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Abstract. This paper describes the classification of mag-
netic point and space groups which are also referred to as
antisymmetry groups or black-and-white groups. These
groups play an important role in the description of discrete
point sets in which the points are not only characterized
by their spatial coordinates but also by an additional prop-
erty taking one of two possible values (e.g. spin up or
down). Each operation of a magnetic group may or may
not switch the value of this additional property. In this
paper, the methods for classifying magnetic groups in arbi-
trary dimensions are described in an algorithmic fashion.
Results of the full classification in four-dimensional space
are given and the application of the magnetic groups in
this dimension to quasicrystals is indicated.

Introduction

Since the classification of the 3-dimensional crystallogra-
phic space groups into 230 affine classes at the end of the
19th century, several developments have inspired the in-
vestigation of generalized concepts of crystallographic
groups involving symmetry groups in dimensions exceed-
ing 3.

One important motivation was the discovery of quasi-
crystals which have certain rotational symmetries and
long-range order but no translational symmetry (see [13]).
In particular, one observes rotations of order 5, 8, 10 or
12 which are in conflict with the crystallographic restric-
tion in dimension 3. One possibility to describe structures
with these types of symmetries is to regard their points as
points of an integral lattice of higher degree, i.e. as inte-
gral linear combinations of a set of vectors which are line-
arly independent over the rational numbers but may be-
come dependent over the real numbers. One thus looks at
d-dimensional lattices embedded into the 2- or 3-dimen-
sional Euclidean space. The groups acting on these lattices
are described in a natural way by matrices giving the co-
ordinates with respect to a lattice basis, which are there-

fore integral matrices of degree d. For example, rotations
of order 5, 8, 10 or 12 may be represented by integral
matrices of degree d ¼ 4. Going one step further, one may
immediately consider lattice points in an abstract d-dimen-
sional space on which some higher-dimensional symmetry
group acts. From this abstract space, a 2- or 3-dimensional
point pattern can be obtained by a suitable projection
method, e.g. by the cut-and-project method commonly
used for quasicrystals (cf. [4]).

A second development arose from the study of crystals
in which every crystal site is characterized not only by its
spatial coordinates but also by some additional property.
The most prominent of such properties are magnetic mo-
ments, electric dipole moments or simply types of atoms.
In the case of a property that takes only two possible va-
lues, one often identifies these values with the colours
black and white or with the spins up and down. The corre-
sponding groups acting on the points are accordingly
called black-and-white groups or magnetic groups. The
1651 3-dimensional magnetic space groups (also known as
Shubnikov groups) were first classified by A. M. Zamor-
zaev [16] in 1953. It is worthwhile to note that it was
already proposed by H. Heesch [3] in 1930 that 3-dimen-
sional magnetic groups can be studied as reducible groups
in dimension 4 and that this approach led him to the clas-
sification of the 122 3-dimensional magnetic point groups.

The combination of quasiperiodic symmetries and mag-
netic properties now suggests to look at magnetic groups
in higher-dimensional spaces. In particular, magnetic sub-
stances with local 5-, 8-, 10- or 12-fold rotational symme-
try can be described via 4-dimensional magnetic groups,
which, following the philosophy of Heesch, can be studied
as reducible groups in dimension 5. With the classification
of the ordinary 5-dimensional space groups available (cf.
[12] and [10]), one approach would be to select the
groups in question from this list. This is in principle possi-
ble, but some subtle questions about equivalence arise,
since the ordinary classes in dimension 5 may have to be
split into several classes of magnetic groups because the
coordinate representing the magnetic property has to be
distinguished from the spatial coordinates. A more funda-
mental argument against this look-up approach is that it is
desirable that information can be produced locally, i.e. that
it is possible to compute only magnetic groups having cer-
tain symmetry properties, without relying on a full classi-
fication in a higher dimension.

Z. Kristallogr. 221 (2006) 77–82 / DOI 10.1524/zkri.2006.221.1.77 77
# by Oldenbourg Wissenschaftsverlag, München

* e-mail: souvi@math.ru.nl



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

We therefore take the geometric and arithmetic classes
of ordinary crystallographic point groups in dimension d
as starting point and determine the d-dimensional mag-
netic point and space groups from there. Our approach is
in line with the methods described in [8], however, some
issues are described in a more algorithmic setting, following
the philosophy of [10]. The methods described in the pre-
sent paper have a natural generalization to colour groups,
thus providing an algorithmic approach to the theory of
colour symmetry as presented in [6].

Magnetic point groups

As already suggested by Heesch [3], a d-dimensional
magnetic point group can be realized as a ðd þ 1Þ-dimen-
sional rational matrix group which acts on the direct pro-
duct of the d-dimensional space Rd with the 1-dimen-
sional spin space (consisting of only 2 possible values).

The matrices are of the form g ¼ g 0
0 e

� �
where g runs

over all elements of a finite subgroup G � GLðd;QÞ and
e ¼ 1 indicates that the element g fixes the spin configura-
tion while e ¼ �1 means that the spins are switched by g.
There are now three possibilities (the first of which can be
regarded as trivial):

ii(i) All e are 1. In this case all spins are preserved and
the group is isomorphic with G. These groups are
called junior or white groups.

i(ii) The identity element 1G of G occurs both with
e ¼ 1 and e ¼ �1, which means that all elements
of G occur both with and without spin inversion.
Such a group is isomorphic with the direct pro-
duct G� C2 and is called a senior or grey group.

(iii) Precisely half of the elements of G occur only
with e ¼ 1, the other half only with e ¼ �1. In
this case, the map associating to each g 2 G
its attached value e is a group homomorphism
G! C2. In particular, the set of elements with
e ¼ 1 is a normal subgroup H of index 2 in G,
namely the kernel of this homomorphism and the
magnetic group is a (nontrivial) subdirect product
of G and C2 (recall that a subdirect product of two
groups G1 and G2 is a subgroup S of the direct
product G1 � G2 such that the projections of S on
the two components are surjective).

Note that many authors actually refer only to the sub-
direct products of case (iii) as magnetic, black-and-white
or antisymmetry groups. To make a distinction we will
term the groups of case (iii) proper magnetic groups in
the sequel of this paper. A proper magnetic group is thus
uniquely characterized by a pair ðG;HÞ where H is the
subgroup of index 2 in G preserving the spin configura-
tion.

In order to classify the d-dimensional magnetic point
groups one has to find the subgroups of index 2 for repre-
sentatives of the point groups in dimension d. However,
depending on the classification level, different notions of
equivalence may be applied. The most natural classifica-
tions are those into geometric and arithmetic classes. For
the classification into geometric classes, the group G re-

presents its conjugates under GLðd;QÞ. We call two mag-
netic point groups ðG1;H1Þ and ðG2;H2Þ geometrically
equivalent if there exists a transformation t 2 GLðd;QÞ
such that t�1G1t ¼ G2 and t�1H1t ¼ H2. In particular, two
magnetic point groups can only be geometrically equiva-
lent if the groups G1 and G2 are geometrically equivalent
as ordinary point groups. We can therefore restrict our-
selves to the case G1 ¼ G ¼ G2 and check whether there
exists t 2 GLðd;QÞ such that t�1Gt ¼ G and t�1H1t ¼ H2.
Since the first condition means that t lies in the rational
normalizer N :¼ NGLðd;QÞðGÞ of G in GLðd;QÞ, we con-
clude that two magnetic point groups ðG;H1Þ and ðG;H2Þ
are geometrically equivalent if and only if H1 and H2 are
conjugate under an element t 2 N.

We therefore compute the orbits of the rational normal-
izer N of G on the subgroups H of index 2 in G and
choose a representative H from each orbit. Each such orbit
representative gives a representative of a geometric class
of magnetic point groups.

In an analogous way the arithmetic classes of magnetic
point groups are obtained. Here, a group G represents its
conjugates under GLðd;ZÞ and the stabilizer is its normal-
izer in GLðd;ZÞ. Hence, we take the orbit representatives
of subgroups H of index 2 under the action of the integral
normalizer NGLðd;ZÞðGÞ of G.

A remark about the different normalizers seems appro-
priate. An algorithm to compute the integral normalizer
NGLðd;ZÞðGÞ of a group G is described in [11]. From this,
the rational normalizer NGLðd;QÞðGÞ is obtained by adding
elements in the centralizer of the group (which are not
interesting in our case because they act trivially on the
subgroups) and elements obtained from the G-invariant
sublattices of Zd which have G-actions lying in the same
arithmetic class as G (see [15] for a more detailed discus-
sion).

Since the determination of the space groups requires
the normalizers of the point groups, we have to compute
the normalizers of the magnetic point groups as well. For
a magnetic point group ðG;HÞ, its normalizer is the stabi-
lizer S :¼ StabNðHÞ of H in the normalizer N of G. In the
process of computing the orbit representatives for the sub-
groups of index 2 in G we get this stabilizer almost for
free by the following method: Let N be generated by the
elements n1; n2; . . . ; ns. We get the orbit of H under N be
repeatedly applying the generators nj of N to the conju-
gate subgroups Hi of H found so far until no new conju-
gates occur. Each time we find a new conjugate Hi we
record an element ti 2 N which conjugates H to Hi. Ulti-
mately, we obtain a set ft1; t2; . . . ; trg of coset representa-
tives for the cosets of S in N which correspond to the
conjugates H1; . . . ;Hr of H under N. If we denote by n
the element ti such that n�1Hn ¼ t�1

i Hti, then the set
ftinjðtinjÞ�1 j 1 � i � r, 1 � j � sg is a set of generators
for S, called Schreier generators.

Magnetic space groups

Having analyzed the situation for magnetic point groups,
we can analogously apply the case distinction of white,
grey and proper magnetic groups to space groups. We thus
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obtain the following three cases for a magnetic space
group G:

(i) G is a white group, i.e. no element of the group
changes the spin arrangement. In this case G is an
ordinary space group and the white groups are
clearly in 1-1 correspondence with the space
groups.

(ii) G is a grey group, i.e. the identity element of an
ordinary space group G occurs with and without
spin inversion in G. This means that G ffi G � C2

and also the grey groups are in 1-1 correspondence
with the ordinary space groups.

(iii) The elements in G preserving the spin arrange-
ment form a subgroup of index 2, but the pure
spin inversion is not contained in G. Ignoring the
action of G on the spins turns G into an ordinary
space group G and the elements of G which fix
the spin arrangement form a subgroup H of index 2
in G.

The interesting case (iii) of proper magnetic space
groups can be split into two subcases:

(a) The translation subgroup of H is a subgroup of
index 2 in the translation subgroup of G and conse-
quently every element of the point group of G oc-
curs in the point group of H. In this case, H is
called a class-equal (klassengleich) subgroup of G.

(b) The translation subgroup of H is equal to the trans-
lation subgroup of G and thus the point group of H
is a subgroup of index 2 of the point group of G.
In this case, H is called a lattice-equal (zellen-
gleich) or translation-equal subgroup of G.

Starting from arithmetic classes of point groups, the
magnetic space groups with class-equal and lattice-equal
subgroups fixing the spin arrangement are determined by
slightly differing approaches.

Class-equal subgroups

We start with a grey point group G� C2 by adding

the matrix i :¼ 1G 0
0 �1

� �
for the spin inversion as a

generator to the group
g 0
0 1

� �
j g 2 G

� �
, where

G � GLðd; ZÞ is a representative of an arithmetic class in
dimension d. To obtain the magnetic space groups with
this group as point group, we compute the vector systems
for this group via a slight modification of the Zassenhaus
algorithm (cf. [18]) setting the translation component for
the additional spin coordinate to 0. As usual, the represen-
tatives for the equivalence classes of space groups are
found as orbit representatives for the action of the normal-
izer of G on the vector systems. Note that in this case
only the ordinary normalizer NGLðd;ZÞðGÞ is required, since
we are dealing with a grey group.

We now have two possibilities: Either the vector sys-
tem element for the spin inversion i is trivial, which
means that the space group contains spin inversion and is
therefore a grey group. Or the vector system element for
the spin inversion is non-trivial, which means that the
translation subgroup of the group preserving the spin con-
figuration is of index 2 in the full translation subgroup. In

the latter case we have therefore constructed a proper mag-
netic space group with class-equal subgroup fixing the
spin configuration.

Note that the special case of G being a Bravais group
gives as a byproduct the black-and-white Bravais lattices,
whose enumeration was already described in [9].

Lattice-equal subgroups

To obtain proper magnetic space groups with lattice-equal
subgroups fixing the spin configuration we start with a
proper magnetic point group ðG; HÞ. As in the case of
class-equal subgroups, the vector systems for this group
are computed using the modified Zassenhaus algorithm,
setting again the spin component to 0. To get representa-
tives for the equivalence classes of magnetic space groups,
we have to compute the orbits of the normalizer of the
point group on the vector systems. This time, the normal-
izer is the normalizer of the magnetic point group ðG; HÞ
which we obtain as the stabilizer of H in the integral nor-
malizer of G (as described earlier). In general, this normal-
izer is smaller than the ordinary normalizer of G, hence
the orbits on the vector systems may split into smaller
orbits under the normalizer of the magnetic point group.
This splitting of orbits reflects the fact that the subgroup
H may be oriented in different ways relative to the transla-
tion subgroup of the space group.

Enantiomorphism

Two point or space groups are called an enantiomorphic
pair if they are equivalent under a general linear or affine
transformation but not under an orientation-preserving
transformation. Note that by this definition enantiomorph-
ism is an abstract concept applicable in arbitrary dimen-
sions. However, its interpretation as handedness does not
always carry through the projection process into 2- or 3-di-
mensional physical space. In fact, enantiomorphism in the
higher-dimensional space is a stronger property, since op-
erations are regarded as orientation-preserving which may
not preserve orientations in the projection (for example the
product of two reflections one of which has a normal vec-
tor orthogonal to the physical space).

For ordinary point groups, determining enantiomorph-
ism comes down to deciding whether the normalizer of a
group contains elements of negative determinant (see
[15]). The same is true for magnetic point groups, pro-
vided the correct normalizer is considered. For a proper
magnetic point group given by a pair ðG; HÞ, we have
already seen that the normalizer is the stabilizer of H in
the normalizer of G.

For magnetic space groups, the situation is analogous
to that of ordinary space groups. If the point group is en-
antiomorphic because its normalizer contains only orienta-
tion-preserving transformations, all space groups with this
point group are enantiomorphic. Note that for a proper
magnetic point group ðG; HÞ we again have to use the
correct normalizer, i.e. the stabilizer of H in the normal-
izer of G. If the magnetic point group is itself not enantio-
morphic, enantiomorphism may still occur for some of the

The four-dimensional magnetic point and space groups 79
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space groups, namely in the case that the linear part of the
stabilizer of a space group contains only elements of posi-
tive determinant.

Results

The techniques described above have been used to recon-
struct the known classification results for magnetic groups
in dimensions 1, 2 and 3 and to obtain the corresponding
results in dimension 4.

Table 1 gives the numbers of proper magnetic point
and space groups as well as the total numbers of magnetic
groups, including the white and grey groups. Note that the
full number of magnetic groups on a classification level is
obtained as the number of proper magnetic groups plus
two times the number of ordinary groups on this level
(corresponding to the white and grey groups). For the
proper magnetic space groups, the numbers of groups with
class-equal and lattice-equal subgroup fixing the spin ar-
rangement, respectively, are also distinguished. The num-
bers given refer to equivalence classes under general linear
and affine transformations, the numbers of enantiomorphic
pairs are given in brackets.

In order to relate the results given to other results in
the literature it is worthwhile to note that in the notation
of Bohm symbols Gnst... (cf. [14], [17], [5]) the geometric
classes of white point groups correspond to the groups
Gd; 0, the geometric classes of all magnetic point groups to
Gdþ 1; d; 0, the classes of white space groups to Gd and the
classes of all magnetic space groups to the groups Gdþ 1; d.

Note that for dimension 3 there is a slight discrepancy
in the literature concerning the number of magnetic space
group types when disregarding enantiomorphism. While
[17] states that there are 1160 proper magnetic and 1598
magnetic space groups, [5] gives the correct number of
1594 magnetic groups.

Application to quasicrystals

The 4-dimensional point and space groups are of particu-
lar interest in connection with quasicrystals displaying oc-

tagonal, pentagonal, decagonal or dodecagonal symme-
tries.

There are different methods how a discrete point set
representing a 2-dimensional quasicrystal can be obtained,
amongst which the cut-and-project method described in
[4]. The idea of this method is as follows: A 2-dimen-
sional subspace V of R4 is chosen as physical space. In
the orthogonal space V? a bounded region B is selected,
which is called the acceptance region. Now only those
points of R4 whose orthogonal projection into V? lie in B
are projected into V . For the illustrations displayed below
we chose B to be the projection of the Voronoi-cell
around the origin with respect to the underlying 4-dimen-
sional lattice. In these examples the Voronoi-cell is a regu-
lar 24-cell and its projection a regular octagon.

It is clear that in order to obtain 2-dimensional quasi-
crystals with symmetries of order 8, 5, 10 or 12 by the cut-
and-project method we have to look at the crystal families
of rationally irreducible point groups in dimension 4.

On the one hand there are the octagonal, decagonal
and dodecagonal crystal families containing dihedral
groups with rotations of order 8, 10 and 12, respectively.
These groups are rationally irreducible but have invariant
subspaces of dimension 2 over the real numbers which are
the obvious choices for the physical space in the cut-and-
project method. The groups can be analyzed in a straight-
forward manner as suggested in [6], and for example the
octagonal crystal family has already been discussed in the
more general setting of spin groups in [7] and [2].

On the other hand the diisohexagonal (XXI), icosahe-
dral (XXII) and hypercubic (XXIII) crystal families (in the
terminology of [1]) of absolutely irreducible point groups
also contain symmetries of orders 8, 10 or 12 (note that
the hypercubic family admits symmetries of order 8 as
well as of order 12). Table 2 displays the numbers of mag-
netic groups for these crystal families, showing that they
provide us with a wealth of examples of interesting pat-
terns.

Although the groups in these families do not have
proper invariant subspaces themselves, they contain sub-
groups acting on 2-dimensional subspaces. If such a sub-
space is chosen as physical space, the pattern obtained by
the cut-and-project method will display the symmetries of

80 B. Souvignier

Table 1. Classification results for magnetic point and space groups.

Number of classes in dimension
1 2 3 4

Geometric classes 5 31 122 1025 (þ177)

white/grey 2 10 32 227 (þ44)

proper magnetic 1 11 58 571 (þ89)

Arithmetic classes 5 43 294 3653 (þ311)

white/grey 2 13 73 710 (þ70)

proper magnetic 1 17 148 2233 (þ171)

Space-group types 7 80 1594 (þ57) 61553 (þ674)

white/grey 2 17 219 (þ11) 4783 (þ111)

proper magnetic 3 46 1156 (þ35) 51987 (þ452)

class-equal 2 20 500 (þ17) 21872 (þ70)

lattice-equal 1 26 656 (þ18) 30115 (þ382)

Table 2. Classification results for absolutely irreducible crystal fa-
milies in dimension 4.

XXI XXII XXIII

Geometric classes 104 (þ49) 23 141 (þ77)

white/grey 22 (þ10) 7 37 (þ20)

proper magnetic 60 (þ29) 9 67 (þ37)

Arithmetic classes 220 (þ78) 54 300 (þ122)

white/grey 45 (þ15) 16 73 (þ30)

proper magnetic 130 (þ48) 22 154 (þ62)

Space-group types 250 (þ86) 64 1266 (þ386)

white/grey 53 (þ17) 20 205 (þ63)

proper magnetic 144 (þ52) 24 856 (þ260)

class-equal 0 0 195 (þ47)

lattice-equal 144 (þ52) 24 661 (þ213)
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the subgroup while the other symmetries of the full group
remain hidden. Of course, the subgroups we are interested
in are cyclic groups of orders 8, 5, 10 or 12 and the corre-
sponding dihedral groups of orders 16, 10, 20 or 24. For
these groups, the physical space can be determined as fol-
lows:

Let g 2 GLð4; ZÞ be an element of order m for

m 2 f8; 5; 10; 12g and let zm ¼ e
2pi
m , then the matrix

gþ g�1 has a 2-dimensional eigenspace for the eigenvalue
zm þ z�1

m and g acts as a rotation of order m on this eigen-
space. For the above values of m, these eigenvalues are

easily computed, namely: z8 þ z�1
8 ¼ 2 cos

p

4

� �
¼

ffiffiffi
2
p

,

z5 þ z�1
5 ¼ 2 cos

2p

5

� �
¼ 1

2
ð�1þ

ffiffiffi
5
p
Þ, z10 þ z�1

10

¼ 2 cos
p

5

� �
¼ 1

2
ð1þ

ffiffiffi
5
p
Þ and z12 þ z�1

12 ¼ 2 cos
p

6

� �

¼
ffiffiffi
3
p

. We thus choose the physical space V as the eigen-
space for the eigenvalue zm þ z�1

m of gþ g�1 and get the
orthogonal complement V? as the eigenspace for the other
eigenvalue of gþ g�1. Note that the irrationality of the
eigenvalues guarantees that the cut-and-project method
yields a non-periodic pattern.

We now give two examples of 2-dimensional black-
and-white point sets obtained from proper magnetic space
groups by the cut-and-project method. Both examples are
obtained from the same point group G, a group of order
16 in the hypercubic crystal system which contains a cyc-
lic group of order 8 as a subgroup. As explained above
we choose a 2-dimensional subspace invariant under an
element of order 8 as physical space in order to obtain
point patterns displaying 8-fold rotational symmetry.

The first example shows the effect of choosing differ-
ent subgroups fixing the spin configuration in the lattice-
equal case. The group G has three subgroups of index 2
from which we obtain three proper magnetic point groups.
Applying the space groups with trivial vector system for

these three magnetic point groups to a point in general
position (i.e. with trivial stabilizer) gives the patterns dis-
played in Fig. 1. The points of the underlying translation
lattice are indicated by little crosses.

In the second example we look at the class-equal case
for the same point group G. Here we have to choose a
non-trivial vector system, since the trivial vector system
corresponds to a grey group. We again apply the group to
a point in general position which yields the point pattern
displayed in Fig. 2. Note how the black points surround
the lattice points while the white points fill the gaps in
between. In fact, if instead to a point in general position
we applied the group to a point of the underlying lattice
(i.e. a point of maximal symmetry) we would obtain the
points of an octagonal black-and-white Bravais lattice as
described in [9].
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