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Chapter 1

Random number generators

Literature:

Donald E. Knuth: The Art of Computer Programming. Volume 2, Chapter 3.
Addison-Wesley, 1998.

1.1 What is randomness

1.2 Linear congruential method
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Chapter 2

Primality testing and proving

There is no point in arguing for the importance of prime numbers in mathematics. They
play a crucial role in many areas of pure mathematics, but likewise have found their way
into applications, e.g. in cryptography.

Of course there are infinitely many prime numbers, so finding one should not be too
hard. The prime number theorem asserts that the number of primes up to N is approx-
imately N

log(N)
, hence the chance that a random number picked is prime is about 1

log(N)
,

which is not bad at all. The only problem is that we need a means to distinguish prime
numbers from non-prime numbers. Methods to accomplish this are the issue of this section.

2.1 Elementary methods

2.1.1 Trial division

The most straightforward method to test whether a number N is prime is to try to divide
it by smaller numbers. Clearly, if N is not prime it has a divisor d ≤

√
N , hence it is

enough to try candidates up to
√

N . This provides us with our first test:

N is prime if and only if N 6≡ 0 mod d for all 2 ≤ d ≤
√

N.

Of course we do not have to test all d, we can restrict ourselves to prime numbers up
to

√
N . However, a list of primes may not be readily available and computing such a list

for each primality test (e.g. using the sieve of Eratosthenes) is fairly expensive. Computer
algebra systems like Magma use lists of primes up to certain bounds, but usually not
beyond 106 (note that from the prime number theorem we know that there are about
5 · 108 prime numbers with less than 10 digits, and that is already a very long list).

A compromise between testing all numbers up to
√

N and only prime numbers is to
test all numbers which are not multiples of 2, 3 or 5 (after testing 2, 3, 5 themselves). It
is very easy to implement running only over these numbers and as a result we only have
to test (1 − 1/2 − 1/3 − 1/5 + 1/6 + 1/10 + 1/15 − 1/30)

√
N = 4/15

√
N numbers, which

gives a speed-up of 3.75. Still, even with this speed-up, trial division does not lead far.

2



Random Algorithms Chapter 2. Primality testing and proving

Assume that we can perform 106 modulo operations per second. Then we can do
8.64 · 1010 modulo operations in a day. Thus, testing all numbers up to

√
N we can deal

with N < 8 ·1021 in a day. With our speed-up, we can push
√

N somewhat further, because
we only test 4/15 of the numbers. We can handle

√
N < 3.24 · 1011 and thus N < 1023.

Finally, if we indeed only test prime numbers, there are about 8.64 · 1010 prime numbers
up to 2.5 · 1012, hence we could reach N < 6 · 1024 if we only test true prime numbers up
to

√
N .

It is clear that a faster computer (with modulo operations implemented in its hardware)
and waiting somewhat longer does not yield any true progress, we can not expect to handle
numbers of more than 30 digits by trial division.

2.1.2 Fermat’s theorem

The consequence of the ’failure’ with trial division is to try to distinguish prime numbers
from non-prime numbers by their properties.

One such property is derived from Fermat’s theorem:

ap−1 ≡ 1 mod p for p prime and a with gcd(a, p) = 1.

As an immediate consequence of this theorem we get a powerful compositeness test:

if aN−1 6≡ 1 mod N for some a with gcd(a, N) = 1, then N is not prime.

Although applying the Fermat test for a couple of values of a will usually detect the
compositeness of N , there are composite numbers N which pass the Fermat test for every a.
These numbers are called Carmichael numbers. It has recently been proved that Carmichael
numbers are not as sparse as one might hope, up to a bound B there are more than B2/7

Carmichael numbers (for B sufficiently large).

2.1.1 Proposition A number N is a Carmichael number if and only if N =
∏k

i=1 pi with
pi distinct odd prime numbers, (pi − 1)|(N − 1) and k ≥ 3.

Proof: ⇐: If gcd(a, N) = 1, then clearly gcd(a, pi) = 1, hence api−1 ≡ 1 mod pi and
since (pi − 1)|(N − 1) we have aN−1 ≡ 1 mod pi. Since the pi are distinct primes, the
Chinese remainder theorem implies that aN−1 ≡ 1 mod N .
⇒: If N is even, we have (−1)(N − 1) = −1 6≡ 1 mod N , since N > 2 (being composite).
Thus, N has to be odd.

Next, assume that N = pq for two primes p < q. In this case we can never have
(q − 1)|(N − 1), since b(q − 1) = pq − 1 implies that b ≡ 1 mod q (after taking both sides
modulo q). Clearly, b = 1 is impossible and for b = q +1 we get b(q− 1) = q2 − 1 > pq− 1.

Now let p be a prime such that p2|N , then (p − 1)p|ϕ(N), hence (Z/NZ)∗ contains an
element a of multiplicative order p. We have ap ≡ 1 mod N and by assumption aN−1 ≡
1 mod N , hence gcd(p, N − 1) 6= 1, which is a contradiction.

We have shown that N is a product of at least three distinct odd primes pi. We now
choose a primitive element for each Z/piZ (i.e. an element of multiplicative order pi − 1)

3



Random Algorithms Chapter 2. Primality testing and proving

and via the Chinese remainder theorem find a such that a is a primitive element for all
the Z/piZ. By assumption we have aN−1 ≡ 1 mod N and thus a fortiori aN−1 ≡ 1 mod pi.
But pi − 1 is the multiplicative order of a modulo pi, hence we have (pi − 1)|(N − 1). 2

In the proof of the above theorem we have already used a stronger property of prime
numbers than Fermat’s theorem, namely that the multiplicative group (Z/NZ)∗ is a cyclic
group of order N − 1 if and only if N is a prime number. What we check in the Fermat
test is that all elements in (Z/NZ)∗ have order dividing N − 1. But that only means that
the least common multiple of the orders of elements in (Z/NZ)∗ (also called the exponent
of the group) divides N − 1.

In order to prove that N is prime it is sufficient to prove that the order of the group
(Z/NZ)∗ is N − 1 and that is the case if and only if there exists an element of order N − 1
(since the group then is cyclic). The problem is to show that the order of an element is
precisely N − 1 and not a proper divisor of N − 1.

One situation in which this can be efficiently tested is the case that the prime factors
of N − 1 are known. Then we have the following test (due to Lucas, Lehmer, Kraitchik):

2.1.2 Proposition Let N − 1 =
∏k

i=1 pei

i with pi distinct primes and ei ≥ 1. If for every

i there is an element ai such that aN−1
i ≡ 1 mod N and a

(N−1)/pi

i 6≡ 1 mod N , then N is a
prime number.

Proof: The fact that aN−1
i ≡ 1 mod N shows that the order of ai divides N − 1 and is

thus of the form
∏k

i=1 pfi

i with fi ≤ ei. Since a
(N−1)/pi

i 6≡ 1 mod N , if follows that fi = ei.
This shows that pei

i divides the order of (Z/NZ)∗. We therefore conclude that N−1 divides
the order of (Z/NZ)∗ which shows that N is prime. 2

2.2 Probabilistic primality tests

Literature:

E. Bach, J. Shallit: Algorithmic Number Theory. Volume I: Efficient Algorithms The
MIT Press, 1996.

The idea of probabilistic primality tests is to provide a method which guarantees the
primality of a number to a chosen level of certainty. Numbers certified by such a test are
often called (strong) pseudo-primes.

2.2.1 Miller-Rabin test

We still can look a bit more closely at the properties of Z/NZ in the case that N is a prime
number. We know that its multiplicative group is a cyclic group of order N − 1 and that
therefore all elements have order dividing N − 1. But Z/NZ is also a field and therefore
polynomials have at most as many roots as their degree. In particular, the polynomial
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X2 − 1 has only the roots +1 and −1. Thus, if we have an element of even multiplicative
order, then its square root has to be −1.

Checking this property is the idea of the Miller-Rabin test.

2.2.1 Miller-Rabin test Let N = 2sd + 1 with d odd. If N is prime, then any a ∈
(Z/NZ)∗ has order dividing 2sd and therefore fulfills either:

(i) ad ≡ 1 mod N or

(ii) (ad)2i ≡ −1 mod N for some 0 ≤ i < s.

If neither of these is fulfilled, a is a witness for the compositeness of N .

The interesting thing about the Miller-Rabin test is that there is a general estimate for
the number of witnesses for a composite N . There does not exist anything like Carmichael
numbers for which there are no or only few witnesses.

2.2.2 Theorem Let N 6= 9 be an odd composite number. Then the number of a ∈
(Z/NZ)∗ passing the Miller-Rabin test is at most 1

4
ϕ(N).

Proof: We have to estimate the number of a ∈ (Z/NZ)∗ with ad ≡ 1 mod N or
(ad)2i ≡ −1 mod N for composite N . Let r be the largest i such that there exists an
element a with (ad)2r ≡ −1 mod N , then r ≤ s − 1. Define m := 2rd, then m|(N − 1)
and 2m|(N − 1). Write N as N =

∏k
i=1 pei

i with pi distinct primes. We now define the
following subgroups of (Z/NZ)∗:
U1 := {a ∈ (Z/NZ)∗ | aN−1 ≡ 1 mod N} (elements of order dividing N − 1)
U2 := {a ∈ (Z/NZ)∗ | am ≡ ±1 mod pei

i for all pi} (elements of order dividing m or 2m in
(Z/pei

i Z)∗)
U3 := {a ∈ (Z/NZ)∗ | am ≡ ±1 mod N} (elements of order dividing m or 2m).
It is clear that U3 ≤ U2, since the order of an image in a factor group divides the order
in the full group. Since 2m|(N − 1) it follows via the Chinese remainder theorem that
U2 ≤ U1.

U3 is defined such that the elements a which pass the Miller-Rabin test (i.e. the non-
witnesses for the compositeness of N) lie in U3.

We now use the correspondence between Z/NZ and Z/pe1
1 Z × . . . × Z/pek

k Z to show
that [U2 : U3] = 2k−1. The group U3 contains those elements a for which am corresponds
to either (+1, . . . , +1) or (−1, . . . ,−1). On the other hand U2 contains those a for which
am corresponds to an arbitrary (±1, . . . ,±1) combination.

If k ≥ 3 we are done, since we have [U2 : U3] ≥ 4. If k = 1 we have |U1| = p − 1 and
[(Z/NZ)∗ : U1] = pe−1. Since N is an odd composite, we have p > 2 and e ≥ 2, hence we
are done except for N = 9, which we luckily excluded. Finally, if k = 2 we know that N
is not a Carmichael number, thus there are elements of (Z/NZ)∗ not lying in U1, hence
[(Z/NZ)∗ : U1] ≥ 2 and thus [(Z/NZ)∗ : U3] ≥ 4. 2
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The way to apply the Miller-Rabin test is straightforward: Test n randomly chosen
a ∈ (Z/NZ)∗ and check whether they pass the Miller-Rabin test. If so, N is prime with
probability ≥ 1 − (1/4)n. Note that it is important to choose the elements a randomly,
since for a given sequence a1, . . . , an of test elements it is possible to construct a composite
number N for which these ai pass the Miller-Rabin test.

2.2.2 Quadratic reciprocity

A further test in the flavour of the Miller-Rabin test is the Solovay-Strassen test which
uses the notion of quadratic residues. Like the Miller-Rabin test it has a global bound on
the number of non-witnesses for a composite number.

We will see that the Miller-Rabin test is strictly stronger than the Solovay-Strassen
test, i.e. a composite number passing the Miller-Rabin test for a certain a will also pass
the Solovay-Strassen test for the same a. However, historically the Solovay-Strassen test
was the first test with a global bound on the number of non-witnesses, so we regard it
worthwhile to consider it here.

The Solovay-Strassen test is based on investigating quadratic residues modulo p. We
call an integer a a quadratic residue modulo p if there exists some integer b such that
b2 ≡ a mod p. Quadratic residues are most easily handled by the Legendre symbol and its
generalization to non-prime numbers, the Jacobi symbol.

2.2.3 Definition Let p be an odd prime, a an integer and N =
∏k

i=1 pi with pi (not
necessarily distinct) primes.

(i) The Legendre symbol
(

a
p

)
is defined as

(
a

p

)

:=







0 if p | a;
1 if a is a quadratic residue modulo p;

−1 if a is not a quadratic residue modulo p.

(ii) The Jacobi symbol
(

a
N

)
is defined as

(
a

N

)

:=
k∏

i=1

(
a

pi

)

where the product runs over the Legendre symbols. In particular, the Jacobi symbol
coincides with the Legendre symbol for N prime (which justifies using the same
symbol). Note that the interpretation with respect to quadratic residues does not
hold for the Jacobi symbol.

The property of the Legendre symbol which we will use as a test for primality is the
following:
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2.2.4 Proposition For an integer a and a prime number p we have

a
p−1
2 ≡

(
a

p

)

mod p.

Proof: Let g be a primitive element of Z/pZ, i.e. an element of order p− 1 in (Z/pZ)∗.
Then the squares modulo p are precisely the even powers of g, hence

(
a
p

)
= 1 ⇔ a = g2m ⇔

a(p−1)/2 = (gp−1)m = 1. Similarly, the non-squares are the odd powers of g, hence we have
(

a
p

)
= −1 ⇔ a = g2m+1 ⇔ a(p−1)/2 = (gp−1)m · g(p−1)/2 = −1, since Z/pZ is a field. 2

The most important properties of the Legendre symbol are summarized in the following
theorem:

2.2.5 Theorem Let p and q be odd primes and let a, b be integers.

(i)
(

a
p

)
=

(
b
p

)
if a ≡ b mod p.

(ii)
(

ab
p

)
=

(
a
p

)
·
(

b
p

)
.

(iii)
(
2
p

)
= (−1)

p2
−1
8 =

{
1 if p ≡ ±1 mod 8

−1 if p ≡ ±3 mod 8.

(iv) Quadratic reciprocity law:
(

p
q

)
= (−1)

p−1
2

q−1
2

(
q
p

)
. This means that

(
p
q

)
=

(
q
p

)
if

p ≡ 1 mod 4 or q ≡ 1 mod 4 and
(

p
q

)
= −

(
q
p

)
if p ≡ q ≡ 3 mod 4.

Proof: (i): This follows immediately from the definition.
(ii): This follows from Proposition 2.2.4.
(iii): Let α := ζ8+ζ−1

8 , then α2 = 2, since ζ2
8 +ζ−2

8 = 0. We have αp ≡ ζp
8 +ζ−p

8 mod p, hence
αp ≡ α mod p if p ≡ ±1 mod 8 and αp ≡ −α mod p if p ≡ ±3 mod 8. By Proposition 2.2.4
we have

(
2
p

)
= 2(p−1)/2 = (α2)(p−1)/2 = αp−1, hence

(
2
p

)
= 1 if p ≡ ±1 mod 8 and

(
2
p

)
= −1

if p ≡ ±3 mod 8.

(iv): Let ζ := ζp := e
2πi
p be a primitive p-th root of unity and define α as the Gauss sum

α :=
∑p−1

k=1

(
k
p

)
ζk. We have

α2 =
∑

k,l

(
k

p

)(
l

p

)

ζk+l =
∑

k,l

(
kl

p

)

ζk+l.

Instead of k we can let kl run from 1 to p − 1 and substituting kl for k gives

α2 =
∑

k,l

(
kl2

p

)

ζkl+l =
∑

k,l

(
k

p

)

ζ l(k+1) =
∑

l

(−1

p

)

+
∑

k 6=p−1

(
k

p

)

(
∑

l

ζ l(k+1))

︸ ︷︷ ︸

=−1

.
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Since there are as many squares as non-squares between 1 and p−1 we have
∑p−1

k=1

(
k
p

)
= 0,

hence
∑

k 6=p−1

(
k
p

)
= −

(−1
p

)
and we thus obtain

α2 =
∑

l

(−1

p

)

−
∑

k 6=p−1

(
k

p

)

= (p − 1)

(−1

p

)

− (−
(−1

p

)

) = p

(−1

p

)

.

From this we obtain as a side result that α =
√

p if p ≡ 1 mod 4 and α =
√−p if

p ≡ 3 mod 4.
We have αq ≡ ∑

k=1 p − 1
(

k
p

)
ζqk ≡

(
q
p

)∑

k=1 p − 1
(

qk
p

)
ζqk ≡

(
q
p

)
α mod q. From this we

conclude that

(−1

p

)(q+1)/2

p(q+1)/2 = (α2)(q+1)/2 = αq+1 ≡
(

q

p

)

α2 =

(
q

p

)(−1

p

)

p mod q.

This shows that

(−1

p

)(q−1)/2

p(q−1)/2 =

(−1

p

)(q−1)/2(
p

q

)

≡
(

q

p

)

mod q,

which finally gives ((−1)(p−1)/2)(q−1)/2
(

p
q

)
=

(
q
p

)
. 2

The quadratic reciprocity law allows to compute the Legendre symbol very efficiently
in a way similar to the Euclidean algorithm. Here is an example:

(
76

131

)

=

(
2

131

)2(
19

131

)

= −
(

131

19

)

= −
(

17

19

)

= −
(

19

17

)

= −
(

2

17

)

= −1.

The nice thing about the Jacobi symbol is that the properties of the Legendre symbol
required to compute it still hold. The proof is left as an exercise, the crucial idea is to use
the multiplicativity and to observe that

∑ pi−1
2

≡ (
Q

pi)−1
2

mod 2.

2.2.3 Solovay-Strassen test

In contrast to the quadratic reciprocity law, Proposition 2.2.4 does not generalize to the
Jacobi symbol in general, and this is the property used in the Solovay-Strassen test to
distinguish prime and non-prime numbers.

The Solovay-Strassen test simply checks whether

a
N−1

2 ≡
(

a

N

)

mod N

for a randomly chosen integer a.

2.2.6 Theorem Let N be an odd composite number. Then the number of a ∈ (Z/NZ)∗

passing the Solovay-Strassen test is at most 1
2
ϕ(N).
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Proof: Let U1 := {a ∈ (Z/NZ)∗ | a(N−1)/2 ≡
(

a
N

)
mod N}. If we assume that U1 =

(Z/NZ)∗, we have in particular that aN−1 ≡ 1 mod N , thus N is a Carmichael number.
This means that N =

∏k
i=1 pi with k ≥ 3 and pi distinct primes. Using the Chinese

remainder theorem we can choose an integer a such that a is a primitive element modulo
p1 and a ≡ 1 mod pi for i ≥ 2. Then we have

(
a
N

)
=

∏k
i=1

(
a
pi

)
= −1. By our assumption

we have a(N−1)/2 ≡ −1 mod N and thus in particular a(N−1)/2 ≡ −1 mod p2 which is a
contradiction, since (p2 − 1)|(N − 1) and a(p2−1)/2 = 1 mod p2. This shows that even for
Carmichael numbers we have (Z/NZ)∗ 6= U1, hence [(Z/NZ)∗ : U1] ≥ 2 in all cases. 2

We close this section by proving that the Solovay-Strassen test is entirely superseded
by the Miller-Rabin test. It is an exercise to show that for composite numbers N with
N ≡ 3 mod 4 the two tests are equally strong, i.e. that the non-witnesses for the two tests
are the same.

2.2.7 Theorem Let N be a composite number and let a be a non-witness for the compos-
iteness of N in the Miller-Rabin test. Then a is also a non-witness in the Solovay-Strassen
test.

Proof: Let N =
∏k

i=1 pei

i with pi distinct (odd) primes and let N − 1 = 2sd with d odd.

For the non-witness a we either have ad ≡ 1 mod N or (ad)2r−1 ≡ −1 mod N for some
1 ≤ r ≤ s. If we set r = 0 in the first case we see that 2r is the 2-part of the order of a in
(Z/pei

i Z)∗. Since the 2-part of (Z/pei

i Z)∗ is already contained in (Z/piZ)∗ we see that 2r is
also the 2-part of the order of a in (Z/piZ)∗.

We now write pi − 1 = 2sidi with di odd, then si ≥ r. Let m be the sum of the ei

for which si = r. We have pi = 1 + 2sidi ≡ 1 + 2si mod 2si+1 and thus N ≡ (1 + 2r)m ≡
1 + m2r mod 2r+1.

If m is odd, we necessarily have r = s, hence a(N−1)/2) ≡ −1 mod pei

i . If m is even, we
conclude that 2r+1|(N − 1), hence 2r|N−1

2
and thus a(N−1)/2) ≡ 1 mod pei

i .
But we have

(
a
pi

)
= −1 ⇔ si = r, since a is a non-square modulo pi if and only if the

order of a contains the full 2-part of pi − 1. From this we see that
(

a
N

)
= (−1)m which

shows that a is a non-witness in the Solovay-Strassen test. 2

9



Chapter 3

Primality proving via elliptic curves

Literature:

Joseph H. Silverman: The Arithmetic of Elliptic Curves. Springer, 1986.

Henri Cohen: A Course in Computational Algebraic Number Theory. Springer, 1993.

3.1 Background on elliptic curves

In this section we will give a very brief introduction into the theory of elliptic curves,
tailored towards their application in primality proving.

3.1.1 Definition An elliptic curve E over a field K is the set of pairs (x, y) ∈ K × K
satisfying the cubic equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where the coefficients a1, a2, a3, a4, a6 lie in the algebraic closure K of K. If the ai all lie
in some field L, then the elliptic curve is said to be defined over L.

The above equation is called the affine form of the Weierstrass equation of the elliptic
curve. Elliptic curves are also studied in the context of projective geometry, in which case
the homogeneous form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

of the Weierstrass equation is considered. The transfer between the two forms is given by
the correspondence (X, Y, Z) = (X/Z, Y/Z, 1) ↔ (x, y). The case Z = 0 implies X = 0,
therefore the only point lost in the transfer from the projective to the affine form is the
point (0, 1, 0) which will be added in the affine case as the special point at infinity.

It can be seen that the Weierstrass equation of an elliptic curve can be simplified by
some linear transformations in x and y. In the case that char(K) 6= 2, 3 one obtains an
equation of the form

y2 = x3 + Ax + B.

10
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Two important invariants are used to characterize elliptic curves, which read as follows for
the simplified form of the Weierstrass equation:

(i) the discriminant ∆ := −16(4A3 + 27B2),

(ii) the j-invariant j := −1728(4A)3/∆.

It can be shown that two elliptic curves are isomorphic over K if and only if they have the
same j-invariant.

Similarly as the discriminant of a quadratic polynomial describes the set solutions
(none, one or two), the discriminant of an elliptic curves expresses the following about the
curve E:

(i) E is non-singular if and only if ∆ 6= 0. This means that every point on the curve is
smooth, i.e. has a well-defined tangent.

(ii) E has a node if ∆ = 0 and A 6= 0. In this case there are two tangents with different
slopes in the node.

(iii) E has a cusp if ∆ = 0 and A = 0. In this case the limits of the tangent slopes of
the two branches running into the cusp are the same, i.e. the cusp has a well-defined
direction.

3.1.1 The group structure

One of the many astonishing things about elliptic curves is that this set of solutions to a
cubic equation carries a group structure. The basis of this fact is that a line through two
points on the curve intersects the curve in a third point, due to the fact that projectively
the curve is given as solutions of a homogeneous polynomial of degree 3. Note that tangent
points have to be counted with multiplicities.

3.1.2 Theorem (Group law)
Let E be an elliptic curve and denote the point at infinity by O. Let P, Q be points on E
and let L be the line connecting P and Q (tangent line in P if P = Q). Let R be the third
point of intersection of L with E, let L′ be the line connecting R and O and let S be the
third point of intersection of L′ with E. Then P + Q := S defines a group law on E.

By the definition of the group law it is clear that E is an abelian group, since inter-
changing P and Q does not alter the line L. The coordinates of P + Q can be given
explicitly, e.g. for P = (x1, y1), Q = (x2, y2), P 6= Q one has P + Q = (x3, y3) with

x3 =
(x2 − x1)

2

(y2 − y1)2
− x1 − x2, y3 = −y1 +

y2 − y1

x2 − x1

(x1 − x3).

The hard part of the proof is the associative law. It can be checked (labouriously) us-
ing explicit formulae for the coordinates or (more smoothly) using some deeper theory
(Riemann-Roch theorem).

11
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3.1.2 Elliptic curves over C

It should not come as a surprise that in the case of complex numbers elliptic curves are
strongly related to elliptic functions. Recall that elliptic functions are defined as doubly
periodic meromorphic functions, i.e. functions f(z) on C with f(z + w) = f(z) for all w
in a lattice L = {aw1 + bw2 | a, b ∈ Z, w1/w2 6∈ R}. An elliptic function can therefore be
regarded as a function on the torus C/L.

The most important example of an elliptic function is the Weierstrass ℘-function given
as

℘(z) :=
1

z2
+

∑

w∈L\{0}
(

1

(z + w)2
− 1

w2

It is easily seen that ℘ is double periodic and one checks that it has double poles in the
lattice points and no other poles.

From the definition it is clear that ℘ is an even function, therefore its derivative ℘′

is an uneven elliptic function. The reason that the ℘-function is the most important
elliptic function lies in the fact that all elliptic functions for a given lattice L are rational
combinations of ℘ and ℘′, i.e. of the form

f(℘, ℘′)

g(℘, ℘′)

for polynomials f, g with complex coefficients.

Having found an elliptic function for a lattice L we can now use the Eisenstein weights
to obtain an elliptic curve. Let G2k(L) :=

∑

w∈L,w 6=0 w−2k, then this series is absolutely
convergent for k > 1. One now finds that

℘(z) = z−2 +
∞∑

k=1

(2k + 1)G2k+2z
2k.

Comparing coefficients in ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6 one sees that this is a
holomorphic function which is also elliptic and therefore has to be constant. Since it
vanishes for z = 0 one has

℘′(z)2 = 4℘(z)3 + 60G4℘(z) + 140G6 for all z ∈ C

We now define g2 := 60G4 and g3 := 140G6 and conclude that the points (℘(z), ℘′(z))
satisfy the equation y2 = 4x3 − g2x − g3.

The fact that we can associate an elliptic curve (over C) with a lattice in C leads to
an important new interpretation of the j-invariant. We start with some complex number
τinH in the upper halfplane and define the lattice L := Z + τZ. Then the associated
elliptic curve Eτ satisfies y2 = 4x3 − g2x− g3 and has discriminant ∆(Eτ ) = g3

2 − 27g2
3 and

j-invariant 1728g3
2/∆(Eτ ). We can therefore interpret j : H → C as a function from the

upper halfplane into C by defining j(τ) := j(Eτ )..

12
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It is now a fairly deep result that in the case that τ is an element in an imaginary
quadratic number field (i.e. of the form a + b

√
d with d < 0), j(τ) is an algebraic number

and the degree [Q(j(τ)) : Q] equals the ideal class number h(Q(τ)) of the imaginary
quadratic field containing τ .

3.1.3 Endomorphisms

As with most algebraic structures one also studies elliptic curves in connection with maps
between them. Since elliptic curves originally are defined as projective varieties satisfying
a cubic polynomial, the properties of the mappings in question are motivated by the geo-
metric background. One is interested in isogenies which are defined as morphisms mapping
the origin (point at infinity) of one curve to the origin of the other curve. A morphism, in
turn, is a rational map between two projective varieties which is regular in every point.

The important fact about elliptic curves is that the group law defines a morphism
+ : E × E → E, (P, Q) 7→ P + Q from E × E to E.

For a single elliptic curve E, the morphisms from E to E are called endomorphisms and
by pointwise addition and composition the endomorphisms of E form the endomorphism
ring End(E).

As a consequence of the fact that the group law is a morphism one sees that the
multiplication-by-m map

[m] : P 7→ P + . . . + P
︸ ︷︷ ︸

m

is an endomorphism of E. This shows that the endomorphism ring End(E) contains a
subring isomorphic with Z.

It now turns out that in many cases the multiplications by m ∈ Z are the only endo-
morphisms of an elliptic curve. For the precise statement we need some more terminology:

We say that Λ is an order in a Q-algebra A if Λ is a subring and lattice in A. The
latter means that there exists a Q-basis B of A such that Λ is the Z-span of this basis.

A definite quaternion algebra over Q is a 4-dimensional vector space A = Q + Qα +
Qβ + Qαβ with multiplication rules α2 ∈ Q, β2 ∈ Q, α2 < 0, β2 < 0, αβ = −βα. The
Hamilton-quaternions are an example of such an algebra. Note that quaternion algebras
contain several imaginary quadratic number fields.

3.1.3 Theorem The endomorphism ring of an elliptic curve E is isomorphic to one of:

(i) Z,

(ii) an order in an imaginary quadratic number field,

(iii) an order in a definite quaternion algebra over Q.

If End(E) is strictly larger than Z (i.e. in cases (ii) and (iii)) the elliptic curve E is said
to have complex multiplication.

13
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Case (iii) of the above theorem can only happen if char(K) > 0, in this case the curve E
is said to be supersingular. Over a finite fields, the cases (ii) and (iii) of the above theorem
can be distinguished by the j-invariant of the curve. In case j(E) ∈ Fp2 the curve E is
supersingular, otherwise, if j(E) ∈ Fp, then End(E) is an order in an imaginary quadratic
number field.

3.1.4 The order of an elliptic curve

An interesting question about elliptic curves is to determine the structure of the group of
the curve or at least the order of its torsion part. Over the complex numbers the elliptic
curve is of the form C/L for a lattice L and is thus a torus. Over an algebraic number
field K (thus in particular over Q) the situation is more complicated. The Mordell-Weil
theorem states that the group E(K) is finitely generated and therefore is of the form
E(K) ∼= Etors(K) × Zr. The order of the torsion part over a fixed field K is bounded, for
K = Q a theorem of Mazur states that Etors(Q) is one of Cm for 1 ≤ m ≤ 10 or m = 12
or C2 × C2m for 1 ≤ m ≤ 4. The rank r of a curve is much harder to determine and up to
now there has no algorithms been found that computes r in general.

Over finite fields it is clear that the group of the elliptic curve is a finite group and it
can be shown that it is either a cyclic group or a direct product of two cyclic groups, i.e.
that E(Fq) ∼= Cd1 × Cd2 with d2 | d1. In the case that E(Fq) is not cyclic one furthermore
knows that d2 | (q − 1).

Even though the structure of the group over a finite field is very simple, it is by no
means a simple question to determine its order. To estimate the order, one may argue as
follows: For a given value x ∈ Fq the question is whether x3 + Ax + B is a square in Fq

or not. If so, this x-value yields two points on the curve, if not there is no point with this
x-value. On average, the values x3 + Ax + B will be equally distributed over squares and
non-squares, thus one expects squares for half of the x-values. In total, this gives q points
and adding the point at infinity one estimates q + 1 as the order of the elliptic curve.

It turns out that this heuristic argument gives a reasonable estimate, more precisely,
Hasse’s theorem states the following:

3.1.4 Theorem (Hasse)
Let E be an elliptic curve over Fq, then the order of E(Fqr) is given by

|E(Fqr)| = qr + 1 − πr − πr

where π is an imaginary quadratic integer such that |π| =
√

q.
In particular, |E(Fq) − (q + 1)| ≤ 2

√
q.

Note that if we write |E(Fq)| = q + 1− a, then π is a root of the quadratic polynomial
X2 − aX + q.

We now have seen that elliptic curves have connections with imaginary quadratic fields
in two ways: a curve may have complex multiplication with an order in such a field and

14
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the order of the curve can be described via an element of norm q in an imaginary quadratic
number field. The nice thing is that these two connections are interrelated in the following
way:

3.1.5 Theorem Let E be an elliptic curve with complex multiplication by an order in the
imaginary quadratic number field of discriminant D.

(i) If
(

D
p

)

= −1, then |E(Fp)| = p + 1.

(ii) If there exists a prime element π in the maximal order Ad of Q(
√

D) such that ππ = p,
then |E(Fp)| = p + 1 − π − π.

In the second case the ideal (p) � Ad splits into a product (p) = P1 · P2 of prime ideals
with P1 = (π) and P2 = (π). Since the decomposition into prime ideals is unique, the
element π generating P1 is determined up to a unit in Ad. The unit group of Q(i) is
generated by i, the unit group of Q(ζ3) by −ζ3, for all other imaginary quadratic number
fields the unit group just consists of ±1. In this last case the order of E(Fp) is either
p + 1 − π − π or p + 1 + π + π for an element π of norm p.

3.2 Elliptic curves and primality

The basis for a primality test based on elliptic curves will be Hasse’s theorem. The idea is
to find a point of order too large to exist over all proper divisors of N . This is analogous to
Pocklington’s test which shows that the multiplicative group of Z/NZ contains an element
of an order that can only exist in the cyclic group of order N − 1.

The precise statement of the theorem is as follows:

3.2.1 Theorem Let E be an elliptic curve defined over Q and let N ∈ Z not divisible by
2 or 3.

(i) Assume there exist m ∈ N, q | m prime and a point P ∈ E(Z/NZ) such that

(a) q > ( 4
√

N + 1)2,

(b) m · P = (0, 1, 0),

(c) m
q
· P = (X, Y, Z) with Z ∈ (Z/NZ)∗.

Then N is prime.

(ii) If m = |E(Z/NZ)| and if q | m is a prime with q > ( 4
√

N + 1)2, then a point P with
the properties (b) and (c) above exists on E(Z/NZ).
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Proof: (i): Assume that N is composite, then N has a prime divisor p with p ≤
√

N .
Since Z ∈ (Z/NZ)∗, the reduction of m

q
·P in Z/pZ is also not 0, hence the order of P over

Z/pZ is a multiple of q. In particular we have

q ≤ |E(Z/pZ)| ≤ p + 1 + 2
√

p = (
√

p + 1)2 ≤ (
4
√

N + 1)2 < q

which is a contradiction, hence such a prime divisor p of N can not exist and hence N is
prime.
(ii): We use that E(Z/NZ) ∼= Cd1 × Cd2 , hence d1 is the exponent of E(Z/NZ) (the least
common multiple of the element orders) and m = d1d2. If we now assume that m

q
· P =

(0, 1, 0) for all P ∈ E(Z/NZ) we have d1 | m
q
, hence m = |E(Z/NZ)| = d1d2 ≤ d2

1 ≤ (m
q
)2,

hence q2 ≤ m <≤ N + 1 + 2
√

N = (
√

N + 1)2 and hence ( 4
√

N + 1)2 < q ≤
√

N + 1, which
is a contradiction. 2

The above theorem can be slightly improved by replacing q in condition (a) by a
composite number s and by changing condition (c) into m

q
·P = (X, Y, Z) with Z ∈ (Z/NZ)∗

for all prime divisors q of s. This condition suffices to show that s divides the order of
P in the reduction modulo p, leading to the same contradiction as above. However, in
applications m will usually be too big to obtain a complete factorization and q will be the
unfactored part of m which is suspected to be prime by a Miller-Rabin test.

3.2.1 Goldwasser-Kilian test

The first practical algorithm to prove primality via elliptic curves was given by Goldwasser
and Kilian in 1986. It was later improved by Atkin and Morain and can now deal with
primes of more than 200 digits. We will first outline the algorithm and then comment on
some crucial points.

3.2.2 Algorithm (Goldwasser-Kilian)

(1) choose A, B ∈ Z/NZ randomly such that the discriminant ∆ := 4A3 + 27B2 ∈
(Z/NZ)∗ and let E be the elliptic curve defined by y2 = x3 + Ax + B

(2) compute the order m = |E(Z/NZ)| of E using e.g. Schoof’s algorithm

(3) split off small prime factors from m using trial division and (e.g.) the Pollard-ρ and
Pollard-(p − 1) methods; use the Miller-Rabin test to check whether the remaining
unfactored part q of m is prime and > ( 4

√
N + 1)2; if it is not prime, go back to step

(1) and choose new coefficients A, B

(4) find a point P on the curve: choose x randomly and check whether
(

x3+Ax+B
N

)

6= −1;

if so, compute a root y of x3 + Ax + B, if not choose a new x

(5) test whether m · P = (0, 1, 0) and m
q
· P 6= (0, 1, 0); if the first is not the case, N is

not prime, if the second does not hold, go back to step (4) and select a new point P

16
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(6) iterate the algorithm to prove that q found in step (3) is prime

Remarks:

(2) This is the main stumbling block in the algorithm. Computing the order of an
arbitrary elliptic curve is still a computationally hard task, but progress has been
made due to ideas of Atkin, Morain, Elkies and others.

(3) In the (unlikely) case that q is tested to be prime but is smaller than ( 4
√

N + 1)2, we
can use the improved variant of theorem 3.2.1 to prove the primality of N .

(4) In the case that
(

x3+Ax+B
N

)

= 0 we have gcd(x3 +Ax+B, N) 6= 1, which means that

we either found a proper factor of N or that we can use the point P = (x, 0, 1).
For the computation of a square root modulo N there are different possibilities:

(a) Cantor-Zassenhaus: We are looking for a root y of the polynomial T 2 − (x3 +
Ax + B) which we know to exist modulo N by means of the Jacobi-symbol.
Hence, the polynomial splits into linear factors and we can find a linear factor
with chance 0.5 by computing gcd(F (N−1)/2−1, T 2− (x3 +Ax+B)) for random
(linear) polynomials F = T + c.

(b) Tonelli-Shanks: Let N − 1 = 2sd with d odd, then (Z/NZ)∗ ∼= C2s × Cd (note
that we assume that N is prime). Let b be a non-square in Z/NZ, i.e.

(
b
N

)
= −1,

then g := bd is a generator for the 2-Sylow subgroup C2s of (Z/NZ)∗. We now
can write c := x3 + Ax + B as c = geh with 0 ≤ e < 2s and h ∈ Cd. Note that
every element h ∈ Cd is a square in Z/NZ, since (h(d+1)/2)2 = hd+1 = h. Thus,
e has to be even for c square. We now determine the 2-adic expansion of e as
follows: let ei ≡ e mod 2i, then e1 = 0 since e is even. Now assume that ei has

been determined. Then we check whether (cg−ei)
N−1

2i+1 = 1. If so, set ei+1 := ei,

if not set ei+1 := ei +2i (note that (cg−ei)
N−1

2i+1 will always lie in the subgroup C2

of C2s). We finally set h := cg−e and define y := ge/2h(d+1)/2, then y2 = geh = c.

(6) The algorithm has to be iterated, since the unfactored part of the order of E is only
prime with a certain probability. The sequence of numbers proven prime, together
with the curves (given by their coefficients), their orders and the points used form a
certificate for the primality of N .

3.2.2 Atkin’s test

The bottleneck in the Goldwasser-Kilian test is the determination of the order m of the
elliptic curve. To overcome this problem, Atkin suggested to reverse the process: for
curves with complex multiplication in an imaginary quadratic field we can determine the
order easily by finding a prime element π of norm N . The idea is thus to first select
the endomorphism ring of the curve and then to determine a particular curve with that
endomorphism ring.
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Recall that the discriminant of an algebraic number field K is defined as disc(K) :=
det(tr(bibj)) where (b1, . . . , bn) is an integral basis of K (i.e. a basis of the maximal order of
K). A different formulation is that disc(K) = det(σi(bj))

2 where σi denotes the n different

embeddings of K into C. For squarefree d the maximal order Ad of Q(
√

d) is Ad = Z[
√

d]

if d ≡ 2, 3 mod 4 and it is Ad = Z[1+
√

d
2

] if d ≡ 1 mod 4. Therefore, the quadratic number

field Q(
√

d) has discriminant D = d if d ≡ 1 mod 4 and D = 4d if d ≡ 2, 3 mod 4.

3.2.3 Algorithm (Atkin)

(1) choose a discriminant D < 0 such that
(

D
N

)
= 1

(2) find a solution of x2 − Dy2 = 4N , then π := (x + y
√

D)/2 is an element of norm
N , i.e. we have ππ = N ; if no solution exists, go back to step (1) and choose a new
discriminant

(3) computer the order of E as m = |E(Z/NZ)| = N + 1 − a where a = π + pi; split off
small prime factors from m using trial division and (e.g.) the Pollard-ρ and Pollard-
(p−1) methods; use the Miller-Rabin test to check whether the remaining unfactored
part q of m is prime and > ( 4

√
N + 1)2; if no q is found, we can replace π by −π and

try the same for m = N + 1 + a; if no suitable q is found, go back to step (1) and
choose a new discriminant D

(4) compute the minimal polynomial of the (complex) j-invariant j(τ) of Eτ for τ =
D+

√
D

2
(which amounts to the same as τ =

√
d for d ≡ 2, 3 (mod 4) and τ = 1+

√
d

2

for d ≡ 1 (mod 4)) and find a root modulo N of this minimal polynomial (which
is guaranteed to exist); let c := j

j−1728
and let g be a non-square modulo N ; then

E1 : y2 = x3 − 3cx + 2c and E2 : y2 = x3 − 3cg2 + 2cg3 are representatives of the two
classes of elliptic curves with complex multiplication in Q(

√
d) and j-invariant j(τ)

(5) find a point P on E1 (as in the Goldwasser-Kilian algorithm); if m · P 6= (0, 1, 0) we
are on the wrong curve and have to use E2 instead; if m

q
· P = (0, 1, 0), choose a new

point, otherwise N is proven to be prime (subject to the primality of q)

(6) iterate the algorithm to prove that q found in step (3) is prime

Remarks:

(1) This condition means that the principal ideal (N) splits into a product of two prime
ideals in Q(

√
d). Note that 4d is a square in Z/NZ if and only if d is a square. Since

the complexity of the algorithm depends on the discriminant D, in particular on the
ideal class number of Q(

√
d), one usually starts with the discriminants belonging to

quadratic number fields with class number 1, then goes to class number 2 and so on.

(2) We know that the principal ideal (N) splits into a product of two prime ideals P1

and P2. These prime ideals have norm N , since (N) has norm N 2 (the norm of an
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ideal is its index in the maximal order Ad). Moreover, P2 is the ideal containing the
complex conjugates of the elements in P1, and since the decomposition into prime
ideals is unique this shows that P1 and P2 are the only ideals of norm N .

(a) If d ≡ 2, 3 (mod 4) choose x0 such that x2
0 ≡ d (mod N). Now let L be the

sublattice of Ad generated by N and x0 +
√

d, then L has index N in Ad.
Furthermore we see that L � Ad, since

√
d · N = −x0 · N + N · (x0 +

√
N) ∈ L

and
√

d · (x0 +
√

d) = d + x0

√
d =

d−x2
0

N
·N + x0 · (x0 +

√
d) ∈ L (since d− x2

0 is
a multiple of N).

(b) If d ≡ 1 (mod 4) choose x0 such that x0 is odd and x2
0 ≡ d (mod N) (if x0

is even, then N − x0 is odd and (N − x0)
2 ≡ x2

0 (mod N)). Then
x2
0−d

4N
is an

integer.

Now let b := x0+
√

d
2

, then b is an integral element with norm
x2
0−d

4
. Let L be the

sublattice of Ad generated by N and b, then L has index N in Ad. Furthermore,
(1, b) form an integral basis of Ad, since b = −b + x0. To check that L is
an ideal in Ad, we see that b · N = (x0 − b) · N = x0 · N − N · b ∈ L and

b · b =
x2
0−d

4
=

x2
0−d

4N
· N ∈ L.

In both cases we have explicitly found an ideal L of index N in Ad. In order to
determine whether the L is a principal ideal we have to check whether there exists an
element of norm N . If so, it has to be an element of minimal norm in L, since the norm
of an element is the index of the principal ideal generated by it, i.e. N(a) = [Ad : (a)].
It therefore suffices to compute an element of minimal norm in L. If it has norm
N , the ideal L is a principal ideal, otherwise it is not and there exists no element of
norm N .

To find an element of minimal norm we apply Gauss-reduction. Let L be a 2-
dimensional lattice generated by the vectors v and w with ‖v‖ ≤ ‖w‖. Choose
λ ∈ Z such that ‖w − λv‖ is minimal. Then we can replace the basis (v, w) by the

improved basis (v, w − λv). The value of λ is the integer closest to 〈v,w〉
‖v‖2 , where 〈·, ·〉

denotes the inner product derived from the norm ‖ · ‖. The crucial observation is
now:
Theorem: The vector v is a vector of minimal length if w can not be improved by
this procedure.
Proof: Let u = av + bw ∈ L. Let a = qb + r with 0 ≤ r < |b| (if b = 0 then
‖u‖ ≥ ‖v‖ and we are done). Then ‖u‖ = ‖b(qv + w) + rv‖ ≥ |b|‖qv + w‖− r‖w‖ ≥
(|b| − r)‖v‖ ≥ ‖v‖, since by assumption ‖qv + w‖ ≥ ‖w‖ ≥ ‖v‖ and |b| − r ≥ 1.

(3) For the discriminants D = −4 and D = −3 we have even more possibilities for
m, since the unit groups of these fields are bigger. For D = −4 we can try m of
the form m = N + 1 − (ikπ + (−i)kπ) for 0 ≤ k < 4 and for D = −3 we can try
m = N + 1 − (ζk

6π + ζ−k
6 π) for 0 ≤ k < 6.
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(4) The minimal polynomial of j(τ) is called the Hilbert class polynomial and is known
to have degree h(D), where h(D) is the ideal class number of Q(

√
d). There are

direct methods to obtain this Hilbert class polynomial without actually computing
j(τ), but instead enumerating the reduced forms of discriminant D.

However, one can also approximate j(τ) numerically as follows: writing q := e2πiτ

one has
g2 = 60

∑

w∈L\{0} w−4 = 1
12

(2π)4(1 + 240
∑

n≥1
n3qn

1−qn ) and

g3 = 140
∑

w∈L\{0} w−6 = 1
216

(2π)6(1 − 504
∑

n≥1
n5qn

1−qn ).

From these values one computes ∆τ = g3
2 − 27g2

3 and j(τ) = 1728g3
2/∆τ .

Having obtained a numerical approximation of j(τ) and knowing the degree h(D)
of the minimal polynomial of j(τ) one can find the minimal polynomial by lattice
reduction methods. The idea is to look at the lattice of linear combinations of
the powers of j(τ) which are close to 0. More precisely, one takes the lattice Lk

of those (c0, . . . , cn) ∈ Zn+1 (for n = h(D)) such that
∑n

i=0 cibj(τ)i · 10kc ≡ 0
(mod 10k). This lattice has index 10k in Zn+1 and a basis is v0 = (10k, 0, . . . , 0) and
vi = (bj(τ)i · 10kc, 0, . . . ,−1, 0, . . .), with the −1 in the (i + 1)st component. Clearly,
Lk contains as a 1-dimensional sublattice the multiples of the minimal polynomial of
j(τ). The other elements, however, are virtual relations between the powers of j(τ)
and will vanish on increasing k. Therefore, the minimal polynomial can be found as
a vector of minimal length in Lk once k is large enough in order to make the norms
of each virtual dependency several orders of magnitude larger than the norm of the
minimal polynomial.
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Chapter 4

Galois groups

Literature:

B.L. van der Waerden Algebra I. Springer, 1971.

Emil Artin: Galois Theory. Dover, 1998.

This chapter is devoted to certain aspects of Galois theory, in particular the determi-
nation of Galois groups. Galois theory describes the intermediate fields in a field extension
in terms of the groups of field automorphisms in a most elegant manner. This topic stands
at the crib of (abstract) group theory and has connections to classical problems like the
construction of regular n-gons and the solution of equations by radicals.

4.1 Field extensions

In this section we will recapitulate some basic facts about field extensions.
A field extension L/K is a pair of fields L ⊇ K and the larger field L can be viewed as

a K-vector space (since the field axioms imply the vector space axioms). The dimension of
this vector space is called the degree of the extension, denoted by [L : K] and the extension
is called finite if this dimension is finite.

The degree theorem says that for finite field extensions L/M and M/K the extension
L/K is also finite with degree [L : K] = [L : M ] · [M : K].

We will only be concerned with algebraic field extensions, i.e. extensions in which every
element is a root of a monic polynomial with integral coefficients. Whereas finite extensions
are always algebraic, the opposite is not necessarily true, for example the algebraic closure
Q of the rationals (consisting of all α ∈ C which are algebraic over Q) has infinite degree.

If a field extension L/K is of the form L = K(α) we call it a simple field extension.
A simple field extension L = K(α) is characterized by the minimal polynomial of α.

The other way round, we can also start with an irreducible polynomial f and construct
a simple extension from it: By Kronecker’s theorem we know that L := K[X]/(f) is a
simple field extension of degree deg(f) generated by the root X + (f) of f . Iteration of
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this construction shows the existence of a splitting field for an arbitrary polynomial f over
K (recall that a splitting field of a polynomial f is defined to be a minimal field in which
f splits into linear factors, i.e. a field obtained by adjoining only roots of f). In order to
establish uniqueness (up to isomorphism) of the splitting field we need some additional
results which are interesting in their own right.

4.1.1 Theorem Let ϕ : K → K ′ be a field isomorphism, let f ∈ K[X] be irreducible
and let α ∈ L ⊇ K be a root of f in some field extension. If α′ ∈ L′ ⊇ K ′ is a root
of ϕ(f) (where ϕ is applied to the coefficients of f), then there exists an isomorphism
ϕ̃ : K(α) → K ′(α′) which extends ϕ and maps α to α′.

Proof: Since K(α) is generated by K and α there is actually no choice in the definition
of ϕ̃: we require ϕ̃(c) = ϕ(c) for c ∈ K and ϕ̃(α) = α′. To show that this defines
an isomorphism note that the mapping

∑
ciα

i 7→ ∑
ϕ(ci)α

′i induces an isomorphism
K(α) ∼= K[X]/(f) → K ′(α′) ∼= K ′[X]/(ϕ(f)), which is precisely ϕ̃. 2

If we apply this theorem with ϕ = idK we see that two roots α, β of an irreducible
polynomial f generate isomorphic extensions K(α) ∼= K(β).

4.1.2 Theorem Let ϕ : K → K ′ be a field isomorphism, let f ∈ K[X] and let L =
K(α1, . . . , αn) be a splitting field of f over K. If L′ = K ′(β1, . . . , βn) is a splitting field of
ϕ(f) over K ′, then there exists an extension ϕ̃ of ϕ such that ϕ̃ : L → L′ is an isomorphism
and ϕ̃(αi) = βπ(i) for a suitable permutation π.

Proof: Let f1 be an irreducible factor of f , then we can assume the αi to be numbered
such that f1(α1) = 0. We have ϕ(f)(βj) = 0 for a suitable j and by theorem 4.1.1 we
can extend ϕ to ϕ̂ : K(α1) → K ′(βj). By induction over the number of roots of f not
contained in K we can extend ϕ̂ to an isomorphism ϕ̃ of L. 2

Applying this theorem with ϕ = idK shows the uniqueness of the splitting field. Note,
however, that intermediate fields between K and the splitting field L may well be non-
isomorphic, only adjunction of all roots makes L unique.

We close this section with the important result that under mild assumptions all finite
field extensions are actually simple extensions. For that we need the notion of separable
elements: An algebraic element α is called separable over K if its minimal polynomial does
not have double roots. It is easy to see that the minimal polynomial of an inseparable
element has derivative 0, which shows that in case that char(K) = 0 or |K| < ∞ every
element is separable. For an infinite field K of characteristic p it is sufficient that K
contains a p-th root of each element in order to conclude that every finite extension is
separable.

An example of an inseparable element is a root of the Eisenstein polynomial Xp − t
over the field Fp(t) of rational functions over Fp.
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4.1.3 Theorem (Primitive element)
Let L = K(α1, . . . , αn) with [L : K] < ∞ and assume that α2, . . . , αn are separable over
K. Then there exists an element θ ∈ L such that L = K(θ).

Proof: By an obvious induction it is sufficient to prove the theorem for the case
L = K(α, β) with β separable, since K(α1, . . . , αn−1) = K(θ) implies L = K(θ, αn).
Furthermore we can assume that |K| = ∞, since the theorem clearly holds for finite fields
(being generated by a (q − 1)st root of unity).

Now let fα and fβ be the minimal polynomials of α and β, respectively, and denote
the distinct roots of these polynomials (in some splitting field) by α = α1, α2, . . . , αr and
β = β1, β2, . . . , βs. Since β is separable we have βk 6= β for k 6= 1. Therefore, each of the
equations αi − α1 = (β1 − βk)x has at most one solution in K (the solution possibly lying
in an extension). Since K is infinite we can choose c ∈ K which does not solve any of these
equations and define θ := α1 + cβ1 = α + cβ. We have fα(θ − cβ) = 0 = fβ(β), therefore
β is a common root of the polynomials fα(θ − cX) and fβ(X). Since θ − cβk 6= αi for
all k 6= 1 we know that β is the only common root of the two polynomials. This shows
that gcd(fα(θ − cX), fβ(X)) = X − β, on the other hand the gcd lies in K(θ)[X], hence
β ∈ K(θ). But this implies that α = θ − cβ ∈ K(θ) and hence K(α, β) ⊆ K(θ). 2

Note that the proof actually gives a construction for a primitive element: Take a linear
combination θ = α + cβ, then with a finite number of exceptions θ generates the same
extension as α and β together.

4.2 Galois theory

In the construction of a splitting field L of a polynomial f over K we make several choices,
since every root of an irreducible factor yields an isomorphic extension. Keeping track of
these choices we actually construct various automorphisms of the splitting field. Galois
theory deals with the connection between these automorphisms and the intermediate fields
between K and L.

In the case of finite fields we can easily describe the situation: The field Fq with
q = pn is the splitting field of Xq − X over Fp and the intermediate fields are of the
form Fpd with d|n. Each automorphism of Fq is a power of the Frobenius-automorphism
ϕ : a 7→ ap and the intermediate fields can be described as Fpd = {a ∈ Fq | ϕd(a) = a}. We
therefore have a correspondence between subfields of Fq and subgroups of Aut(Fq), given
by Fq ⊇ M ↔ U ≤ Aut(Fq) where M = {a ∈ Fq | σ(a) = a for all σ ∈ U}.

The goal is now to generalize this correspondence to arbitrary fields.

4.2.1 Definition Let L/K be a field extension and f ∈ K[X].

(i) The group Gal(L, K) := {σ ∈ Aut(L) | σ|K = idK} is called the Galois group of the
field extension L/K.
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(ii) If L is the splitting field of f over K, then the group Gal(f, K) := Gal(L, K) is called
the Galois group of the equation f .

Note that every σ ∈ Aut(L) automatically fixes the prime field P (L) elementwise, since
σ(1) = 1, hence Aut(L) = Gal(L, P (L)).

The action of σ ∈ Gal(f, K) is determined by the action on the roots of f . In particular
this implies that for simple extensions we have

|Gal(K(α), K)| ≤ [K(α) : K].

We will see that equality in this relation will yield the desired correspondence between
subfields and subgroups of the automorphism group.

The two extreme cases of the above inequality are illustrated by the following two
examples:

(1) Let α be the real root of f := X3−2. Then [Q(α) : Q] = 3, but Gal(Q(α), Q) = {1},
since the other roots of f are not contained in Q(α). The splitting field Q(α, ζ3) of
f has degree 6 and the Galois group of f over Q(ζ3) is indeed a cyclic group of order
3.

(2) Let ζn be a primitive n-th root of unity, then Q(ζn) is the splitting field of f := Xn−1
and [Q(ζn) : Q] = ϕ(n) (where ϕ is the Euler-ϕ function). The other primitive n-th
roots of unity are of the form ζ i

n with gcd(i, n) = 1 and mapping ζn to ζ i
n for such an

i defines an automorphism of Q(ζn). Hence, Gal(f, Q) ∼= Z∗
n is of order ϕ(n).

We will now show that the above inequality for simple extensions even holds for arbi-
trary extensions. The key for this (and several other results) is Dedekind’s theorem:

4.2.2 Theorem (Dedekind)
Let σ1, . . . , σn ∈ Aut(L) be distinct automorphisms. Then σ1, . . . , σn are linearly indepen-
dent, i.e. a1σ1(x) + . . . + anσn(x) = 0 for all x ∈ L implies a1 = . . . = an = 0.

Proof: Assume that a1σ1(x) + . . . + anσn(x) = 0 for all x ∈ L. For n = 1 this implies
a1 = 0 and we are done. By induction we can assume that n − 1 automorphisms are
linearly independent, hence none of the coefficients ai is 0, since otherwise the remaining
n − 1 automorphisms would be dependent. We therefore can divide by an and obtain

a1

an

σ1(x) + . . . + σn(x) = 0.

Furthermore, we have σ1(α) 6= σn(α) for some α ∈ L, since the σi are distinct. In the
above equation we now replace x by αx and divide by σn(α), this gives

a1

an

σ1(α)

σn(α)
σ1(x) + . . . + σn(x) = 0.

Subtracting the two equations yields a dependency between n − 1 automorphisms, hence
all coefficients have to be 0. In particular we have a1

an
= a1

an

σ1(α)
σn(α)

and since a1 6= 0 this gives

σ1(α) = σn(α), which is a contradiction. 2
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4.2.3 Corollary Let L/K be a field extension, then |Gal(L, K)| ≤ [L : K].

Proof: Let Gal(L, K) = {σ1, . . . , σn} and assume that [L : K] = r < n. Let (v1, . . . , vr)
be a basis of L over K, then the equations

∑n
i=1 σi(vj)xi = 0 for 1 ≤ j ≤ r form a

homogeneous linear system with r equations and n > r indeterminates which therefore has
a non-trivial solution (c1, . . . , cn).

For α =
∑r

j=1 ajvj we have σi(α) =
∑r

j=1 σi(aj)σi(vj) =
∑r

j=1 σj(aj)σi(vj) (note that
σi(aj) = aj for all i, j, since aj ∈ K) and thus

∑n
i=1 ciσi(α) =

∑n
i=1 ci(

∑r
j=1 σj(aj)σi(vj)) =

∑r
j=1 σj(aj)(

∑n
i=1 σi(vj)ci) = 0. This shows that

∑n
i=1 ciσi(α) = 0 for all α ∈ L, which is

a contradiction to the linear independence of the σi. 2

4.2.4 Theorem Let G = {σ1, . . . , σn} ≤ Aut(L) and K := FixL(G) := {a ∈ L | σ(a) =
a for all σ ∈ G}. Then [L : K] = n.

Proof: By the above it is clear that [L : K] ≥ n. Assume that v1, . . . , vn+1 are
linearly independent over K. The system of n homogeneous equations

∑n+1
i=1 σj(vi)xi = 0

(1 ≤ j ≤ n) has a non-trivial solution c1, . . . , cn+1. The ci can not all lie in K, since
otherwise the equation with σj = idL would be a dependency of the vi. We choose the
solution c1, . . . , cn+1 such that the number r of ci 6= 0 is minimal and we assume that
cr+1 = . . . = cn+1 = 0. Note that r > 1, since otherwise c1σ1(v1) = 0 and thus c1 = 0.

By dividing by cr and rearranging if necessary we can assume that cr = 1 and c1 6∈
K. therefore there exists σk with σk(c1) 6= c1. Applying σk to each of the equations
∑r−1

i=1 σj(vi)ci + σj(vr) = 0 gives equations
∑r−1

i=1 σj(vi)σk(ci) + σj(vr) = 0, since the prod-
ucts σkσj are just a permutation of the σj. Subtracting the latter from the former gives
∑r−1

i=1 σj(vi)(ci − σk(ci)) = 0, Since c1 6= σk(c1) this gives a non-trivial solution to the
homogeneous system of equations, contradicting the minimality of r. 2

4.2.5 Corollary

(i) Let G ≤ Aut(L), K = FixL(G), σ ∈ Aut(L) with σ|K = idK. Then σ ∈ G.

(ii) Let G1, G2 ≤ Aut(L) with G1 6= G2. Then FixL(G1) 6= FixL(G2).

We have thus seen that a subgroup of automorphisms characterizes a subfield and
that two different subgroups correspond to different subfields. The special case of G =
Gal(L, K) gives rise to a crucial definition:

4.2.6 Definition A field extension L/K is called normal if FixL(Gal(L, K)) = K.

It is clear that the fixed field of Gal(L, K) contains K. For a normal field extension we
therefore have |Gal(L, K)| = [L : K] by theorem 4.2.4. Note that sometimes this property
is chosen as the definition of normal extensions. A third equivalent characterization is
given by the following theorem:

4.2.7 Theorem A field extension L/K is normal if and only if L is the splitting field of
a separable polynomial over K.
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Proof: ⇒: We will first show something stronger, namely that any α ∈ L is a root
of a separable polynomial over K which splits in L. Assume that K = FixL(G) with
G = {σ1, . . . , σn} and let α ∈ L. If we denote the distinct images σj(α) by α = α1, . . . , αr,
then the αi are permuted by the σj, hence the polynomial f :=

∏r
i=1(X − αi) is invariant

under each σj and thus f ∈ K[X]. On the other hand, if we have g(α) = 0 for some
g ∈ K[X], then g(αi) = g(σj(α)) = σj(g(α)) = 0 for all 1 ≤ i ≤ r, hence deg(g) ≥ r. This
shows that f is the minimal polynomial of α over K and is thus irreducible. Furthermore,
f has no double roots and splits in L.

The claim of the theorem now follows if we let (v1, . . . , vn) be a basis of L over K and
let fi be the minimal polynomial of vi over K. Then L is the splitting field of the separable
polynomial f :=

∏n
i=1 fi.

⇐: We proceed by induction over the number of roots of f lying outside K. If this
number is 0 we are done, since L = K. Now let f1 be an irreducible factor of f with
deg(f1) > 1 and let α1 be a root of f1. From theorem 4.1.2 we know that there exist
automorphisms σi ∈ Gal(L, K) mapping α1 to the distinct roots α1, . . . , αs of f1. Now
let θ be an element fixed under Gal(L, K), then θ ∈ K(α1), since we know by induction
that L/K(α1) is normal and hence for any β ∈ L \ K(α1) there exists an automorphism
σ with σ(β) 6= β. Since deg(f1) = s we can write θ as θ = c0 + c1α1 + . . . + cs−1α

s−1
1

with ci ∈ K and we have θ = σi(θ) = c0 + c1αi + . . . + cs−1α
s−1
i . This shows that the

polynomial cs−1X
s−1 + . . . + c1X + (c0 − θ) has the s roots α1, . . . , αs, hence it is 0 and we

have θ = c0 ∈ K. 2

We now return to examples of extensions to illustrate the results obtained.

(1) For Q( 3
√

2)/Q we have seen that the Galois group consists only of the trivial auto-
morphism. Thus, the fixed field is Q( 3

√
2), and hence the extension is not normal.

On the other hand, the splitting field Q( 3
√

2, ζ3) has degree 6 over Q and one checks
that the three roots of X3 − 2 and the two roots of X2 + X + 1 can be mapped
independently by automorphisms. The group of automorphisms is isomorphic to the
symmetric group S3 and the subgroup isomorphic to C3 interchanges the three roots
of X3 − 2. The fixed field of this subgroup is Q(ζ3).

(2) For a primitive n-th root of unity the cyclotomic field Q(ζn) is the splitting field of
the (separable) polynomial Xn − 1, hence the extension is normal, and so the fixed
field of all automorphisms ζn 7→ ζ i

n with gcd(i, n) = 1 is just Q.

(3) For distinct squarefree a, b ∈ Z the biquadratic extension Q(
√

a,
√

b) has degree 4
over Q and is generated by

√
a +

√
b (as can be seen from the proof of the theorem

on the primitive element). The automorphisms map
√

a +
√

b to ±√
a±

√
b and the

Galois group is seen to be a Klein four group V4. This shows that the extension is
normal. The three subgroups of V4 isomorphic to C2 have fixed fields Q(

√
a), Q(

√
b)

and Q(
√

ab), respectively.

(4) The field Q( 4
√

2) contains only one further root of X4−2, namely − 4
√

2. The fixed field
of the automorphism interchanging these two roots is Q(

√
2), hence the extension is
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not normal. The splitting field of X4−2 is Q( 4
√

2, i) (where i is a root of X2 +1) and
the Galois group is isomorphic to the dihedral group D8 (note that any automorphism
maps 4

√
2 to ik 4

√
2 with 0 ≤ k ≤ 3 and i to ±i).

We now come to the main theorem of Galois theory which establishes the correspon-
dence between intermediate fields in a normal extension and subgroups of the Galois group.

4.2.8 Theorem (Fundamental theorem of Galois theory)
Let L/K be a normal field extension.

(i) There exists an inclusion-reversing bijective correspondence between intermediate
fields K ⊆ M ⊆ L and subgroups U ≤ Gal(L, K), given by M ↔ Gal(L, M) and
U ↔ M = FixL(U).

(ii) For corresponding K ⊆ M ⊆ L and U ≤ Gal(L, K) one has [Gal(L, K) : U ] = [M :
K] and |U | = [L : M ].

(iii) The extension M/K is normal if and only if Gal(L, M) � Gal(L, K) and in this case
one has Gal(M, K) ∼= Gal(L, K)/Gal(L, M).

Proof: (i)+(ii): If K ⊆ M ⊆ L, then L/M is normal, since L is also the splitting field
over M . If we define U := Gal(L, M) we have U ≤ G := Gal(L, K) and |U | = [L : M ],
since L/M is normal. Conversely, for U ≤ G we know that M := FixL(U) is uniquely
determined by U . We have [L : M ] · [M : K] = [L : K] = |G| = [G : U ] · |U | and hence
[L : K] = [G : U ].
(iii): It is clear that any σ ∈ G maps M to an isomorphic field and the cosets of G/U
correspond to the different isomorphisms. Conversely, any isomorphism of M fixing K can
be extended to an isomorphism of L and is thus the restriction of some σ ∈ G. Therefore,
the number of isomorphisms of M fixing K equals [G : U ] = [M : K]. Now, M/K is
a normal extension if and only if the number of automorphisms of M fixing K equals
[M : K], thus, M/K is normal if and only if all σ ∈ G map M onto itself. But this is
equivalent with Gal(L, M) � G, since σ−1 ◦ τ ◦ σ(a) = a for τ ∈ Gal(L, M) if and only
if σ(a) ∈ M for all a ∈ M (otherwise, if σ(a) 6∈ M there would be τ not fixing σ(a)).
Finally, Gal(M, K) ∼= G/U is clear since the cosets represent the different isomorphisms
of M which we have seen to be automorphisms in the case that U � G. 2

The correspondence of terminology for normal extensions and normal subgroups is no
coincidence. Note that the fact that subgroups of index 2 are always normal corresponds
to the fact that field extensions of degree 2 are always normal.

Having established the correspondence, an obvious question is how the intermediate
fields are actually constructed, given a subgroup of the Galois group. This problem is
solved by the trace map, which maps an element to the sum of its Galois conjugates. More
precisely, if α ∈ L and U ≤ Gal(L, K), we define

trU(α) :=
∑

σ∈U

σ(α).
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It is clear that trU(α) is fixed under all σ ∈ U . On the other hand, any element β ∈
FixL(U) is obtained as a trace: Since according to Dedekind’s theorem the σ ∈ U are
linearly independent, there exists z ∈ L such that z′ :=

∑

σ∈U σ(z) 6= 0. Then trU( z
z′

β) =
∑

σ∈U
σ(z)
σz′

σ(β) =
P

σ∈U σ(z)

z′
β = β.

Running over a basis of L over K thus will produce generators for the fixed field of U ,
but usually one can stop early because the required degree is known in advance.

As an example illustrating the fundamental theorem we will analyze the splitting field
Q( 4

√
2, i) of X4 − 2. Defining automorphisms σ, τ by

σ( 4
√

2) := i 4
√

2, σ(i) = i,

τ( 4
√

2) := 4
√

2, τ(i) = −i

we get the Galois group G = 〈σ, τ〉 ∼= D8. The subgroup diagram of G looks as follows:

G = 〈σ, τ〉 ∼= D8

U1 = 〈σ2, τ〉 ∼= V4 U2 = 〈σ〉 ∼= C4 U3 = 〈σ2, στ〉 ∼= V4

U4 = 〈τ〉 U5 = 〈σ2τ〉 U6 = 〈σ2〉 U7 = 〈στ〉 U8 = 〈σ3τ〉

{1}

The normal subgroups are U1, U2, U3 and U6, so these will correspond to normal exten-
sions of Q. Note that the intersection of two subfields corresponds to the group generated
by the two subgroups and the intersections of two subgroups corresponds to the field gen-
erated by the two subfields. We easily identify Q( 4

√
2) as the fixed field of U4 and Q(i)

as the fixed field of U2. Furthermore, Q(
√

2) corresponds to a subgroup contained in U4,
thus to U1. The third quadratic subfield Q(

√
−2) therefore has to correspond to U3. The

three quadratic subfields generate the fixed field of U6 and one sees that this is the 8th
cyclotomic field Q(ζ8). We have not found the field Q(i 4

√
2) so far, and this is seen to be

the fixed field of U5. Finally, we can use the trace map to see that the fixed field of U7 is
Q((1 + i) 4

√
2) and that U8 corresponds to Q((1 − i) 4

√
2).
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4.3 Computing Galois groups

In principle we have seen how the Galois group of a polynomial f can be computed: One
constructs the splitting field L of the f , computes a primitive element θ of L and its
minimal polynomial fθ and defines automorphisms mapping θ to the different roots of fθ.
The problem is, that except for very small (or fortunate) cases, the degree of L will be to
large to be able to construct the extension effectively. It can be shown that in a certain
sense polynomials of degree n have Galois group Sn with probability 1: if P (N) denotes
the probability that a polynomial with coefficients bounded by N has Galois group Sn,
then P (N) converges to 1 for N → ∞. Hence in many cases the splitting field has degree
n! over Q. Except for very small (or fortunate) cases it is therefore impractical to construct
the splitting field L explicitly, since field extensions of degree much larger than 100 are not
feasible.

One might think of approximating the roots of f numerically (either complex or p-adic)
and define the automorphisms on the approximations. This, however, opens a new problem,
since one root has to be expressed as a rational linear combination of the powers of another
root and this leads back to algebraic reconstruction of elements (as was considered in the
context of elliptic curves to find the minimal polynomial of j(τ)) which is also unrealistic
in high dimensions.

In practice, one uses a different approach to compute the Galois group of a polynomial
f . Note that the splitting field L is obtained by adjoining the root of f . Since the Galois
group of f permutes these roots, it is naturally represented as a permutation group on
n points, namely on the roots of f . Moreover, every root can be mapped to any other
root (by the theorem on extending automorphisms), hence we know that Gal(f, K) is a
transitive subgroup of Sn. The idea is now to find enough information about this transitive
subgroup without actually constructing the splitting field L. The crucial observation is,
that the reduction of f modulo p provides in many cases enough information, in particular
in order to conclude that the Galois group is in fact the full symmetric group Sn.

The first question we want to answer is whether G := Gal(f, Q) is a subgroup of
the alternating group An. This can actually be read off the discriminant of f : Recall
that if α1, . . . , αn are the roots of f , then the discriminant of f can be computed as
disc(f) =

∏

i<j(αi − αj)
2. If we define θ :=

∏

i<j(αi − αj), we have σ(θ) = sgn(σ)θ, since
we can think of σ as a product of transpositions. Now we see that θ is fixed under all
automorphisms if and only if θ ∈ Z (note that θ is an algebraic integer) which proves:

4.3.1 Theorem Gal(f, Q) ≤ An if and only if disc(f) is a square in Z.

The crucial result which allows us to obtain information about Gal(f, Q) by reductions
of f modulo p is the following:

4.3.2 Theorem If p - disc(f), then each automorphism of the splitting field of f over Fp

is induced by an automorphism of the splitting field of f over Q. In particular, the Galois
group of f over Fp embeds into the Galois group of f over Q.
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Before we give two proofs of this theorem we show its consequence:

4.3.3 Theorem If f is irreducible over Q and f ≡ f1 . . . fs mod p for p - disc(f), such
that fi is irreducible over Fp and deg(fi) = ni, then Gal(f, Q) contains an element with
cycle structure n1, . . . , ns.

Proof: The splitting field of f over Fp is Fq = Fpd with d = lcm(n1, . . . , ns). The Galois
group of Fq is generated by the Frobenius automorphism ϕ and if α is a root of fi then
the other roots of fi are ϕj(α) with 0 ≤ j < ni. Hence, after suitable renumbering of the
roots, ϕ acts as (1, . . . , n1)(n1 + 1, . . . , n1 + n2) . . . (n − ns + 1, . . . , n). 2

Proof: First proof of theorem 4.3.2:
Let α1, . . . , αn be the roots of f in a splitting field L and let x1, . . . , xn be indeterminates.
For π ∈ Sn define uπ :=

∑n
i=1 απ(i)xi and let F (X) :=

∏

π∈Sn
(X − uπ). Since uπ1 6= uπ2

for π1 6= π2 the orbit of uπ under G := Gal(f, Q) ≤ Sn has length |G|. Now let F (X) =
F1(X) . . . Fs(X) be the factorization of F (X) into irreducible elements of Q[x1, . . . , xn][X].
We claim that G is precisely the group of permutations leaving Fj(X) invariant, i.e. that
Fj(X) is of the form

∏

σ∈G

(X −
∑

i

ασπ(i)xi).

To see this, let θ :=
∑

i αixi and assume that the Fj are numbered such that (X − θ) |
F1(X). The elements of Sn fixing F1(X) are precisely those permutations mapping X − θ
on some linear factor of F1(X) (note that F (X) has no multiple factors). On the other
hand, F1(X) is the minimal polynomial of θ, and thus also the minimal polynomial of the
conjugates σ(θ) for σ ∈ G, hence each X − σ(θ) divides F1(X). The other Fj(X) are
obtained in the same manner by replacing θ by

∑

i απ(i)xi where π runs over a transversal
of G in Sn. Thus, F1(X) is mapped to F1(X) under G and to the other Fj(X) under the
other cosets of Sn/G.

If we reduce the factorization F (X) = F1(X) . . . Fs(X) modulo p (and call the reduc-
tions again Fj), the Fj(X) do not necessarily remain irreducible. Since we assume that
p - disc(f), also the reduction modulo p does not have multiple factors. Now let G be
the Galois group of f over Fp, then as before each irreducible factor of F1(X) is invariant
under G and hence F1(X) is mapped to F1(X). Since the automorphisms leaving F1(X)
invariant are precisely those of G, this shows that G ≤ G. 2

Proof: Second proof of theorem 4.3.2:
We look at the Galois group of f over the p-adic completion Qp of Q. Let Lp :=
Qp(α1, . . . , αn), where the αi are the roots of f in the splitting field L over Q. Note
that every σ ∈ Gal(L, Q) induces an automorphism σ ∈ Aut(Lp), but since Qp may
contain some intermediate field of L/Q, Qp is not necessarily fixed pointwise by σ. In
any case, we have Gal(Lp, Qp) ≤ Gal(L, Q). The field Lp has a valuation ν which
is an extension of the usual p-adic valuation on Qp and the valuation ring O(Lp) is
given by O(Lp) = {a ∈ Lp | ν(a) ≥ 0}. The unique maximal ideal P of O(Lp) is
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P = {a ∈ Lp | ν(a) > 0} and O(Lp)/P ∼= Fq. In particular, Fq is the splitting field
of the reduction of f modulo p.

Since P is the unique maximal ideal in Lp, it has to be fixed by any automorphism of
Lp, hence reduction modulo P yields an automorphism of Fq = O(Lp)/P . Furthermore,
restricting the action of σ ∈ Aut(Lp) to Qp, we reduce modulo P ∩Qp = (p), hence reduc-
ing modulo P gives an automorphism of Fq fixing Fp = Zp/(p) pointwise. This shows that
reduction modulo P gives a natural homomorphism Gal(Lp, Qp) → Gal(Fq, Fp) which is
an epimorphism, since each automorphism modulo P can be lifted to an automorphism
of Lp via Hensel lifting. The kernel of this homomorphism is called the ramification sub-
group of Gal(Lp, Qp) and it is trivial if p - disc(f) (as we will see below). This shows
that Gal(Lp, Qp) ∼= Gal(Fq, Fp) and in particular the Frobenius automorphism generating
Gal(Fq, Fp) is induced by an element of Gal(Lp, Qp) which we have already seen to be a
subgroup of Gal(L, Q).

In order to show that the ramification subgroup is trivial in case p - disc(f), we first
assume that P = p·O(Lp), i.e. that the uniformizing element p of Qp remains a uniformizing
element in Lp. In this case the action of σ ∈ Aut(Lp) is already determined on O(Lp)/p ·
O(Lp), since p remains fixed under every automorphism. The question is thus, under which
condition P = (π) with πe = p and e > 1. It can be seen that there is a unique maximal
subfield Ip of Lp in which p remains the uniformizing element and that π is the root of an
Eisenstein polynomial of degree e over Ip. From the formula for the discriminant one now
concludes that this can only happen for e > 1 if p | disc(f). 2

As a first application of theorem 4.3.2 we can now show how a polynomial with Galois
group Sn for arbitrary n is constructed. For that we use the fact that a transitive subgroup
of Sn containing an (n−1)-cycle and a transposition is Sn itself. Let f1, f2, f3 be polynomials
of degree n such that f1 is irreducible modulo 2, f2 splits modulo 3 into an irreducible factor
of degree n−1 and a linear factor and f3 splits modulo 5 into a quadratic factor and one or
two irreducible factors of odd degree. Then f := −15f1 +10f2 +6f3 is a monic polynomial
of degree n and none of 2, 3, 5 divides disc(f). Since the Galois group of f contains an
(n − 1)-cycle and (via an odd power of the permutation corresponding to the reduction
modulo 5) a transposition, it is Sn.

We can actually exploit theorem 4.3.2 to show that ’almost all’ polynomials of degree
have Galois group Sn. We denote by

P (N) := {f = Xn + a1X
n−1 + . . . + an−1X + a0 ∈ Z[X] | |ai| ≤ N}

the set of monic integral polynomials with coefficients bounded by N . Furthermore we
define S(N) := {f ∈ P (N) | Gal(f, Q) = Sn}. Then we will show that

|S(N)|
|P (N)| → 1 as N → ∞.

The idea is to count the polynomials f which have modulo three primes the following types
of factorization:
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I: f is irreducible modulo p,

II: f splits modulo p′ into a linear factor and an irreducible factor of degree n − 1,

III: f splits modulo p′′ into an irreducible quadratic factor and one or two irreducible
factors of odd degree.

Using the same argument as above we can conclude that the Galois group contains an
(n − 1)-cycle and a transposition and is thus Sn itself.

We proceed in three steps.

(1) Analysis modulo p:
To estimate the number of irreducible monic polynomials modulo p we count the
elements in Fpn not lying in any proper subfield. This number is at least

pn −
∑

d|n,d 6=n

pd ≥ pn −
n−1∑

d=1

pd > pn − pn

p − 1
≥ pn

2
for p > 2.

Since every irreducible polynomial of degree n has n distinct roots, there are ≥ pn

2n

irreducible monic polynomials of degree n.

For factorization of type II we get p linear and ≥ pn−1

2(n−1)
irreducible polynomials of

degree n − 1 and therefore have ≥ pn

2(n−1)
distinct monic polynomials with type II

factorization.

For factorization of type III we have ≥ p2

4
irreducible quadratic polynomials and

for n odd ≥ pn−2

2(n−2)
irreducible polynomials of degree n − 2 or for n even ≥ p pn−3

2(n−3)

products of a linear and an irreducible polynomial of degree n − 3. In any case we
have ≥ pn

8(n−2)
distinct monic polynomials with type III factorization.

We conclude that for k = 8(n−2) for any chosen type of factorization the proportion
of polynomials modulo p with this type is ≥ 1

k
(the case n = 2 of course has to be

handled slightly differently, but we can choose k = 4 here).

(2) Combining primes:
By the Chinese remainder theorem we know that for different primes p1, p2, . . . , pm

the reductions modulo pi determine a unique polynomial modulo P :=
∏m

i=1 pi. For
a chosen type X we know from step (1) that there are at most k−1

k
pn

i polynomials
modulo pi with factorization not of type X. Combining these for the different primes
gives at most (k−1

k
)mP n polynomials which do not have a factorization of type X

modulo any of the primes pi.

For ε > 0 we now choose m such that ( k−1
k

)m < ε and let P := p1 . . . pm be the product
of the first m odd primes. We then know that of the P n monic polynomials modulo P
at most εP n do not have a factorization of type I (II, III) for any of the pi, hence there
are at most 3εP n polynomials with no such factorization modulo any of the pi and we
call these polynomials with bad reduction. The remaining ≥ (1− 3ε)P n polynomials
have type I, II and III factorizations modulo three suitably chosen primes.
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(3) Bounding the coefficients:
Let N be the bound on the coefficients ai then of the possible values of ai there
are at most b 2N

P
c + 1 congruent modulo P . Therefore, at most 3εP n(2N

P
+ 1)n =

3ε(2N + P )n polynomials with coefficients bounded by N have bad reduction. If we
restrict ourselves to N with 2N + 2 ≥ P , these are ≤ 3 · 2nε(2N + 1)n polynomials
and hence the proportion of polynomials with coefficients bounded by N and Galois
group a proper subgroup of Sn is at most 3 · 2nε.

We now see that in step (2) we should rather have chosen m such that ( k−1
k

)m < 3·2nε
in order to obtain a proportion of ≥ 1 − ε polynomials with Galois group Sn.

4.4 Density theorems
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P. Stevenhagen, H.W. Lenstra, Jr: Chebotarëv and his Density Theorem. Mathemat-
ical Intelligencer, vol. 18, no. 2, 26-37, 1996.

When we talk about relative frequencies of primes with certain properties we have to
define what we call the density of a set of primes. A natural (or naive) definition is the
following:

If V ⊆ P is a set of primes we say that V has natural density δ if the limit

lim
N→∞

|p ∈ V | p ≤ N |
|p ∈ P | p ≤ N |

exists and has value δ.
From the point of view of analytic number theory, a different definition is often more

suitable, namely the Dirichlet or analytic density:
We say that V has analytic density δ if the limit

lim
s→1+

∑

p∈V p−s

∑

p∈P p−s

exists and has value δ.
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It can be shown that the existence of the natural density implies the existence of the
analytic density and in this case they are equal. Unfortunately, the opposite implication
is not true.

We will exclusively deal with the analytic density and from now on omit the attribute
’analytic’.

A beautiful (and important) result about densities of primes is Dirichlet’s theorem
about primes in arithmetic progressions:

4.4.1 Theorem (Dirichlet, 1837)
Let m ∈ N and a ∈ Z such that gcd(a, m) = 1. Then the set {p ∈ P | p ≡ a mod m} of
primes in the arithmetic progression a + mZ has density 1/ϕ(m).

This theorem not only says that every arithmetic progression contains infinitely many
primes, but also that each of them contains the same amount.

The density theorems we are going to discuss rely on the following result of Kronecker,
describing the density of primes over which a polynomial has a root:

4.4.2 Theorem (Kronecker, 1880)
Let f ∈ Z[X] be a polynomial with m irreducible factors of degree ≥ 1. If we denote the
number of roots of the reduction f mod p by ap, then

lim
s→1+

∑

p∈P app
−s

log( 1
s−1

)
= m.

What we have seen in the last section is that the Galois group of the reduction of
a polynomial f mod p embeds into the Galois group over Q. This means that from a
factorization modulo p we can conclude that an element with a certain cycle structure exists
in the Galois group. However, in order to identify Galois groups from this information we
need a kind of converse of this property, namely that we actually get every cycle type from
the factorization modulo a suitable prime.

We will see that the situation is as good as we could possibly hope: Frobenius’ density
theorem states that every cycle structure which exists in the Galois group does occur for
some prime p and we even know how often we find it on average, namely as often as we
find elements with this cycle structure in the group. For example, the density of primes
over which f splits completely is the reciprocal of the order of the Galois group.

4.4.3 Theorem (Frobenius, 1880/1896)
Let f ∈ Z[X] be a monic polynomial of degree n. Then the density of primes p ∈ P
such that f mod p has decomposition type n1, . . . , ns equals the relative frequency of σ ∈
Gal(f, Q) with cycle structure n1, . . . , ns.

If we do not know the Galois group yet, Frobenius’ theorem is the best we can expect,
since we can only identify elements up to conjugacy in the full symmetric group Sn, i.e.
up to cycle structure. However, if we know the Galois group, we could look at a finer
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classification of the group elements, namely the conjugacy classes in the Galois group.
For this situation, Chebotarëv’s generalization of Frobenius’ theorem states that also for
the conjugacy classes the density of the primes for which their Frobenius automorphism
embeds into a fixed conjugacy class is the size of this class divided by the group order.

4.4.4 Theorem (Chebotarëv, 1922)
Let f ∈ Z[X] be a monic polynomial of degree n. For a prime p let Fq be the splitting field
of f mod p over Fp and denote the embedding of the Frobenius automorphism of Fq into
Gal(f, Q) by σp. Then the density of primes p ∈ P such that σp lies in a conjugacy class
C of Gal(f, Q) equals |C|/|Gal(f, Q)|.

We will only prove Frobenius’ theorem here, following the exposition of Hasse. A
nice sketch of a proof of Chebotarëv’s theorem can be found in the article of Steven-
hagen/Lenstra, a full proof (using class field theory) in Lang’s book.

We start by fixing some notation.
Let f ∈ Z[X] be an irreducible monic polynomial, let L be the splitting field of f

over Q and let G := Gal(f, Q) = Gal(L, Q) be the Galois group of f . Assume that
f ≡ f1 · . . . · fs mod p, where fi is irreducible over Fp and deg(fi) = ni. Then the splitting
field of f over Fp is Fq with q = plcm(n1,...,ns). If we denote the ring of integers of L by Λ
and let P be a prime ideal of Λ containing (p), then Λ/P ∼= Fq. As usual, we define the
degree of P as the degree of Fq over Fp (which equals lcm(n1, . . . , ns)).

By 4.3.2 we know that the Galois group of Λ/P embeds into G. This means that we
can associate the Frobenius automorphism of Λ/P with an element σP of G such that

ap ≡ σP (a) mod P for all a ∈ L.

By definition, the order of σP equals the degree of P .
Now let τ be an arbitrary element of G, then τ(ap) = τσP (a) mod τ(P ), hence τ(a)p =

τσP τ−1(τ(a)) mod τ(P ). This shows that the prime ideal τ(P ) corresponds to the conju-
gate element τσP τ−1. Since the Galois group G is transitive on the prime ideals lying over
(p), we can associate the conjugacy class (σP )G of σP with the prime p.

These correspondences are often denoted by the Frobenius symbol and the Artin symbol:
σP ↔ [L

P
] and (σP )G ↔ (L

p
).

As an auxiliary result we need an analysis of how prime ideals in intermediate fields
correspond with the prime ideals in L over p. We keep the above notation.

4.4.5 Lemma Let L ⊇ M ⊇ Q, let G := Gal(L, Q), U := Gal(L, M) ≤ G and define
S := 〈σP 〉. Denote by τ1, . . . , τr a transversal for the double cosets of G by U and S, i.e.
G = ∪̇r

i=1UτiS.

(i) The decomposition of (p) into prime ideals Qi of M is (p) =
∏r

i=1 Qi where Qi =
∏

τ∈UτiS
τ(P ).

(ii) The degree fi of Qi equals the order of τiσP τ−1
i relative to U , i.e. fi is the smallest

positive integer such that (τiσP τ−1
i )fi ∈ U . This means that UτiS = ∪̇fi−1

j=0 Uτiσ
j
P .
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Proof: (i): Let Qi be a prime ideal in M containing (p), then we can assume that
the τi are numbered such that Qi ⊆ τi(P ). Now let h ∈ U , then Qi ⊆ hτiσP (P ), since
σP (P ) = P and h(a) = a for all a ∈ M . This shows that Qi ⊆ τ(P ) for all τ ∈ UτiS. On
the other hand, all conjugate ideals of P lying over Qi lie in one orbit under U = Gal(L, M),
hence every τ(P ) with Qi ⊆ τ(P ) is of the form τ(P ) = hτi(P ) for some h ∈ U . Since
τ−1hτi(P ) = P we have τ−1hτi(P ) ∈ S, hence τ ∈ UτiS.
(ii): Denote the degree of τi(P ) by f , the degree of Qi (in M) by fi and the relative degree of
τi(P ) over M by fi, then clearly f = fi ·fi. We have seen that the Galois group of Λ/τi(P )
corresponds to τiSτ−1

i and by the Fundamental theorem of Galois theory we conclude
that over M the Galois group of Λ/τi(P ) corresponds to τiSτ−1

i ∩U . In particular we have
f = |S| = |τiSτ−1

i | and fi = |τiSτ−1
i ∩U | and therefore fi = f

fi
= min(j ≥ 1 | τiσ

j
P τ−1

i ∈ U).
2

As a consequence of this lemma we can express the number of prime ideals of degree 1
in L in purely group theoretic terms.

4.4.6 Theorem Let L ⊇ M ⊇ Q, G := Gal(L, Q), U := Gal(L, M) and σ ∈ (σP )G. Then
the number ap of prime ideals Q ⊇ (p) of degree 1 in M is

ap =
1

|U | |{τ ∈ G | τστ−1 ∈ U}|.

In particular, ap is independent of the choice of σ.

Proof: Keeping the notation of the above lemma we know that a prime ideal Qi ⊇ (p)
has degree 1 if and only if fi = 1, i.e. if and only if τiσP τ−1

i ∈ U . Therefore, the number of
Qi of degree 1 equals the number of indices i such that τiσP τ−1

i ∈ U or, equivalently, such
that τiSτ−1

i ⊆ U .
Next we see that τi satisfies τiSτ−1

i ⊆ U if and only if any element τ in the double coset
UτiS satisfies τSτ−1 ⊆ U . Hence, for these i every such double coset consists of elements
satisfying τSτ−1 ⊆ U and since UτiS = Uτi every such double coset gives |U | elements τ
with this property.

Finally we remark that the cardinality of the set {τ ∈ G | τστ−1 ∈ U} only depends
on the conjugacy class of σ, since for a conjugate element ϕσϕ−1 we can let τϕ−1 instead
of τ run over G. 2

Proof: of Theorem 4.4.3 (Frobenius)
Let σ ∈ G, let L ⊆ M ⊆ Q be an intermediate field and let U := Gal(L, M) ≤ G be
the Galois group of L over M . We denote by ap(M) the number of prime ideals Q ⊇ (p)
of degree 1 in M and define bp := |{τ ∈ G | τσP τ−1 ∈ U}|. By Theorem 4.4.6 we have

ap(M) = bp

|U | and thus ap(M)
[G:U ]

= bp

|G| .

For a subset V ⊆ G we denote by fG(V ) the relative frequency fG(V ) := |V |
|G| of V in G.

Then we have fG((σP )G ∩U) = bp

|G| = ap

[G:U ]
and fG(U) = 1

[G:U ]
. By dividing the equation in
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Theorem 4.4.2 by [G : U ] we get

lim
s→1+

∑

p∈P

ap

[G:U ]
p−s

log( 1
s−1

)
= lim

s→1+

∑

p∈P
fG((σP )G ∩ U)p−s

log( 1
s−1

)
= fG(U). (∗)

This equation holds in particular for the cyclic group U = 〈σ〉, but also for its subgroups
Ud = 〈σd〉 where d | |U |. Since the statement relates purely to the relative frequencies of
subsets of G and does not use the group structure of U , we can conclude that it also holds
for U replaced by U0 := U \ ⋃

d||U | Ud, i.e. for the set of generators of U .

Since the set U0 of generators of U = 〈σ〉 is precisely the set of elements of the same order
as σ, we have τστ−1 ∈ U0 ⇔ τUτ−1 = U . This shows that the set {τ ∈ G | τστ−1 ∈ U0}
is precisely the normalizer NG(U) of U in G, thus we have fG(σG ∩ U0) = NG(U)

|G| .

We call the union of the conjugacy classes of σk for gcd(k, |U |) = 1 the division of σ
and denote this by A(σ) (from the German ’Abteilung’). The division consists thus of
the conjugacy classes of the powers of σ having the same cycle structure as σ. It is clear
that all the σk contained in A(σ) generate U and since conjugate elements have conjugate
normalizers all elements in the division of σ have normalizers of the same order.

We now can restrict the sum over all primes in (∗) to those primes for which σP belongs
to the division A(σ) of σ, since we have fG((σP )G ∩ U0) > 0 only for these primes. Using
the Artin symbol, we thus only have to sum over the primes for which (Q

p
) ⊆ A(σ). If we

divide equation (∗) (for U0 instead of U) by fG(σG ∩ U0) = NG(U)
|G| we obtain:

lim
s→1+

∑

( Q

p
)⊆A(σ) p−s

log( 1
s−1

)
= fG(U0) ·

|G|
|NG(U)| = fG(A(σ)),

since [G : NG(U)] is the length of the orbit of U0 under conjugation by G.
We have actually proved something slightly stronger than what was stated, namely that

the density of primes such that the automorphism σP over p belongs to the division of σ
equals the relative frequency of this division, which was also already proved by Frobenius.
The claim as given in the theorem follows immediately, since the set of elements of a given
cycle structure is a union of divisions. 2

Note that in the proof we made heavy use of the subgroup U = 〈σ〉 ≤ G and its
corresponding subfield M of L. The splitting field L is thus viewed as a cyclic extension
of the intermediate field M . This idea of a cyclic relative extension is also a crucial idea in
the proof of Chebotarëv’s theorem, both in the original proof by Chebotarev (using Galois
theory) and also in the shorter proof given by Deuring in 1935 (using class field theory).

4.5 Recognizing Sn and An

We have seen that ’most’ polynomials have Galois group Sn and that we can easily deter-
mine whether a Galois group is contained in An. It is therefore desirable to have a fast
method to recognize that a given polynomial does in fact have Galois group Sn or An.
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The key to such a method is that Sn is n-fold transitive and An is sharply (n− 2)-fold
transitive and that there are no other ’highly’ transitive groups. To be precise: Using the
classification of finite simple groups one can show that there are no 6-fold transitive groups
which are not symmetric or alternating, that the Mathieu groups M12 and M24 are the
only other sharply 5-fold transitive groups and that the Mathieu groups M11 and M23 are
the only other sharply 4-fold transitive groups.

The standard argument now uses the following results:

4.5.1 Lemma Let G be a transitive permutation group on n points. If G contains a
p-cycle for a prime p with p > n

2
, then G is primitive.

Proof: If G is imprimitive, it has a block system of k blocks of size m with 2 ≤ k, m ≤ n
2
.

But then G would be a subgroup of Sm o Sk which has order (m!)k · k! and p would not
divide the order of G, which is a contradiction. 2

The following theorems are cited without proof and can e.g. be found in H. Wielandt:
Finite permutation groups, Academic Press, 1964.

4.5.2 Theorem (Marggraf, 1892)
Let G be a primitive permutation group on n points. If G contains an m-cycle with
1 < m < n, then G is (n − m + 1)-fold transitive.

4.5.3 Theorem (Jordan, 1873)
Let G be a primitive permutation group on n points and let p be a prime such that n = p+k
with k ≥ 3. Then G is either Sn or An.

To apply these theorems one first has to find a p-cycle for a prime p > n
2

which proves
the primitivity of G. If p < n − 2, one applies Jordan’s theorem and is done. Otherwise,
one has to find some m-cycle for m < n − 2 not necessarily prime. The exceptional cases
of the Mathieu groups are easily excluded.

We now estimate the efficiency of this method.

4.5.4 Proposition Let n ∈ N be the degree of Sn and An.

(i) Let n
2

< m ≤ n. Then the proportion of elements of Sn containing a cycle of length
m is 1

m
. The proportion of these elements in An is 1

m
if m ≤ n− 2 and it is 0 or 2

m
if

m ∈ {n − 1, n}.

(ii) The proportion of elements in Sn or An containing a p-cycle for a prime p with
n
2

< p < n − 2 is asymptotically log(2)
log(n)

.

Proof: (i): The number of elements of Sn containing an m-cycle is
(

n
m

)
(m−1)!(n−m)!,

since we have
(

n
m

)
choices for the m points in the m-cycle, (m − 1)! distinct m-cycles on

a chosen set of m points and (n − m)! permutations on the complement of these points.
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Since m > n
2
, there is at most one m-cycle in an element, hence we do not count elements

twice, and hence the proportion of elements is obtained by dividing by n!, which gives 1
m

.
For An and m ≤ n− 2, we have to supplement an m-cycle by an even element of Sn−m

if m is odd and by an uneven element if m is even. In both cases we get (n − m)!/2
permutations on the complement of the m points of the m-cycle. Dividing by n!/2 gives
again the proportion 1

m
.

Finally, if n is even, there are no n-cycles in An and for m = n − 1 there are n(n − 2)!
m-cycles, giving a proportion of 2

m
. If n is odd, there are no (n − 1)-cycles, but (n − 1)!

n-cycles, hence the proportion is again 2
m

.
(ii): Since no element can have cycles of lengths p and q for distinct primes > n

2
, the

proportion of elements with a suitable p-cycle is

S(n) :=
∑

n
2 <p<n−2

p prime

1

p
.

By the prime number density theorem, the sum over 1
p

up to a bound N is approximately

log(log(N)) =
∫ N

e
1

x log(x)
dx, hence the sum can be estimated as

log(log(n − 2)) − log(log(
n

2
)) = log(

log(n − 2)

log(n
2
)

≈ log(1 +
log(2)

log(n)
) ≈ log(2)

log(n)
.

2

4.5.5 Example We take f = X100 +X2+X +1, trusting or checking that it is irreducible
over Q and try to prove that it has Galois group S100. We have

∑97
p=53

1
p
≈ 0.14, whereas

log(2)
log(100)

≈ 0.15. We therefore expect one in every 7 primes to give a factorization with a
suitable p-cycle. One checks that none of the primes below 100 divides the discriminant of
f and we get the following cycle structures:
p = 2 : 1, 4, 9, 40, 46, p = 3 : 8, 14, 78, p = 5 : 3, 7, 12, 16, 62, p = 7 : 3, 22, 75,
p = 11 : 1, 1, 4, 26, 68, p = 13 : 1, 6, 9, 25, 26, 33, p = 17 : 1, 3, 9, 10, 77,
p = 19 : 2, 98, p = 23 : 3, 5, 6, 86, p = 29 : 1, 3, 4, 6, 86, p = 31 : 3, 3, 12, 29, 53,
p = 37 : 3, 13, 84, p = 41 : 100, p = 43 : 1, 1, 5, 10, 38, 45, p = 47 : 3, 45, 52,
p = 53 : 1, 1, 6, 9, 11, 13, 19, 40, p = 59 : 1, 2, 2, 4, 36, 55, p = 61 : 24, 27, 49,
p = 67 : 4, 8, 88, p = 71 : 1, 3, 3, 6, 7, 12, 29, 39, p = 73 : 1, 2, 2, 3, 11, 13, 68,
p = 79 : 1, 32, 67, p = 83 : 1, 1, 2, 6, 17, 34, 39, p = 89 : 4, 43, 53,
p = 97 : 1, 1, 5, 12, 16, 30, 35.

Thus, the prime p = 41 shows that f is in fact irreducible and the three (out of 25)
primes p = 31, p = 79 and p = 89 show that the Galois group is indeed S100.
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Chapter 5

Permutation groups

Literature:

A. Seress: Permutation Group Algorithms. Cambridge University Press, 2003.

G. Butler: Fundamental Algorithms for Permutation Groups. Springer, 1991.

Since groups naturally occur as operations acting on some set or structure, they are
usually represented in one of the following forms:

• as permutation groups

• as matrix groups (over some ring or field)

• as finitely presented groups (with generators and relations).

In this chapter we will focus on groups given by a set of generating permutations. We
will describe the standard way to deal with these groups algorithmically and we will see
how random methods speed up the standard techniques drastically.

One way of proving a probabilistically obtained result correct forms a nice connection
to the third way of representing groups, hence we will also touch the subject of finitely
presented groups.

Finally, we will see how an elementary result from linear algebra (or probability theory)
leads to a very simple method to generate random group elements from a set of generators.

5.1 Stabilizer chains

In this chapter we will exclusively deal with permutation groups of finite sets, thus with
finite permutation groups.

If Ω is a finite set, we denote the group of all permutations of Ω by SΩ. Identifying Ω
with the set {1, . . . , n} we can regard every subgroup of SΩ as a subgroup G ≤ Sn.

5.1.1 Definition Let Ω be a finite set and let G ≤ SΩ:
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(i) For x ∈ Ω the set Gx := {g ∈ G | xg = x} is called the stabilizer of x in G. It is clear
that Gx is a subgroup of G.

(ii) For x1, . . . , xr ∈ Ω we define Gx1,...,xr
:= Gx1 ∩ . . .∩Gxr

to be the pointwise stabilizer
of x1, . . . , xr.

(iii) A sequence B = (b1, . . . , bm) is called a base for G if Gb1,...,bm
= {1}. An element

g ∈ G is uniquely determined by its images on a base.

(iv) For x ∈ Ω, the set {xg | g ∈ G} ⊆ Ω is called the orbit of x in G and is denoted by
xG.

For a base B = (b1, . . . , bm) we define subgroups G(i) by G(i) := Gb1,...,bi
. Then the

groups G(i) form a chain

G = G(0) ≥ G(1) ≥ . . . ≥ G(m) = {1}

of subgroups which is called a stabilizer chain.
A base B is called non-redundant if G(i−1) 6= G(i) for all 1 ≤ i ≤ m. Redundancy of

a basis is easily determined, since since G(i) = G(i−1) ∩ Gbi
and therefore G(i−1) = G(i) ⇔

G(i−1) ≤ Gbi
.

Note that a base is a sequence of points, thus the order of the points is important. The
following almost trivial example shows that groups may have bases of different lengths and
that rearranging the points may result in redundant or non-redundant bases.

The group G = 〈(1, 2, 3, 4)(5, 6)〉 is isomorphic to a cyclic group of order 4. Clearly, (1) is
a base, but also (5, 1) is a non-redundant base, since G5 = 〈(1, 3)(2, 4)〉 and G 	 G5 	 {1}.
On the other hand, (1, 5) is obviously a redundant base.

A redundant base usually does not cause (non-trivial) problems, but to avoid patholo-
gies we will always assume that bases are non-redundant.

Having obtained a stabilizer chain, a lot of properties of a group can be determined
inductively by walking down (or up) the stabilizer chain.

For example, the order of the group is obtained as follows:

5.1.2 Proposition Let B = (b1, . . . , bm) be a base for G and let G ≥ G(1) ≥ . . . ≥ G(m)

be the corresponding stabilizer chain.
Then |G| =

∏m
i=1[G

(i−1) : G(i)] =
∏m

i=1 |bG(i−1)

i |.

Proof: By Lagrange’s theorem we know that the index of the stabilizer of a point
equals the length of the orbit of that point, hence we have [G(i−1) : G(i)] = |bG(i−1)

i |. Since
|G| = [G(0) : G(1)] · |G(1)| = . . . = [G(0) : G(1)] · . . . · [G(m−1) : G(m)] the claim follows. 2

The first computational task is to compute the orbit of a point under a group given
by generators. This is done by simply applying the generators to the points found so far
until no new points are found. By keeping track of the first element by which a new point
is reached, we obtain at the same time and at almost no extra cost a transversal for the
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stabilizer in the group. This is based on the fact that g′ ∈ Gxg ⇔ xg′ = xg which shows
that y ∈ xG ↔ Gxg, xg = y is a bijective correspondence between the points in the orbit
and the cosets by the stabilizer.

5.1.3 Orbit Algorithm The cost of computing the orbit xG is proportional to |xG| · |S|,
where S is the set of generators for G. The following pseudocode describes an algorithm
for computing the orbit of x in G = 〈S〉 and a transversal T for Gx in G.

orb := [x]; T := [id]; ind := 0;

while #orb > ind do

ind := ind + 1;

for s in S do

y := orb[ind] * s;

if not y in orb then

orb := orb cat [y]; T := T cat [T[ind]*s];

end if;

end for;

end while;

At the end of this algorithm, orb contains the orbit of x in G and the element T[ind] is
a representative for the coset of elements mapping x to orb[ind].

The only obscure point in this algorithm is that it has to be checked whether a point
y is actually new or is already contained in the partial orbit. If the size of Ω is not too
large (e.g. ≤ 106) this is most efficiently done with a bit array of flags for every point of
Ω. Once a point is found in the orbit, its flag is put to true and the inclusion check is only
a lookup in the bit array. For the general case, it pays to store the orbit in a binary tree
subject to some order on the elements of Ω. Then the inclusion check only requires about
log2(|xG|) comparisons.

For a permutation group G the tasks to determine a base and to find a subgroup chain
are therefore solved by some simple orbit computations. In this process we also obtain
transversals for the steps in the stabilizer chain, which actually allows to put elements of
G into a normal form.

5.1.4 Proposition Let B = (b1, . . . , bm) be a base for G and let G ≥ G(1) ≥ . . . ≥ G(m)

be the corresponding stabilizer chain. Let [G(i−1) : G(i)] = ri (i.e. ri = |bG(i−1)

i |) and let
Ti := {ti1, . . . , tiri

} be a transversal for G(i) in G(i−1) (as obtained from the orbit algorithm).
Then every g ∈ G can uniquely be written as g = tmtm−1 . . . t2t1 with ti ∈ Ti.

Proof: Let g ∈ G, then there exists a unique t1 ∈ T1 such that b1g = b1t1. Then gt−1
1 ∈

G(1). By repeating this argument we obtain a unique ti ∈ Ti such that bigt−1
1 . . . t−1

i−1 = biti
for every 1 ≤ i ≤ m. We finally arrive at gt−1

1 . . . t−1
m ∈ G(m) = {1} and hence g = tm . . . t1.

2
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The above process of writing an element g ∈ G as a product of transversal elements
by looking at the action on the base points is called sifting or stripping. It can also be
used to test membership of elements g ∈ Sn in a subgroup G ≤ Sn. For that, we assume
that we have a stabilizer chain and transversals for G as described above. We now try
to sift g through this stabilizer chain, i.e. we try to find transversal elements such that
bigt−1

1 . . . t−1
i−1 = biti. Then there are three possibilities:

(1) The sifting succeeds with gt−1
1 . . . t−1

m = 1. Then g ∈ G.

(2) The sifting succeeds with gt−1
1 . . . t−1

m 6= 1. Then g is an element fixing all the base
elements bi but not being the identity element, hence g 6∈ G.

(3) On some level we have bigt−1
1 . . . t−1

i−1 6∈ bG(i−1)

i , hence there exists no transversal
element on this level and hence g 6∈ G.

5.2 Strong generating sets

We have seen how to compute a stabilizer chain for a permutation group by iteratively
constructing stabilizers of base points. But so far we have cheated in one important point:
We start with a generating set S for G and can thus compute the orbit and transversal
for the first level. But to move on we have require generators for the stabilizer of the first
base point, and we haven’t got these yet.

The solution for this problem are the Schreier generators which are a more general
construction.

5.2.1 Lemma Let G = 〈S〉 be a finite group, let H ≤ G and let T be a transversal of H
in G such that 1 ∈ T . For an element g ∈ G we denote the element in T representing the
coset Hg by g.

Then the set R = {ts(ts)−1 | t ∈ T, s ∈ S} generates H. The elements of R are called
Schreier generators.

Proof: Since we have Hts = Hts it is clear that all the elements of R actually lie in H,
hence 〈R〉 ≤ H.
Now let h ∈ H and let h be written as a product of the generators of G, i.e. h = s1 . . . sk

with si ∈ S. Since 1 ∈ T we can rewrite h as 1s1(1s1)
−11s1s2 . . . sk = r1t1s2 . . . sk with

r1 = 1s1(1s1)
−1 ∈ R and t1 = 1s1 ∈ T . In the next step we replace t1s2 by t1s2(t1s2)

−1t1s2

and define r2 := t1s2(t1s2)
−1 ∈ R and t2 := t1s2. This yields h = r1r2t2s3 . . . sk. Iterating

this process we end up with h = r1 . . . rktk with ri ∈ R and tk ∈ T . But since ri ∈ H, we
require that h ∈ Htk, hence tk = 1 and we have h ∈ 〈R〉. 2

5.2.2 Remark Lemma 5.2.1 actually not only holds for finite groups but for finitely
generated groups and subgroups of finite index. Note that a finitely generated group
consists of the finite products of the generators and their inverses, hence the elements of
H can be written as h = s1 . . . sk with si ∈ S ∪S−1. We have to show that H = 〈R∪R−1〉.
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Looking at the proof, we require the elements ts−1(ts−1)−1 for t ∈ T and s ∈ S. Now let
t′ := ts−1 ∈ T , then we have ts−1(ts−1)−1t′s(t′s)−1 = t(t′s)−1. But we have t′ = ts−1 ⇔
Ht′ = Hts−1 ⇔ Ht′s = Ht ⇔ t′s = t, hence t(t′s)−1 = 1 and thus ts−1(ts−1)−1 ∈ R−1.

Using the Schreier generators we can now compute a base and a stabilizer chain for a
permutation group G. We thus obtain sets of generators for every level of the stabilizer
chain. Since generating sets which are adapted to a base are extremely useful, they get a
special name.

5.2.3 Definition Let B = (b1, . . . , bm) be a base for G and let G ≥ G(1) ≥ . . . ≥ G(m) be
the corresponding stabilizer chain. Then a set S ⊆ G with 〈S〉 = G and 〈S ∩ G(i)〉 = G(i)

is called a strong generating set, often abbreviated as SGS. Thus, in an SGS the elements
which stabilize the first i base points actually generate the full stabilizer of these base
points.

If we have generators S0 for G and generators Si for each level of a stabilizer chain,
then the union S := ∪m

i=0Si clearly forms a strong generating set for G.
The following lemma gives a criterion to test whether a given set of generators is a

strong generating set with respect to a given base.

5.2.4 Lemma Let {b1, . . . , bk} ⊆ Ω and let G ≤ SΩ. Assume there are Si ⊆ Gb1,...,bi
for

0 ≤ i ≤ k such that G = 〈S0〉 and Sk = ∅.
If 〈Si−1〉bi

= 〈Si〉, then B = (b1, . . . , bk) is a base for G and S := ∪k
i=1Si−1 is a strong

generating set of G with respect to the base B.

Proof: We proceed by induction on k. For k = 1 there is nothing to prove.
Let k ≥ 2, then we can assume by induction that S ′ := ∪k

i=2Si−1 is an SGS for 〈S1〉 with
respect to the base B ′ = (b2, . . . , bk). We have Gb1 = 〈S0〉b1 = 〈S1〉 ≤ 〈S ∩ Gb1〉, hence
Gb1 = 〈S ∩ Gb1〉 which shows that the SGS-condition is fulfilled for i = 1.
Now let i ≥ 2. By induction we know that 〈S ′ ∩ Gb1,...,bi

〉 = 〈S1〉b2,...,bi
. We therefore have

Gb1,...,bi
≥ 〈S ∩ Gb1,...,bi

〉 ≥ 〈S ′ ∩ Gb1,...,bi
〉 = 〈S1〉b2,...,bi

= (Gb1)b2,...,bi
= Gb1,...,bi

. Thus, we
have equality everywhere and hence Gb1,...,bi

= 〈S ∩ Gb1,...,bi
〉 which is the SGS-condition

for i ≥ 2. 2

Using this lemma we can construct a base and SGS by the following method which
improves a preliminary base and SGS until the condition 〈Si−1〉bi

= 〈Si〉 is fulfilled on all
levels. The algorithm is known as Schreier-Sims algorithm.

5.2.5 Schreier-Sims algorithm We assume that G = 〈S0〉, that B = (b1, . . . , bm) with
bi ∈ Ω and that Si ⊆ Gb1,...,bi

for 1 ≤ i ≤ m. We say that S := S0 ∪ . . . ∪ Sm is up-to-date
below level i if Sm = ∅ and 〈Sj−1〉bj

= 〈Sj〉 for all i < j ≤ m. A proper base and SGS are
thus found if S is up-to-date below level 0.

We start with S0 such that 〈S0〉 = G and S1 = ∅. Choose b1 ∈ Ω such that b1s 6= b1 for
some s ∈ S0 and set B = (b1), m = 1. Then S is up-to-date below level 1.
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Now assume that S is up-to-date below level i ≥ 1, then we check whether S is in
fact up-to-date below level i − 1. For that we compute the orbit of bi under 〈Si−1〉 and a
transversal T for 〈Si−1〉bi

in 〈Si−1〉. Since S is up-to-date below level i we know that we
have a SGS for 〈Si〉, hence we can sift the Schreier generators ts(ts)−1 with t ∈ T , s ∈ Si−1

which we obtain for 〈Si−1〉bi
.

If all the Schreier generators can be sifted we conclude that 〈Si−1〉bi
≤ 〈Si〉. Since

new elements in Si are only obtained from elements in Si−1 (see below) we know that
〈Si−1〉 ≥ 〈Si〉, hence we can conclude that S is now up-to-date below level i − 1.

If an element r = ts(ts)−1 does not sift through the SGS for 〈Si〉, we have found an
element of 〈Si−1〉bi

\ 〈Si〉 and we replace Si by Si ∪ {r}. Then S is only up-to-date below
level i + 1. If i = m, we have arrived at the bottom of the stabilizer chain and we define a
new base point bm+1 which is not fixed by r, we set Sm+1 := ∅ and adjust m := m + 1.

Although the Schreier-Sims algorithm performs much better than producing iteratively
Schreier generators for each level of the stabilizer chain, it still spends most of its time
on checking Schreier generators which actually do sift through the preliminary SGS. One
usually observes that if the SGS is not correct yet, then one of the first Schreier generators
(not using the identity element in the transversal) will not sift. This leads to the idea to
test only some randomly produced Schreier generators and accept the SGS as up-to-date
on this level if they can all be sifted.

5.3 Randomized methods

The idea behind a randomized Schreier-Sims algorithm is that in an incorrect SGS many
Schreier generators will no sift. One therefore tests only some Schreier generators ts(ts)−1

with randomly chosen t ∈ T and s ∈ 〈Si−1〉 and concludes that S is up-to-date below level
i − 1 if all these elements sift.

By this method one arrives at a probable SGS. Of course, one will try to prove that this
probable SGS is actually correct. There are (at least) three approaches to this question:

(1) Use additional information about the group, e.g. the group order.

(2) Accept a small uncertainty about the correctness and show that the probability that
the SGS is incorrect is smaller than some chosen bound.

(3) Use further techniques (more efficient than testing all Schreier generators on each
level) to rigorously prove the SGS correct.

The first point looks like cheating, but in many problems the group order is actually
known in advance, for example if only a new base has to be constructed. If the group
order is known, the SGS is clearly proved correct if the product of the orbit lengths on the
different levels equals the group order.

The second approach may be worthwhile if in some intermediate computations a pos-
sibly incorrect SGS may only result in extra work but not in erroneous results.
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The crucial idea here is to estimate the probability that a randomly chosen group
element will not sift if the SGS is incorrect. Note that we have not seen a method to
produce randomly distributed elements of a permutation group without already having a
correct stabilizer chain, but we will come back to this problem in section 5.5.

5.3.1 Lemma If S is an incorrect SGS obtained from the randomized Schreier-Sims
algorithm, then an element of g ∈ G does not sift through this system with probability
≥ 1

2
.

Proof: Assume that i is the smallest index where S is incorrect, i.e. such that 〈Si−1〉bi
	

〈Si〉. Then we have [〈Si−1〉bi
: 〈Si〉] = d ≥ 2. Because of the minimality of i, every g ∈ G

can uniquely be written as g = hti−1 . . . t1 with ti ∈ Ti. But if g is uniformly distributed
over G, then h is uniformly distributed over 〈Si−1〉bi

, hence h ∈ 〈Si〉 with chance 1
d

and
these are the only elements that will sift through S. Thus, the elements of G do not sift
through S with probability 1 − 1

d
≥ 1

2
. 2

Thus, if we successfully test 20 randomly generated elements of G, the SGS is correct
with an error probability smaller than 10−6.

The following section addresses the third approach and gives a rigorous verification
method for a SGS.

5.4 Verifying strong generators via presentations

Literature:

Charles C. Sims: Computation with finitely presented groups. Cambridge University
Press, 1994.

In this section we will see that a SGS actually provides us with a finite presentation
of a permutation group. Furthermore, we will see how we can use techniques for finitely
presented groups to prove a probable SGS correct.

5.4.1 Finitely presented groups

The free group Fn on n generators is defined as the most general group generated by n
elements. It has the property that every group G generated by n elements is a factor group
of Fn. Starting from this property, it is by no means obvious that such a group exists at
all (apart from the infinite cyclic group F1

∼= Z). It is clear that free groups (if they exist)
have to be enormously big, since for example every non-abelian finite simple group is now
known to be generated by two elements and is thus a factor group of F2.

The actual construction of the free group Fn is based on forming finite words in ab-
stract generators x1, . . . , xn and their inverses x−1

1 , . . . , x−1
n and defining multiplication as

46



Random Algorithms Chapter 5. Permutation groups

concatenation of these words. This gives a monoid with the empty word as identity ele-
ment. In order to obtain a group, we form equivalence classes of words by identifying words
which can be transformed into each other by removing or inserting instances of xix

−1
i or

x−1
i xi. It is elementary but tedious to show that concatenation is well-defined on these

classes and that the multiplication thus obtained is associative.

5.4.1 Definition Let X = {x1, . . . , xn} be the generators of the free group Fn, let R ⊂ Fn

be a finite subset of Fn and let RFn be the normal closure of R in Fn (i.e. the set of all
conjugates of R).

Then G := 〈X|R〉 := Fn/RFn is called a finitely presented group with presentation
〈X|R〉. The set R is called the set of defining relations for G.

The presentation 〈X|R〉 defines the most general group with n generators in which the
elements in R are the identity. Note that in order to obtain a quotient group we have to
factor out the normal closure of R. This corresponds to the fact that we want to remove
instances of r ∈ R in arbitrary positions of words in Fn.

The free groups are constructed such that the only operations on words not changing
the group elements are insertion or removal of pairs of generators and their inverses. A
word therefore represents the identity element if and only if it can be collapsed to the
empty word by these operations. For finitely presented groups, this is a much harder task,
known as the word problem. Since the 1950’s, we actually know that deciding whether a
word represents the identity element in a finitely presented group is in general an impossible
task. The famous Novikov-Boone-Britton theorem states that there exist finitely presented
groups for which the word problem is unsolvable. This means that there is not only no
universal algorithm which could solve the problem for every finitely presented group, but
there are single groups for which no algorithm exists.

However, the Novikov-Boone-Britton theorem was not the end of dealing with finitely
presented groups algorithmically, since there are important classes of groups for which the
word problem is solvable, for example Coxeter groups (groups with a presentation of the
form 〈x1, . . . , xn | (xixj)

mij , 1 ≤ i ≤ j ≤ n〉 with mii = 1 and mij ≥ 2 for i < j) or soluble
groups.

In the context of permutation groups it is often interesting to construct a presentation of
a given group, since this allows to express group elements easily as words in the generators.

One of the nice side-issues of a SGS is that it actually provides a presentation of the
permutation group almost for free.

5.4.2 Proposition For G = 〈S〉 let G = G(0) ≥ G(1) ≥ . . . ≥ G(m) = {1} be a subgroup
chain, let Ti be transversals for G(i) in G(i−1) and let T := ∪m

i=1Ti. Define X = {xs|s ∈ S}
to be a set of abstract generators and let ϕ be an epimorphism from the free group F on
X onto G. For every t ∈ T let w(t) ∈ F be a word such that ϕ(w(t)) = t, i.e. a preimage
of t under ϕ.

Then the set R := {w(t)xsw(t1)
−1 . . . w(tm)−1 | t ∈ T, s ∈ S with ts = tm . . . t1 for ti ∈

Ti} is a set of defining relations for G, i.e. G ∼= 〈X|R〉.

47



Random Algorithms Chapter 5. Permutation groups

Proof: It is clear that G is a factor group of 〈X|R〉, since the generators of G fulfill the
relations in R. We thus have to prove that a word w ∈ F such that ϕ(w) = 1 already lies
in RF , i.e. that the kernel of ϕ is the smallest normal subgroup of F containing R.

Let F (i) be the full preimage ϕ−1(G(i)) of G(i). Clearly, F (0) is generated by S and since
{w(t) | t ∈ T1} is a transversal of F (1) in F (0) we can conclude that F (1) is generated by
the elements w(t)xsw(t1)

−1 for t ∈ T1, xs ∈ X such that b1ts = b1t1. Writing ts = tm . . . t1,
we see that RFw(t)xsw(t1)

−1 = RFw(tm) . . . w(t2), hence F (1) is generated by RF and the
w(t) with t ∈ ∪m

i=2Ti, thus F (1)/RF is generated by {xs | s ∈ S ∩ G(1)}.
Repeating this argument for the levels of the stabilizer chain we see that F (m)/RF is

generated by {xs | s ∈ S ∩ G(m)} = ∅. Since F (m) is the kernel of ϕ this shows that
ker(ϕ) = RF . 2

5.4.2 Todd-Coxeter coset enumeration

The algorithms dealing with finitely presented groups can roughly be split into two classes:
The first deals with the generators and relations directly by manipulating expressions. Most
of these methods are related to Knuth-Bendix methods and Tietze transformations. The
second class deals with cosets and factor groups, e.g. the determination of the commutator
factor group. One of the most important methods is the Todd-Coxeter coset enumeration
which, given a finitely presented group and a subgroup of it, explicitly enumerates the
cosets of the group by the subgroup. In particular, this algorithm allows to determine the
index of a subgroup (if it is finite) and to assign each element of the group to a coset.

The set-up for Todd-Coxeter coset enumeration is as follows: Let G = 〈X|R〉 be a
finitely presented group with generators X = {x1, . . . , xn} and let H = 〈X ′〉 ≤ G be a
subgroup generated by words in the xi.

Each of the generators xi acts as a permutation on the cosets of G/H and the goal of
the algorithm is to construct these permutations systematically. The crucial (while trivial)
point is that the relations in R and the generators of H (elements in X ′) act trivially on
the cosets.

The way the algorithm proceeds resembles a game of solitaire: One sets up a couple
of tables for the cosets and tries to fill these in a consistent way. In a standard set,
a new coset is defined resulting in adding a new row to the tables. Sometimes we can
draw conclusions from an entry in a table and identify cosets as identical which results in
collapsing the tables. The goal is to fill the tables completely in a consistent way. One this
is accomplished, the game is finished and we have constructed the permutation action of
the generators on the cosets.

There are three types of tables in the game:

• coset table: this table records how the generators xi permute the cosets;

• relation tables: for every relation one table is used to make sure that the relation
acts trivially on the cosets;
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• subgroup tables: for every generator in X ′ one table is used to ensure that the
generator acts trivially on the cosets.

5.4.3 Example Let G = 〈a, b | a2, b2, (ab)3〉 and H = 〈(ab)2〉.
We denote the trivial coset H by 1 and start with the following tables:

coset table:
a b

1

relation tables:
a a

1 1
b b

1 1
a b a b a b

1 1
In this case the relation tables for a2 = 1 and b2 = 1 can be omitted if one adds with

every definition i · a = j in the coset table also the definition j · a = i (and analogously for
b).

subgroup tables:
a b a b

1 1
We now proceed by defining new cosets in the coset table, for example by defining that

1 ·a = 2. This means that the first coset is mapped under the first generator to the second
coset. In the relation and subgroup tables, at every instance where coset 1 is mapped by
a we now insert coset 2 as the image. Noting also that coset 2 is mapped under a to coset
1 we obtain the following new tables:

a b
1 2
2 1

a b a b a b
1 2 1
2 1 2

a b a b
1 2 1
2 1 2

Next, we define that 1 · b = 3. Using that 3 · b = 1 and the definitions already made,
we obtain:

a b
1 2 3
2 1
3 1

a b a b a b
1 2 3 1
2 1 3 2
3 2 1 3

a b a b
1 2 3 1
2 1 3 2
3 2 1 3

We now have two obvious choices for the next definition: we could define 2 · b = 4 or
3 · a = 4. Both of these definitions have the effect that the first row of the subgroup table
will be closed. Closing a row (or a part of a row) in a relation or subgroup table provides
us with a consequence, since we can read from the inserted element to the left and to the
right, and only one of these was given as a definition. In the situation here we see that
either of the two possible definitions has the other as a consequence by means of closing
the first row in the subgroup table. For the first time we now have a complete coset table:

a b
1 2 3
2 1 4
3 4 1
4 3 2

a b a b a b
1 2 4 3 ? 3 1
2 1 3 4 2 ? 2
3 4 2 ? 2 1 3
4 3 1 2 4 ? 4

a b a b
1 2 4 3 1
2 1 3 4 2
3 4 2 1 3
4 3 1 2 4

We can actually fill in the subgroup table consistently, but in the relation table the last
entry to be inserted is ambiguous. For example in the first row, looking from the left we
should insert 1, since 3 is mapped to 1 under b. Looking from the right, we should insert
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4, since 4 is mapped to 3 under a. This means that we have to identify the cosets 1 and
4. From the last row of this table (or from the coset table) we see that we also have to
identify the cosets 2 and 3.

We now collapse the tables by replacing 4 by 1 and 3 by 2, which yields:
a b

1 2 2
2 1 1

a b a b a b
1 2 1 2 1 2 1
2 1 2 1 2 1 2

a b a b
1 2 1 2 1
2 1 2 1 2

These tables are consistent and show that H is a subgroup of index 2 in G and that both
generators interchange the two cosets of H in G. Furthermore, we know that G is either
of order 2 or 6, since H is generated by an element c satisfying the relation c3 = 1 and is
thus either trivial or a cyclic group of order 3. It is not hard to see, that the symmetric
group S3 has generators satisfying the relations of G, hence we have G ∼= S3.

In many cases it is useful to apply coset enumeration with respect to a cyclic subgroup
generated by one of the generators. This often yields information about other generators
with unknown order as is indicated in the following example.

5.4.4 Example Let G = 〈a, b | a3, ab2, (ab)3〉 and H = 〈a〉.
In this case we know that the first generator a acts trivially on the cosets and we can

omit the relation table for a3 and the subgroup table. We start by defining 1 · b = 2 and
get as a consequence from the first row of the relation table for ab2 that 2 · b = 1. This
allows to complete the relation tables:

a b
1 1 2
2 2 1

a b b
1 1 2 1
2 2 1 2

a b a b a b
1 1 2 2 1 ? 1
2 2 1 1 2 ? 2

We get a conflict in the relation table for (ab)3 which shows that we have to identify
the cosets 1 and 2. We conclude that G = H = 〈a〉, hence G is a cyclic group of order 3.

We could arrive at the same conclusion by enumerating with respect to the trivial
subgroup H = 〈〉, but we would have to define 5 cosets before the tables collapse to 3
consistent cosets.

There are a number of interesting aspects to the Todd-Coxeter coset enumeration al-
gorithm:

• The algorithm is known to terminate if the index [G : H] is finite. However, there
is no bound on the number of cosets that have to be defined intermediately before
the tables collapse to the correct number (such a bound would provide a means to
attack the word problem). Therefore, nothing can be concluded if the algorithm has
not terminated after some time. In practical implementations, a bound is set to the
number of cosets that are defined. Once this bound is reached, the algorithm stops
indicating that the enumeration process was unsuccessful.

• There are different possible strategies to fill the tables. One is, to draw conclusions as
early as possible, but it is sometimes more efficient to postpone conclusions to a later
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stage. A lot of (heuristic) research has been done to develop an optimal strategy
but it appears that different types of groups require different strategies. Current
implementations use combinations of the various strategies, moving from one to the
other following certain heuristic rules.

• The permutation group obtained from the action on the cosets is isomorphic to the
factor group of G by the intersection of the conjugates of H (the core of H in G).
Even for a small index of H in G this can be a group of considerable size which is
then known to be a factor group of G.

5.4.3 Verification of a base and strong generating set

We can use Todd-Coxeter coset enumeration to prove that a strong generating set is correct.
This procedure at the same time provides a new method to obtain a presentation of G
(which is usually shorter than the one obtained directly from the SGS).

We have already seen that it is enough to show that G
(i−1)
bi

= G(i) on all levels 1 ≤ i ≤ k

of the stabilizer chain. Since it is easy to compute the length n of the orbit bG(i−1)

i of bi

under G(i−1) it is sufficient to show that [G(i−1) : G(i)] = n. Note that the orbit computation
shows that the index is at least n.

The idea is now to iteratively perform Todd-Coxeter coset enumerations for G(i−1)/G(i),
starting from the bottom of the stabilizer chain. If an enumeration succeeds with n cosets,
we can move one level up, otherwise we either find an element indicating that the SGS is
incorrect or we improve the intermediate presentation for G.

5.4.5 Schreier-Todd-Coxeter-Sims algorithm We assume that 〈X|R〉 is a presenta-
tion for H = G(i) and try to prove that [G : H] = n for G = G(i−1).

We start with a preliminary presentation 〈X̃|R〉 for G where X̃ := X ∪ {xs|s ∈ Si−1},
i.e. we add the generators of G not contained in H as abstract generators to X.

Next, we choose a bound m > n for the number of cosets we are prepared to define
intermediately.

If we now perform Todd-Coxeter coset enumeration until either the tables are con-
sistently completed or we have defined m cosets, we are in one of the following three
situations:

(1) The tables are completed with n = [G : H] cosets. Then we have shown that

G
(i−1)
bi

= G(i) and we can move up one level.

(2) The tables are completed with r > n cosets. Then there are two elements x, y ∈ G
with bix = biy but Hx 6= Hy. Therefore, we have xy−1 ∈ Gbi

\ H, hence the SGS is
incorrect and we can use the element xy−1 to improve it.

(3) We have defined m > n cosets and the tables are not complete. As in case (2) we
have two elements x, y ∈ G such that xy−1 ∈ Gbi

. We now try to sift xy−1 through
H to check whether it is contained in H. If the sifting does not succeed, the SGS

51



Random Algorithms Chapter 5. Permutation groups

is incorrect and we can use xy−1 to improve it. If the sifting does succeed, we have
expressed xy−1 as a word w in the generators of H. This yields a new relation
xy−1w−1 which we add to R and we collapse the enumeration tables by identifying
Hx and Hy.

Repeating this process if necessary we arrive at less that m cosets and we continue
the coset enumeration from there.

Iterating this procedure up the stabilizer chain finally yields a proof that all the subgroups
have the correct indices and at the same time produces a presentation for G.

Note that in the case that we are checking a SGS obtained by a randomized method
we are morally certain that it is correct. In this case we will never encounter case 2. Also,
if we choose m < 2n case 2 can not occur, since H could not be contained in Gbi

by an
index > 1. A typical value used for m is 1.2 · n.

5.5 Random elements from Markov processes

We have seen that we can use a stabilizer chain to produce uniformly distributed elements
in a group by multiplying together randomly chosen transversal elements from the different
levels. However, we sometimes require random group elements before we have computed a
stabilizer chain, for example if we want to check whether a random SGS is correct. It is
therefore desirable to have a method that produces randomly distributed group elements
just from the generators.

First we make the notion of randomly distributed group elements, by which we mean
uniformly distributed group elements, precise.

5.5.1 Definition Assume that a process X produces group elements x ∈ G.

(i) The process X is said to produce uniformly distributed elements of G if P (x = g) =
|G|−1 for all g ∈ G.

(ii) For ε > 0 the process X is said to produce ε-uniformly distributed elements of G if
|P (x = g) − |G|−1| < ε for all g ∈ G.

The surprisingly easy result is now that from a certain length of the products onwards,
the products in the generators of G are ε-uniformly distributed.

5.5.2 Proposition Let G be a finite group with G = 〈S〉 and assume that 1 ∈ S. For
ε > 0 there exists n0 ∈ N such that for n ≥ n0 the words of length n in S are ε-uniformly
distributed.

Proof: We define a matrix M ∈ R|G|×|G| with rows and columns indexed by the elements
of G such that Mg,h = |S|−1 if there exists s ∈ S with gs = h and 0 otherwise. In other
words, M is the incidence matrix of the Cayley graph of G with respect to S (divided by
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the size of S). In particular, M is a doubly stochastic matrix, i.e. the sums of the rows and
columns are all 1. Moreover, since G is a finite group, there is a bound d such that every
g ∈ G can be written as a product of at most d elements in S (we can take d to be the
diameter of the Cayley graph). This means that M d has only non-zero entries and thus M
is what is called an irreducible positive matrix.

The Perron-Frobenius theorem now implies the following for M :

(1) M has eigenvalue 1 with multiplicity 1 and eigenvector (1, 1, . . . , 1).

(2) For all other eigenvalues λ of M we have |λ| < 1.

Even without applying the Perron-Frobenius theorem this can easily be seen: It is clear that
e = (1, 1, . . . , 1) is an eigenvector with eigenvalue 1. Now assume there is an eigenvector
v = (v1, . . . , v|G|) with eigenvalue 1. We can assume that v1 = 1 and |vi| ≤ 1. But if any
vi < 1, then the first component of vM is smaller than 1, hence we have v = e. The same
argument actually shows that e is the only eigenvector with eigenvalue λ such that |λ| = 1.

We also can not have Jordan blocks for λ = 1, since that would require a vector v with
vM = v + e and hence vMn = v + n · e which would have unbounded norm. But the
elements of Mn are bounded by 1, hence the norm of vMn is also bounded.

Now let v be an arbitrary eigenvector with eigenvalue λ. We can assume that ‖v‖ = 1,
hence ‖vMn‖ = |λ|n. Again, since the norm of vMn is bounded, we have |λ| ≤ 1.

Transforming M to a matrix M ′ with respect to a basis of eigenvectors we see that
M ′n converges towards a matrix with a 1 in position (1, 1) and zeros anywhere else (note
that powers of Jordan blocks for eigenvalues λ with |λ| < 1 converge to 0). From this we
conclude that Mn converges to the matrix with all entries being |S|−1. 2

The way this proposition is applied in practice is as follows: In a preprocessing stage a
reasonably long random word in the generators of G is produced. After that, this element
is replaced by the product with one of the generators and every new element thus obtained
is output as a random element.

After the preprocessing stage this method produces a random element at the cost of
just one group multiplication.

Although there is no reasonable way to actually prove that the elements obtained
this way are ε-uniformly distributed, the method turns out to perform extremely well in
practice.

An alternative method to produce random elements is the product replacement algo-
rithm. For that, assume that G = 〈S〉 with S = {s1, . . . , sk}. In every step, choose
1 ≤ i, j ≤ k randomly with i 6= j and replace si by sisj or sis

−1
j (randomly). This pro-

duces (after a number of preprocessing steps) a random walk over the generating sets of
size k and the sequence of new generators inserted can be used as a sequence of random
elements.

Again, the performance of the method is much better than what can be rigorously
proved about it.
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