QUOTIENT SPACES

MATH 433, KEN BROWN

1. INTRODUCTION

Quotients are ubiquitous in modern algebra. A familiar example is the construc-
tion of Z,, the set of integers mod n. Informally, Z, is obtained by taking the
set Z of ordinary integers and identifying n with 0. This identification, of course,
forces us to make others. If n = 3, for example, we must identify —1 with 2 because
—1 =2 — 3; we express this identification by writing —1 = 2 mod 3 and saying —1
is congruent to 2 mod 3. In general, we construct Z, by identifying two integers
a,b whenever a — b is a multiple of n, in which case we write a = b mod n. Let’s
spell out what it means to “identify” two integers. A reference for what follows is
Appendix A.3 of your text.

2. EQUIVALENCE RELATIONS

Congruence mod 3 (or mod any fixed integer n) has the same formal properties
as equality:

o reflexivity: a = a.

e symmetry: a=b — b=a.

e transitivity: a=band b=c = a=c.
A relation with these three properties is called an equivalence relation. As we will
see, there is then a sensible way to “identify” equivalent elements, i.e., to regard
them as equal.

Given a set X with an equivalence relation =, an equivalence class is a set of the
form

E,={yeX:y=zx}

for fixed x € X. For example, congruence mod 3 on Z yields three equiva-
lence classes: Ey = {...,-3,0,3,6,...}, By = {...,—-2,1,4,7,...}, and Ey =

{...,=1,2,5,8,...}. More briefly, the three sets are 3Z, 1 + 3Z, and 2 + 3Z. Note
that there are many other names for these sets. For instance, £ = Fy = F_o =
—2+3Z = ---. You might find it helpful to plot the integers using three different

colors to represent the three equivalence classes.

As illustrated by this example, it is always true that X is partitioned into equiv-
alence classes; in other words, every x € X belongs to a unique equivalence class,
namely, E,.. You should check this as an exercise or see Appendix A.3 of the text.
The quotient of X by the equivalence relation is the set Y of equivalence classes.
Read that sentence again: Y is a set whose elements are sets. Picture the equiva-
lence classes as boxes; then Y is the set of these boxes. Putting equivalent elements
into the same box is the mathematical mechanism for “identifying” them.
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In the case of Z with the relation of congruence mod 3, the quotient is denoted Zs
and called the set of integers mod 3. It is a set whose three elements are the sets
37,1+ 37,2+ 37.

3. OPERATIONS ON QUOTIENTS

We do arithmetic in Z3 by doing operations on representative integers. For
example, to compute the sum of two equivalence classes A, B, choose representatives
a € A and b € B and form the sum ¢ = a + b. Then c is in a unique equivalence
class C, and we define A + B = C. For example,

(14 3Z) + (2 + 3Z) = (3 + 3Z) = 3Z.

It’s customary to label the equivalence classes by our favorite representatives 0, 1,2
and to write, for instance, 1 +2 = 0 in Zs. When we write this, of course, we are
really thinking, “1 + 2 = 3, which is in the same box as 0.”

Our definition of addition requires some justification, since it is potentially am-
biguous. How do we know we get the same box C no matter which representatives
a,b we choose? What has to be checked is that addition is compatible with con-
gruence:

a=d andb=b = a+b=d +7V.

You can check this in your head or on scratch paper.

Similar remarks apply to multiplication, and we obtain a rigorous construction of
the field with three elements. It would be a good exercise to verify that Zg satisfies
the field axioms (associativity, commutativity, etc.) as a formal consequence of
the fact that these properties hold in Z. The only exception is the existence of
multiplicative inverses, which doesn’t hold in Z but which happens to hold in Zjs
(but not in Zy).

4. QUOTIENT VECTOR SPACES

We now replace Z by a vector space V and 3Z by a subspace W C V. We wish
to construct a quotient space V/W in which all the vectors in W get identified with
the zero-vector. By analogy with the number theory example, we define a relation
of “congruence mod W” on V by declaring that

V=E=Ew < v—-wel

You should be able to check that this is an equivalence relation. The equivalence
classes are the affine subspaces (also called flats) v + W. For example, if V = R?
and W is a 1-dimensional subspace (line through the origin), then the equivalence
relation partitions R? into a family of parallel lines.

The quotient space V/W defined by congruence mod W has one element for each
affine subspace v+ W. You can visualize it by imagining a subspace W’ orthogonal
to W, cutting across these affine subspaces and giving a set of representatives for
them. Think of V/W as obtained by collapsing each affine subspace v + W to a
single point, represented by the intersection of v + W with W’. How would you
visualize V/W if V = R3 and W is 1-dimensional?

So far V/W is just a set. To make it a vector space, we proceed as in Section 3,
by choosing representatives. Concisely, the definitions read

(V+W)+ (wH+W):=(v+w)+W, a(v+ W) :=av+W.
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One must check that these operations are well-defined, independent of the choice of
representatives v, w. Once we’ve done this, it becomes a routine matter to verify
that V/W satisfies the axioms for a vector space.

5. CONCLUSION

If you’ve never seen quotients before, this construction might seem quite strange.
For now, just view it as an exercise in abstract thinking. Later we will see many
situations where quotients arise naturally.

6. EXERCISES

We continue the notation of Section 4: V is a vector space (over an arbitrary
field) and W is a subspace.

1. Verify that congruence mod W is an equivalence relation and that the equiva-
lence classes are the affine subspaces v + W.

2. Prove that addition and scalar multiplication in V/W are well-defined.
3. What’s the zero-vector in V/W?

4. If V has finite dimension n and W has dimension k, prove that V/W has di-
mension n — k. [Hint: Start with a basis for V' that contains a basis for W]

5. (extra credit) Discuss root adjunction from the point of view of quotients. [Hint:
Given a field F, the set F[z] of polynomials with coefficients in F' can be viewed
as obtained from F' by adjoining a new element x, subject to no relations. If we're
trying to create a root of a given polynomial f, we want to identify f(x) with 0.]



