.ru.nl/~souvi/la1_08/la1.html