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Chapter 1

Modules and representations

General note: During this course, all modules and algebras are assumed to be
finite dimensional. Mostly we will be concerned with finite groups, but many
general notions are also valid for infinite groups. This will be appropriately
indicated.

1.1 Representations

1.1.1 Definition Let K be a field and V an n-dimensional K-vector space.
Then GL(V ) := {ϕ : V → V | ϕ linear, invertible } is called the general linear
group of V .

By fixing a basis (v1, . . . , vn) of V , the group GL(V ) is seen to be canonically
isomorphic with GLn(K) via the mapping GL(V ) → GLn(K) : ϕ 7→ (aij),
where viϕ =

∑n
j=1 aijvj .

Note that we will use row convention in this course. This means that
matrices act on vectors from the right (i.e. on row vectors) and that
the matrix of a linear mapping contains the coordinate vector of the
image of the i-th basis vector in its i-th row. This choice is made
partially to be compatible with the computeralgebra system Magma

which represents vectors as rows.

1.1.2 Definition Let G be a group, K a field.

(i) For a K-vector space V , a group homomorphism δ : G→ GL(V ) is called
a (K-)representation of G.

(ii) A group homomorphism ∆ : G → GLn(K) is called a (matrix) represen-
tation of G of degree n over K. If ∆ is obtained from a K-representation
δ by choosing a basis of V we say that ∆ belongs to δ.

(iii) Two matrix representations ∆,∆′ : G → GLn(K) belong to the same
representation δ if and only if there exists a matrix T ∈ GLn(K) such
that ∆′(g) = T∆(g)T−1 for all g ∈ G (T is the basis transformation from
the basis corresponding to ∆ to the basis corresponding to ∆′). In this
case, ∆ and ∆′ are called equivalent representations.
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Groups and representations Chapter 1. Modules and representations

1.1.3 Examples

(1) The mapping ∆ : G → K∗ : g 7→ 1 is called the trivial representation of
G (over K).

(2) Let Cn = 〈g〉 be the cyclic group of order n. Then Cn has the 1-
dimensional representations ∆k : Cn → GL1(C) : g 7→ exp(2πi

n
k) which

are pairwise inequivalent.

(3) Let G act on the set {1, . . . , n} (e.g. if G is given as a permutation group
of degree n) and let (v1, . . . , vn) be a basis of the n-dimensional vector
space Kn. Then the homomorphism ∆ : G → GLn(K), g 7→ ∆(g) with
vi∆(g) := vi·g is called a permutation representation of G.

(4) The symmetric group S3 acts on {1, 2, 3} and is generated by g = (1, 2)
and h = (2, 3). The corresponding permutation representation ∆ is given
by:

∆(g) =





0 1 0
1 0 0
0 0 1



 , ∆(h) =





1 0 0
0 0 1
0 1 0



 .

If we choose (v1, v2, v1 + v2 + v3) as basis of K3, then ∆ is transformed
into the equivalent representation ∆′ with

∆′(g) =





0 1 0
1 0 0
0 0 1



 , ∆′(h) =





1 0 0
−1 −1 1
0 0 1



 .

If we pick out the upper left 2 × 2 submatrices from ∆′ we obtain a
representation ∆2 of degree 2 of S3, given by

∆2(g) =

(
0 1
1 0

)

, ∆2(h) =

(
1 0
−1 −1

)

.

1.2 Group ring

1.2.1 Definition Let G be a group, K a commutative ring, then the set

KG := {
∑

g∈G

agg | ag ∈ K,ag 6= 0 only for finitely many g}

of finite formal sums is called the group ring of G over K. Addition and multi-
plication in KG are defined by

(
∑

g∈G

agg) + (
∑

g∈G

bgg) :=
∑

g∈G

(ag + bg)g

(
∑

g∈G

agg)(
∑

g∈G

bgg) :=
∑

g,h∈G

(agbh)gh =
∑

g∈G

(
∑

h∈G

ahbh−1gg)

If K is a field, KG is also called the group algebra of G over K (recall that a
K-algebra is a ring which at the same time is a K-vector space).
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1.2.2 Remarks

(1) By straightforward computation it can be seen that the group ring KG is
an associative K-algebra. Checking associativity is a somewhat tedious
calculation which nevertheless everybody should have gone through once.

(2) The group G and the ring K are always regarded as being embedded into
KG.

(3) KG is commutative if and only if G is an abelian group.

(4) If G contains an element g 6= 1 of finite order, then KG has zero divisors:
Let g be of order n and define a :=

∑n
i=1 g

i. Then a2 =
∑n

i=1(g
ia) = n ·a,

since gia = a for all i. This shows that 0 = a2 − n · a = a(a− n · 1). But
a 6= 0 and a 6= n · 1, since g 6= 1. Hence, a and a− n · 1 are zero divisors.

1.2.3 Examples

(1) Let C3 = 〈g〉 be the cyclic group of order 3. An arbitrary element of KC3

is given by a0 · 1 + a1 · g+ a2 · g
2. The product of two such elements gives

(a0 · 1+ a1 · g+ a2 · g
2)(b0 · 1+ b1 · g+ b2 · g

2) = (c0 · 1+ c1 · g+ c2 · g
2) with

c0 = a0b0 + a1b2 + a2b1, c1 = a0b1 + a1b0 + a2b2, c2 = a0b2 + a1b1 + a2b0.

(2) Let ∆ be the permutation representation of S3. Then ∆(KS3) is a 5-
dimensional K-algebra: It is clear that dim ∆(KS3) ≤ 6, since KS3 is a 6-
dimensional K-algebra. By choosing the basis (v1−v2, v1−v3, v1+v2+v3),
the permutation representation is transformed into

∆′((1, 2)) =





−1 0 0
−1 1 0
0 0 1



 , ∆′((2, 3)) =





0 1 0
1 0 0
0 0 1





which consists of block diagonal matrices with blocks of sizes 2 and 1.
Since the shape of block diagonal matrices is preserved under multiplica-
tion, this shows that the dimension is at most 5. It can easily be checked
that the 2×2 blocks of the group elements indeed contain a basis of K2×2,
therefore the image has in fact dimension 5.

1.2.4 Remark The group rings of cyclic groups can be described in a uniform
manner. Let G = 〈g〉 ∼= Cn be a cyclic group of order n. Then the homomor-
phism K[x] → KG : x 7→ g shows that KG ∼= K[x]/(xn − 1) (note that xn − 1
lies in the kernel and that the dimensions of the algebras are the same). The
ideals of KG are now easily seen, since ideals in K[x]/(xn − 1) are of the form
I/(xn − 1) where I �K[x] is an ideal containing (xn − 1). But since K[x] is a
principal ideal domain this means that I = (f) with f | xn − 1. The ideals of
KG therefore are in 1 − 1-correspondence with the divisors of xn − 1.

If the characteristic char(K) of K is not a divisor of n, the polynomial
xn−1 is separable (i.e. it has no multiple roots in its splitting field) and therefore
xn−1 = f1f2 . . . fr with fi distinct irreducible elements of K[x]. By the Chinese
remainder theorem we can conclude that KG ∼= K[x]/(xn − 1) ∼= K[x]/(f1) ⊕
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. . .⊕K[x]/(fr). For example, QC8
∼= Q(ζ8)⊕Q(i)⊕Q⊕Q and CC8

∼= C⊕. . .⊕C
(8 times).

The situation is different for n = char(K) = p. In this case xp−1 = (x−1)p,
therefore the ideals of KG form a chain KG ⊃ (g − 1) ⊃ (g − 1)2 ⊃ . . . ⊃
(g − 1)p−1 ⊃ {0}.

1.2.5 Remark A representation ∆ of G can be uniquely extended to a K-
algebra homomorphism ∆̃ : KG→ Kn×n by

∆̃(
∑

g∈G

agg) :=
∑

g∈G

ag∆(g).

1.2.6 Proposition Let K be a field, G,H finite groups and ϕ : G → H a
group homomorphism. Then there exists a unique extension ϕ̂ : KG→ KH of
ϕ. Moreover, ϕ̂ is injective (surjective) if and only if ϕ is injective (surjective).
The kernel ker(ϕ̂) is the ideal of KG generated by {g − 1 ∈ KG | g ∈ ker(ϕ)}.

Proof: The uniqueness of ϕ̂ follows from the fact that the elements of G are
a basis for the K-algebra KG. Comparing the dimensions of KG and ϕ̂(KG)
shows the statement about injectivity (surjectivity). Finally, it is clear that for
g ∈ ker(ϕ) the element g − 1 lies in ker(ϕ̂). By the homomorphism theorem
we have dim ϕ̂(KG) = |G| − dim ker(ϕ̂) and since dim ϕ̂(KG) = |ϕ(G)| =
|G|/| ker(ϕ)| it follows that dim ker(ϕ̂) = |G| − |G|/| ker(ϕ)|.

We now choose a transveral (set of coset representatives) t1, . . . , tr of ker(ϕ)
in G and write the elements of ker(ϕ) as h1 = 1, h2, . . . , hs. Then {tihj | 1 ≤
i ≤ r, 1 ≤ j ≤ s} is the set of elements of G and therefore a basis of KG.
By a basis transformation we obtain {ti, ti(hj − 1) | 1 ≤ i ≤ r, 2 ≤ j ≤ s} as
a different basis for KG and in this basis we find |G| − |G|/| ker(ϕ)| elements
which are in the kernel of ϕ̂.

1.3 Modules

1.3.1 Definition Let (V,+) be an abelian group and A a ring (e.g. a group
ring KG). Then V is called a (right) A-module if there is a mapping V ×A→ V
with

(i) (v + w)a = va+ wa for all v,w ∈ V , a ∈ A,

(ii) v(a+ b) = va+ vb for all v ∈ V , a, b ∈ A,

(iii) v(ab) = (va)b for all v ∈ V , a, b ∈ A,

(iv) v1 = v for all v ∈ V .

We think of module elements as row vectors, therefore mappings on
modules will be written on the right.

1.3.2 Examples
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(1) If ∆ : G→ GLn(K) is a representation of G then Kn can be turned into
a KG-module by v(

∑

g∈G agg) :=
∑

g∈G ag(v∆(g)).

(2) The group ring KG is a KG-module. For a finite group G this is called
the regular module. The corresponding representation (of degree |G|) is
called the regular representation of G. If the elements of G are taken as
basis elements for KG this yields a permutation representation of G.

1.3.3 Definition Let A be a ring and V an A-module.

(i) A subgroup W ≤ V is called an A-submodule of V (denoted as W ≤A V )
if W is closed under the action of A. In that case, the factor module V/W
is also an A-module with the action (v +W )a = va+W .

(ii) V is called a simple A-module or irreducible if V 6= {0} and {0} and V
are the only A-submodules of V . Otherwise V is called reducible.

(iii) V is called a indecomposable if V = W ⊕U with W,U ≤A V implies that
W = {0} or U = {0}.

(iv) A sequence V = V0 > V1 > . . . > Vn = {0} is called an A-composition
series of V if Vi ≤A V for all i and if Vi−1/Vi are simple A-modules. The
number n is called the length of the composition series, the factor modules
Vi−1/Vi are called its factors.

1.3.4 Remark For an A-module V and U,W ≤A V , also U +W := {u+ w |
u ∈ U,w ∈W} and U ∩W are A-submodules of V .

1.3.5 Remark Representations are called reducible, irreducible, indecompos-
able etc. if the underlying modules have this property.
If ∆ is a representation of KG then the corresponding KG-module V is re-
ducible if and only if there exists T ∈ GLn(K) such that

T∆(g)T−1 =

(
∆1(g) 0
(∗) ∆2(g)

)

for all g ∈ G

where ∆1,∆2 are representations of degrees 1 ≤ m,n −m < n of G. In that
case, ∆1 is the representation of G on a proper submodule W ≤KG V and ∆2

is the representation on V/W .
If V is decomposable, then T can be chosen such that (∗) is 0.

1.3.6 Example Let ∆ be the 2-dimensional representation of S3 given by

∆((1, 2)) =

(
0 1
1 0

)

, ∆((2, 3)) =

(
1 0
−1 −1

)

.

Then ∆((1, 2)) has eigenvectors v1 + v2 (eigenvalue 1) and v1 − v2 (eigenvalue
−1) and ∆((2, 3)) has eigenvectors v1 (eigenvalue 1) and v1 + 2v2 (eigenvalue
−1).
If char(K) 6= 3, there is no common eigenvector, hence there is no S3-invariant
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1-dimensional subspace and ∆ is thus irreducible.
If char(K) = 3, then v1 − v2 = v1 + 2v2 is a common eigenvector and with
respect to the basis (v1 − v2, v1) the representation is transformed into ∆′ with

∆′((1, 2)) =

(
−1 0
−1 1

)

, ∆′((2, 3)) =

(
−1 0
0 1

)

.

Clearly, this representation is reducible, but it is indecomposable, since the
subspace generated by v1 − v2 has no S3-invariant complement.

1.3.7 Definition Let V,W be A-modules for a ring A. A group homomor-
phism ϕ : V → W is called an A-module homomorphism if (vϕ)a = (va)ϕ
for all v ∈ V, a ∈ A. Two A-modules which are isomorphic by an A-module
isomorphism are denoted by V ∼=A W .

1.3.8 Theorem (Jordan-Hölder)
Let A be a ring, V an A-module with two composition series V = V0 > V1 >
. . . > Vn = {0} and V = W0 > W1 > . . . > Wm = {0}.
Then the two composition series are equivalent, i.e. the lengths of the two series
are equal and there is a permutation π ∈ Sn such that Vi−1/Vi

∼=A Wiπ−1/Wiπ.

This theorem can be proved using the Schreier-Zassenhaus refinement theo-
rem which asserts that the submodules Vij := 〈Vi, (Vi−1 ∩ Wj)〉 and Wij :=
〈Wj , (Wj−1 ∩ Vi)〉 form a composition series with Vi,j−1/Vij

∼= Wi−1,j/Wij . We
give a different proof using the first isomorphism theorem.

1.3.9 Theorem (First Isomorphism Theorem)
Let A be a ring, V an A-module and U,W ≤A V . Then (U + W )/W ∼=A

U/(U ∩W ).

Proof: The mapping ϕ : U → (U + W )/W : u 7→ u + W is an A-module
homomorphism and has kernel U ∩W ≤A V . 2

Proof: (Jordan-Hölder) We use induction on the length n of a composition
series of V . For n = 1, the module V is simple and there is nothing to prove.
Now assume that n > 1 and that V = V0 > V1 > . . . > Vn = {0} and
V = W0 > W1 > . . . > Wm = {0} are A-composition series of V . If V1 = W1,
we are done by induction, since V1 has a composition series of length n− 1.
If V1 6= W1 we have V1+W1 = V , since V1+W1 is a module properly containing
V1 and V/V1 is simple. Define U to be the intersection V1 ∩W1, then U ≤A

V . We see that U has a composition series by looking at the quotients (U ∩
Vi−1)/(U∩Vi). By the first isomorphism theorem we have (U∩Vi−1)/(U∩Vi) ∼=A

(Vi + (U ∩ Vi−1))/Vi ≤A Vi−1/Vi and thus the quotients are either trivial or
isomorphic to Vi−1/Vi.
Let U = U0 > U1 > . . . > Ur = {0} be a composition series of U . Then
V1 > . . . > Vn and V1 > U > U1 > . . . > Ur are two composition series of V1

which are equivalent by induction. Similarly we see that W1 > . . . > Wm and
W1 > U > U1 > . . . > Ur are two equivalent composition series of W1. This
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shows that n−1 = r+1 = m−1 and thus n = m. Finally, we conclude from the
first isomorphism theorem that V/V1 = (V1+W1)/V1

∼=A W1/(V1∩W1) = W1/U
and that V/W1

∼=A V1/U . Therefore the factors in the composition series
V > V1 > . . . > Vn are {V/V1, V1/U,Ui−1/Ui(i = 1 . . . r)} and by replacing V/V1

by W1/U and V1/U by V/W1 we see that this composition series is equivalent
to V > W1 > . . . > Wn. 2

1.3.10 Remark For an arbitrary ring A it is not guaranteed that an A-module
has a composition series. However, this is true if A is noetherian and artinian,
i.e. if every ascending or descending chain of A-modules becomes constant. This
is always true for finite-dimensional modules, but also for finitely generated
modules over groups rings of finite groups.

1.3.11 Corollary As a consequence of the Jordan-Hölder theorem each rep-
resentation ∆ of a group G can be written as

∆(g) =








∆1(g) 0 · · · 0
(∗) ∆2(g) · · · 0
...

...
. . .

...
(∗) (∗) · · · ∆k(g)








for all g ∈ G

where the ∆i are the uniquely determined irreducible components of ∆.

1.3.12 Proposition Let A be a ring. Then every simple A-module V is of
the form V ∼= A/L for some maximal right-ideal L of A.

Proof: The map A → V : a 7→ v · a is a homomorphism and its kernel is a
right-ideal L of A. Since V is simple, the homomorphism is surjective and the
kernel is a maximal ideal. 2

1.3.13 Example Let G be a group and K a field. Then the kernel I of the
K-algebra homomorphism ϕ : KG → K :

∑

g∈G agg 7→
∑

g∈G ag is a maximal
ideal in KG and is called the augmentation ideal of KG. The corresponding
simple factor module KG/I is the KG-module of the trivial representation.

1.3.14 Corollary A finite group G has up to equivalence at most |G| irre-
ducible representations over a field K.

Proof: The group ring KG is a K-vector space of dimension |G|, hence
every composition series of KG has at most |G| factors. On the other hand,
an irreducible KG-module V is of the form V ∼=KG KG/L, hence it must be
isomorphic to one of the factors in the composition series of KG. 2

1.3.15 Proposition Let K be a field with char(K) = p > 0 and let G be a
p-group. Then the trivial representation is the only irreducible representation
of G over K.

Proof: Let V be a simple KG-module and let M be the orbit of some
0 6= v ∈ V . Then G acts on FpM := {

∑

g∈G agvg | ag ∈ Fp} and the orbits of G
on FpM have length a power of p. Since {0} is an orbit, there has to be another
orbit of length 1, {w} say. Then 〈w〉 is a 1-dimensional KG-submodule of V
on which G acts trivially and since V is simple the claim follows. 2
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1.4 Homomorphisms

1.4.1 Definition Let V,W be A-modules for a ring A.

(i) A group homomorphism ϕ : V →W is called an A-module homomorphism
if (vϕ)a = (va)ϕ for all v ∈ V, a ∈ A.
Two A-modules which are isomorphic by an A-module isomorphism are
denoted by V ∼=A W .

(ii) HomA(V,W ) := {ϕ : V → W | ϕ is A-module homomorphism } is an
abelian group. In case thatK is a field andA is aK-algebra, HomA(V,W )
is a K-vector space.

(iii) EndA(V ) := HomA(V, V ) is called the endomorphism ring of V (as A-
module) is a ring. In case that K is a field and A is a K-algebra, EndA(V )
is a K-algebra.

1.4.2 Remarks Let G be a group and K a field.

(1) If ∆ is a representation of G with associated KG-module V , the ring
EndKG(V ) consists of those linear mappings ϕ : V → V which commute
with the action of ∆(G), i.e.

EndKG(V ) = {ϕ ∈ End(V ) | ∆(g)ϕ = ϕ∆(g) for all g ∈ G}.

(2) G acts on End(V ) via ϕ 7→ ϕg where the endomorphism ϕg is defined by
vϕg := ((vg−1)ϕ)g. The ring EndKG(V ) is the set of fixed points under
this action of G.

1.4.3 Theorem (Schur’s lemma)
Let K be a field and A a K-algebra.

(i) If V is a simple A-module then EndA(V ) is a skew field.

(ii) If K is algebraically closed and V is simple then EndA(V ) ∼= K.

(iii) If V,W are simple A-modules, then HomA(V,W ) = {0} if V 6∼=A W .

Proof: (i)+(iii): Let V,W be simple A-modules and assume that ϕ ∈
HomA(V,W ). Then ker(ϕ) = {0} or ker(ϕ) = V and im(ϕ) = {0} or im(ϕ) =
W . Thus, ϕ is either 0 or bijective. This shows that ϕ has to be 0 if V 6∼=A W
and that all elements of EndA(V ) \ {0} are invertible.
(ii): The map ι : K → EndA(V ), a 7→ a · idV is injective, since K is a field.
Assume that ϕ ∈ EndA(V ) then the characteristic polynomial of ϕ has a zero
a in K, hence ϕ − a · idV ∈ EndA(V ) is not invertible and is thus 0 by (i).
Therefore ϕ = a · idV which shows that ι is surjective. 2

8
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1.4.4 Remark The fact that EndA(V ) = K · idV does in general not imply
that V is irreducible. Let for example K = Fp and let G be a Sylow p-subgroup
of SLn(p), e.g. the group

G =












1 0
. . .

aij 1




 | aij ∈ Fp, i > j







of lower triangular matrices, then the only matrices which commute with all
elements of G are the scalar matrices but the first basis vector clearly generates
an FpG-invariant submodule.

1.4.5 Definition Let K be a field, A a K-algebra and V an A-module.

(i) The dual space Hom(V,K) is made a left A-module by defining

v(aλ) := (va)λ for all v ∈ V, a ∈ A,λ ∈ Hom(V,K).

(ii) If A is a group ring KG, then V ∗ = Hom(V,K) becomes a (right) KG-
module by

v(λg) := (vg−1)λ for all v ∈ V, g ∈ G,λ ∈ V ∗.

The module V ∗ is called the contragredient or dual module of V . The
representation ∆∗ of G on V ∗ obtained from this action is called the
contragredient representation of ∆. If we choose as basis for V ∗ the dual
basis of the basis underlying ∆, then ∆∗(g) = (∆(g)−1)tr.

1.4.6 Proposition Let G be a group, K a field and V a KG-module. If
W ≤KG V then W⊥ := {λ ∈ V ∗ | wλ = 0 for all w ∈ W} ≤KG V ∗. One has
V ∗/W⊥ ∼=KG W ∗ and W⊥ ∼=KG (V/W )∗.

Proof: We first have to show that W⊥ is G-invariant. Let λ ∈ W⊥, g ∈ G
and w ∈W , then w(λg) = (wg−1)λ = 0, since wg−1 ∈W , hence λg ∈W⊥.
The first isomorphism follows, since the restriction homomorphism V ∗ → W ∗ :
λ 7→ λ|W is G-invariant and clearly has W⊥ as its kernel. The second isomor-
phism is due to the bijection between the homomorphisms having W in their
kernel and the homomorphisms of V/W . 2

1.4.7 Example For a field K of characteristic 3, the mapping ∆ : S3 →

GL2(K) : (1, 2) 7→

(
−1 0
−1 1

)

, (2, 3) 7→

(
−1 0
0 1

)

defines a reducible but in-

decomposable representation of S3. The KS3-module V = K2 has a unique
composition series with 1-dimensional submodule V1 = 〈v1〉. The module V1

belongs to the 1-dimensional representation g 7→ sign(g), the quotient module
is the trivial module.

The action on the dual module V ∗ is given by (1, 2) 7→

(
−1 −1
0 1

)

and (2, 3) 7→
(
−1 0
0 1

)

, hence the dual module has a unique composition series with the

trivial module as a submodule and the module of the signum representation as
quotient module.

9
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1.4.8 Theorem (Norton’s irreducibility test)
Let ∆ : G → GLn(K) be a representation of G on the KG-module V and
denote the extension of ∆ to KG again by ∆. Let a ∈ KG such that 0 <
rank(∆(a)) < n. Then ∆ is irreducible if and only if

(i) vKG = V for all 0 6= v ∈ ker(∆(a))

(ii) λKG = V ∗ for one 0 6= λ ∈ ker(∆(a)tr)

Proof: Assume that ∆ is reducible and let W ≤KG V be a proper submodule.
Since our criteria are basis independent we can assume that the basis underlying
∆ is chosen such that it extends a basis of W . We therefore have

∆(a) =

(
∆1(a) 0
(∗) ∆2(a)

)

.

Since ∆(a) is singular, either ∆1(a) or ∆2(a) is singular. If ∆1(a) is singular,
we have ker(∆(a)) ∩W 6= {0} and hence there is a vector 0 6= v ∈ ker(∆(a))
such that vKG ⊆ W is a proper submodule of V . Now assume that ∆1(a) is
invertible. Then every 0 6= λ ∈ ker(∆(a)tr) has to lie in U⊥ and since this is a
KG-module, λ generates a proper submodule of V ∗. 2

1.4.9 Algorithm (Richard Parker’s MeatAxe)
Let a representation ∆ of degree n of a group G = 〈g1, . . . , gr〉 be given by the
images ∆(g1), . . . ,∆(gr). This algorithm either splits ∆ into smaller represen-
tations or proves the irreducibility of ∆.

(1) Choose a number of random words a ∈ KG and compute their nullity
(corank) nul(a) := n− rank(∆(a)).

(2) Select a ∈ KG with 0 < rank(∆(a)) < n such that nul(a) is minimal.

(3) Compute ker(∆(a)) and check for each 1-dimensional subspace 〈v〉 of
ker(∆(a)) whether vKG is a proper submodule. If this is the case, a
proper KG-submodule W is found and the actions of G on W and on
V/W are computed.

(4) If all 1-dimensional subspaces of ker(∆(a)) generate V , compute 0 6=
λ ∈ ker(∆(a)tr). Check whether λKG = V ∗ by applying the matrices
∆(g)tr to λ. If this is the case, ∆ is irreducible, otherwise a proper KG-
submodule W ∗ of V ∗ is found, the actions of G on W ∗ and on V ∗/W ∗ are
computed and the transposed representations are returned as constituents
of ∆.

The modules vKG (and λKG) are computed by a spinning algorithm: One
starts with W0 := 〈v〉 and computes Wi+1 := 〈uk∆(gj) | 1 ≤ j ≤ r, 1 ≤ k ≤ s〉
for Wi = 〈v1, . . . , vs〉 until Wi+1 = Wi.
Note that this algorithm requires only finitely many steps if either K is a finite
field or nul(a) = 1.

10



Groups and representations Chapter 1. Modules and representations

1.4.10 Example LetK be a field, G = S3 then the 2-dimensional G-module V
of S3 obtained by splitting off the trivial module from the permutation module
of degree 3 is gives the representation ∆ with

∆((1, 2)) =

(
0 1
1 0

)

, ∆((2, 3)) =

(
1 0
−1 −1

)

.

For the element a = (1, 2)+(2, 3)+(2, 3)·(1, 2) ∈ KG we get ∆(a) =

(
1 2
−1 −2

)

,

so ∆(a) has rank 1.
We have ker(∆(a)) = 〈(1, 1)〉 and spinning the vector (1, 1) gives (1, 1)∆(KG) =
〈(1, 1), (0,−1)〉 = V . So the first part of the Norton criterion gives no proper
submodule of V .
In the second step we look at the dual module V ∗ and therefore at the trans-
posed matrices. We have ker(∆(a)tr) = 〈(2,−1)〉 and applying the two gener-
ators to the vector (2,−1) gives (2,−1)∆(KG)tr = 〈(2,−1), (−1, 2)〉. In case
char(K) 6= 3 this is a basis of the full dual module, hence the representation
is irreducible. In case char(K) = 3 we have found that 〈(1, 1)〉 is a proper
submodule of V ∗, so V ∗ and therefore also V is reducible.

Some adjustments to the basic idea of the MeatAxe allow to improve
its efficiency for large finite fields and to extend its application to fields
of characteristic 0 in many cases. The ideas involved will be discussed
later.

Exercises

1. Determine all irreducible Q-representations of C3 (up to equivalence).

2. Let K be a field and let G be a group acting on the set {1, . . . , n}. Let V be the
KG-module with basis (v1, . . . , vn) on which G acts by vig := vi·g.

(i) Show that V0 := 〈
∑n

i=1 vi〉 and V1 := 〈v1 − v2, v1 − v3, . . . , v1 − vn〉 are KG-
submodules of V .

(ii) Under which condition is V0 ≤ V1 or V = V0 ⊕ V1.

(iii) Let G be the alternating group A5 and K = F2. Show that the action of A5

on V1 gives an irreducible representation of degree 4 of A5 over F2.
(Hint: A5 is a simple group.)

3. Let V be a KG-module.

(i) Show that V0 := {v ∈ V | vg = v for all g ∈ G} ≤KG V .

(ii) Show that the mapping v 7→
∑

g∈G vg is a KG-homomorphism from V to V0.
Is it necessarily surjective?

4. Let C4 = 〈g〉 be the cyclic group of order 4 and let

a :=
1 + i

2
g +

1 − i

2
g3, b :=

1 − i

2
g +

1 + i

2
g3 ∈ CC4.

Show that {1, g2, a, b} is a subgroup of the unit group CC∗
4 of CC4 which is isomor-

phic with the Klein group V4.

11
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5. Show that the group rings CV4 and CC4 are isomorphic (as C-algebras).

6. The dihedral group D8 of order 8 is the symmetry group of a square. The action
of D8 on the corners of the square gives a permutation representation of D8 which
turns R4 into an RD8-module V . Determine the RD8-submodules of V .

7. Let ∆ and Ψ be equivalent representations of a group G. Show that ∆ is irre-
ducible/reducible/indecomposable/decomposable if and only if Ψ is.

8. Let G be a group and K a field. Show that the 1-dimensional representations of G
are in bijection with the homomorphisms of G/G′ to K∗. (Note: G′ is the derived
subgroup of G, i.e. generated by the elements [g, h] := g−1h−1gh.)

9. Let G be a non-abelian simple group of even order. Show that every non-trivial
irreducible representation of G over C has at least degree 3.
(Hint: G contains an element of order 2. Consider 2-dimensional representations of
such an element.)

10. Let G be a finite group and let a :=
∑

g∈G g ∈ KG. Show that the 1-dimensional
module 〈a〉 spanned by a is the unique submodule of KG that is isomorphic with
the trivial G-module.

11. Let G be a finite group, K a field and ∆ a 1-dimensional representation of G over
K.

(i) Show that I := {
∑

g∈G agg |
∑

g∈G ag∆(g) = 0} is a two-sided ideal of KG.

(ii) Show that ∆ is the representation of KG on the module KG/I.

12. Let A be a ring, V = ⊕n
i=1Vi an A-module where Vi pairwise non-equivalent simple

A-modules. Show that every W ≤A V is of the form W = ⊕r
j=1Vij

with 1 ≤ i1 <
. . . < ir ≤ n. Determine the number of A-submodules of V .

13. Let K be a field, G a finite group and V = KG the regular G-module. Show that
V ∗ ∼=KG V .

14. Let Sn be the symmetric group on n points and let V := 〈v1−v2, v2−v3, . . . , vn−1−
vn〉 be a submodule of the natural permuation module.

(i) Use the Norton criterion to show that V is an irreducible QSn-module.
(Hint: Sn is generated by g = (1, 2, . . . , n) and h = (1, 2). An obvious linear
combination of the matrices of the action of g and h on V has a 1-dimensional
kernel.)

(ii) Find out under which condition on the field K the module V is an irreducible
KSn-module.
(Hint: Look at small examples, e.g. n = 3, 4, 5 and generalize.)

12



Chapter 2

Semisimple rings

2.1 Maschke’s theorem

2.1.1 Definition Let A be a ring.

(i) An A-module V is called semisimple if V is a direct sum of simple A-
modules.

(ii) A representation corresponding to a semisimple module is called com-
pletely reducible.

2.1.2 Theorem Let A be a ring and V an A-module. Then the following
conditions are equivalent:

(i) V is semisimple.

(ii) V is a sum of simple A-modules.

(iii) Every submodule W ≤A V has a complement U , i.e. V = W ⊕ U with
U ≤A V .

Proof: (i) ⇒ (ii): This is clear.
(ii) ⇒ (iii), (ii) ⇒ (i): By assumption we have V =

∑

i∈I Vi, where Vi are
simple A-modules. Let W ≤A V . We will use Zorn’s lemma to construct a
complement of W in V . Define

M :=






J ⊆ I |

∑

j∈J

Vj =
⊕

j∈J

Vj and (
∑

j∈J

Vj) ∩W = {0}






.

Then M 6= ∅, since ∅ ∈ M and M is partially ordered with respect to set
inclusion. To apply Zorn’s lemma we require that every totally ordered subset
(chain) K ⊂ M is bounded in M. But for a chain K we have K := ∪J∈KJ ∈ M,
since every j ∈ K lies in some J ∈ K and thus Vj ∩W = {0}. Also,

∑

j∈K Vj =
⊕

j∈K Vj because otherwise there would be J1 ⊆ J2 ∈ K and j1 ∈ J1, j2 ∈ J2

with Vj1 ∩ Vj2 6= {0} which contradicts J2 ∈ M. By Zorn’s lemma we can
now conclude that there exists a maximal element J0 ∈ M. We claim that

13
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U := ⊕j∈J0
Vj is a complement of W in V .

Assume that V ′ := W ⊕ U � V , then there exists a simple A-module Vi such
that Vi 6⊆ V ′. Since Vi is simple, this shows that V ′∩Vi = {0}. In particular we
have Vi ∩W = {0} and

∑

j∈J0
Vj +Vi = ⊕j∈J0

Vj ⊕Vi. Therefore, J0 ∪{i} ∈ M
which contradicts the maximality of J0 and thus V ′ = V .
Applying this argument to W = {0} implies (i), since the complement V of W
is written as a direct sum of simple A-modules.
(iii) ⇒ (ii): Define V ′ :=

∑

W≤AV W , where the sum is taken over the simple
A-submodules of V . By assumption, V ′ has a complement U in V . If U 6= {0},
then U contains a cyclic A-module T , i.e. a submodule of the form T = {va|a ∈
A} for some v ∈ U . We can now apply Zorn’s lemma to M := {S ≤A T | S 6=
T}, since v 6∈ S for all S ∈ M implies that every chain is bounded in M. Thus,
there exists a maximal submodule T ′ of T .
By assumption, T ′ has a complement V ′′ in V and we have T = T ′ ⊕ (V ′′ ∩ T ).
But due to the maximality of T ′, the factor module T/T ′ is simple and hence
V ′′ ∩ T ∼= T/T ′ is a simple A-module. This contradicts the fact that T lies in
the complement of V ′ and hence U = {0} and V ′ = V . 2

2.1.3 Proposition Let A be a ring and V an A-module.

(i) If W,U ≤A V are semisimple modules, then 〈W,U〉 is semisimple, i.e.
sums of semisimple modules are semisimple.

(ii) If V is semisimple and W ≤A V , then W is semisimple, i.e. submodules
of semisimple modules are semisimple.

(iii) If V is semisimple and W ≤A V , then V/W is semisimple, i.e. factor
modules of semisimple modules are semisimple.

Proof: (i): Since W and U are sums of simple modules, the sum 〈W,U〉 is
also a sum of simple modules.
(ii): If W ′ ≤A W is a submodule of W , then we require to find a complement
W ′′ of W ′ in W . By assumption we know that W ′ has a complement U ≤A V
in V . Define W ′′ := W ∩U , then every w ∈W is uniquely written as w = w′+u
with w′ ∈W ′ and u ∈ U , and therefore W = W ′ ⊕W ′′.
(iii): Let π be the canonical projection of V onto V/W . Since V is semisimple,
it is the direct sum of simple A-modules Vi and the image of Vi under π is either
{0} or a simple A-module (isomorphic with Vi). Thus, the image π(V ) is the
sum of simple A-modules and is therefore semisimple. 2

2.1.4 Corollary A ring A is semisimple as an A-module if and only if every
A-module V is semisimple.

Proof: We only have to prove that semisimplicity of A as an A-module
implies semisimplicity of an arbitrary A-module V . Let (vi | i ∈ I) be a basis
of V . Then the mapping ϕ : ⊕i∈IA → V , (ai)i∈I 7→

∑

i∈I viai is an A-module
epimorphism. Thus, V is a factor module of the semisimple A-module ⊕i∈IA
and is therefore semisimple itself by the previous proposition. 2

14



Groups and representations Chapter 2. Semisimple rings

2.1.5 Definition A ring A is called semisimple if A is semisimple as an A-
module. By the above corollary this implies that all A-modules are semisimple.

2.1.6 Theorem (Maschke’s theorem)
Let K be a field and G a group. The group ring KG is semisimple if and only
if char(K) ∤ |G|.

Proof: ⇒: Let I be the augmentation ideal in KG then by assumption
KG = I ⊕ I ′ and I ′ ∼=KG KG/I is the trivial KG-module. We have I ′ = 〈v〉
with v =

∑

g∈G agg and vg = v for all g ∈ G, since I ′ is the trivial module. This
shows that ag = a ∈ K for all g ∈ G. But v 6∈ I, therefore

∑

g∈G a = |G|a 6= 0
and thus char(K) ∤ |G|.
⇐: Let W ≤KG KG. As a K-module, W has a complement and we denote the
projection of KG onto W by π. By averaging over the group elements we turn π
into a KG-module homomorphism π̃ : KG → KG, a 7→ |G|−1

∑

g∈G(ag−1)πg.
Then π̃ is well defined, since we assume that char(K) ∤ |G| and one checks that
im(π̃) = W and π̃2 = π̃. Thus KG = im(π̃) ⊕ ker(π̃), in other words, ker(π̃) is
a complement of W . 2

Maschke’s theorem is a branching point for the representation theory
of finite groups. The first branch is the ordinary representation theory,
which is concerned with the semisimple case (i.e. char(K) ∤ |G|) where
every representation is completely reducible. The other branch is the
modular representation theory which uses different methods to analyze
the situation where the group ring KG is not semisimple. The extreme
case of p-groups in characteristic p shows that the irreducible modules
are no longer helpful. Instead the projective indecomposable modules
are studied in the modular representation theory.

In this course we will restrict ourselves almost exclusively to the semi-
simple case.

2.2 Wedderburn decomposition

2.2.1 Lemma Let A be a ring and let A = ⊕i∈IVi be a decomposition of V
into a direct sum of right ideals. Then the sum is finite, i.e. I is a finite set.

Proof: The element 1 ∈ A can be written as a finite sum 1 =
∑

i∈I0
ei with

ei ∈ Vi. Then A = 1 ·A =
∑

i∈I0
eiA ⊆

∑

i∈I0
Vi, hence I0 = I and eiA = Vi for

i ∈ I. 2

2.2.2 Proposition/Definition Let A =
⊕n

i=1 Vi be a decomposition of A
into right ideals. Then 1 ∈ A can be written as 1 = e1 + . . .+ en with ei ∈ Vi.

(i) The ei are called (orthogonal) idempotents and fulfill e2i = ei, eiej = 0 for
i 6= j and Vi = eiA.

(ii) The Vi are two-sided ideals Vi �A if and only if the ei lie in the centre of
A. In this case the ei are called central idempotents.

15
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(iii) An idempotent ei is called a primitive idempotent if ei = e′i+e
′′
i with e′i, e

′′
i

orthogonal idempotents implies e′i = 0 or e′′i = 0. The idempotent ei is
primitive if and only if eiA is an indecomposable right ideal (projective
indecomposable module).

(iv) A central idempotent ei is called a central primitive idempotent if ei =
e′i +e

′′
i with e′i, e

′′
i central orthogonal idempotents implies e′i = 0 or e′′i = 0.

The idempotent ei is central primitive if and only if eiA is a two-sided
ideal that can not be decomposed into a direct sum of non-trivial two-
sided ideals (block ideal).

(v) If 1 = e1 + . . . + er with ei central primitive idempotents, then the ei
are called block idempotents. The block idempotents are unique (up to
permutation).

Proof: (i): The fact that Vi = eiA follows as in the previous lemma. Fur-
thermore, we have ej = 1 · ej = e1ej + . . . + enej and since eiej ∈ Vi it follows
that eiej = 0 for i 6= j and e2j = ej for all j.
(ii): If Vi � A for i 6= j we have ViVj ⊆ Vi ∩ Vj = {0}, hence eia = ei(ae1) +
. . . + ei(aen) = eiaei, since ei(aej) ∈ ViVj. On the other hand aei = (e1a)ei +
. . . + (ena)ei = eiaei, since (eja)ej ∈ VjVi. Thus the ei lie in the centre Z(A)
of A.
The other direction is clear, since ei ∈ Z(A) implies Vi = eiA = Aei and this is
clearly a two-sided ideal in A.
(iii): Assume that eiA is decomposable into proper right ideals, i.e. eiA = U⊕V ,
then 1 = u+ v with u ∈ U, v ∈ V . Now, u = eiu = (u + v)u = u2 + vu, hence
vu = 0 and u2 = u, thus u and v are orthogonal idempotents and ei is not
primitive.
Conversely, if ei is not primitive and ei = e′i + e′′i is a proper decomposition,
then eiA = e′iA⊕ e′′iA and thus eiA is decomposable.
(iv): This is the combination of the conditions in (ii) and (iii).
(v): Assume that 1 =

∑n
i=1 ei =

∑m
j=1 fj are two decompositions into block

idempotents. Now, ei = ei · 1 =
∑m

j=1 eifj is a decomposition into orthogonal
idempotents, since (eifj)(eifk) = eiδjkfj. But the ei are primitive, hence there
is precisely one j = j(i) with eifj(i) = ei and the other eifj are 0. The same
argument applied to 1 · fj(i) shows that fj(i) = eifj(i) = ei. Hence we have
{e1, . . . , en} ⊆ {f1, . . . , fm} and by interchanging the roles of the ei and fj we
get equality of the sets. 2

2.2.3 Example Let A = K2×2, e1 =

(
1 0
0 0

)

and e2 =

(
0 0
0 1

)

. Then e1, e2

are primitive orthogonal idempotents, e1A = {

(
a b
0 0

)

| a, b ∈ K}, e2A =

{

(
0 0
c d

)

| c, d ∈ K} and eiA ∼= K2 are irreducible A-modules. But f1 =
(

1 1
0 0

)

and f2 = I2−f1 =

(
0 −1
0 1

)

are also primitive orthogonal idempotents
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with A = f1A⊕ f2A. The only central primitive idempotent is I2 =

(
1 0
0 1

)

.

2.2.4 Lemma Semisimple rings contain central primitive idempotents.

Proof: This is seen by decomposing 1 iteratively into central idempotents.
If a central idempotent is not primitive it can be properly split. This process
stops after finitely many steps, since by Lemma 2.2.1 a semisimple ring is a
finite direct sum of minimal left ideals. 2

2.2.5 Proposition Let A be a semisimple ring and let 1 = e1 + . . . + er be
the decomposition into central primitive idempotents.

(i) Every simple V ≤A A (minimal right ideal) is contained in precisely one
eiA.

(ii) If Vi ≤A eiA and Vj ≤A ejA with i 6= j, then Vi 6∼=A Vj.

(iii) Every eiA is the (direct) sum of A-isomorphic minimal right ideals and is
therefore called a homogeneous component.

(iv) Up to isomorphism there exist precisely r simple A-modules.

Proof: (i): We have 1 · V = e1V ⊕ . . . ⊕ erV and since V is simple there is
precisely one i with eiV 6= {0}. But then V = eiV ⊆ eiA.
(ii): The idempotent ei acts as identity on Vi and as 0 on Vj, therefore Vi and
Vj are not A-isomorphic.
(iii): Let V be a minimal right ideal in eiA and let HV (A) :=

∑

W≤AAW ,
where the sum runs over all W ≤A A with W ∼=A V (HV (A) is called the
V -homogeneous component of A). By (i) and (ii) it follows that HV (A) ⊆ eiA.
We now observe that HV (A) is a two-sided ideal of A, since multiplication of V
from the left by a ∈ A maps V to the isomorphic A-module aV which is again
contained in HV (A). But eiA is indecomposable as a two-sided ideal, therefore
HV (A) = eiA. We have seen that eiA is a sum of simple A-modules, therefore
by Theorem 2.1.2 it is semisimple and thus a direct sum of simple A-modules.
(iv): This follows immediately from (i)-(iii), since every simple module is con-
tained in precisely one homogeneous component. 2

2.2.6 Definition For a ring R = (R,+, ·) the anti-isomorphic ring Rop =
(R,+, ∗) is obtained from R by reversing the arguments in the multiplication,
i.e. a ∗ b = b · a.

2.2.7 Proposition Let A be a ring and e ∈ A an orthogonal idempotent.
Then EndA(eA)op ∼= eAe as rings.

Proof: Note that ϕ ∈ EndA(eA) is determined by its image on e, since
(ea)ϕ = (eϕ)a. Moreover, eϕ ∈ eAe, since eϕ = e2ϕ = (eϕ)e. Therefore, the
map

Φ : EndA(eA) → eAe, ϕ 7→ eϕ

17



Groups and representations Chapter 2. Semisimple rings

is a homomorphism of the additive groups. It is injective, since eϕ = 0 im-
plies ϕ = 0 and it is surjective, since defining ϕa by (eb)ϕa := eab gives
ϕa ∈ EndA(eA) with Φ(ϕa) = eae.
In EndA(eA)op, the multiplication ∗ is defined by reversing the arguments of the
multiplication in EndA(eA), therefore Φ(ϕ∗ψ) = e(ψϕ) = (eψ)ϕ = (eΦ(ψ))ϕ =
(eϕ)Φ(ψ) = Φ(ϕ)Φ(ψ). This shows that Φ respects the (suitably chosen) mul-
tiplication. 2

2.2.8 Theorem (Wedderburn)
Let A be a semisimple ring. Then A is a direct sum of full matrix rings over
skew fields. More precisely: Let 1 = e1 + . . . + er be the decomposition into
central primitive idempotents. Then A = e1A ⊕ . . . ⊕ erA is a decomposition
into two-sided ideals. Each eiA is the sum of A-isomorphic minimal right ideals,
i.e. eiA ∼= Vi ⊕ . . .⊕ Vi

︸ ︷︷ ︸

ni

and eiA ∼= Dni×ni

i with Di = EndA(Vi)
op.

Proof: First note that for a simple A-module V Schur’s lemma implies that
EndA(V ) ∼= D for a skew field D. Next one sees that EndA(V ⊕. . .⊕V ) ∼= Dn×n

where n is the number of terms in the direct sum, since the mapping EndA(V ⊕
. . .⊕V ) → Dn×n, ϕ 7→ (Aij) where the element Aij describes the restriction of ϕ
from the i-th to the j-th component is an A-invariant isomorphism. For a skew
field D the transposition map A 7→ Atr gives an isomorphism from (Dn×n)op to
(Dop)n×n therefore we have EndA(V ⊕ . . .⊕V ) ∼= ((Dop)n×n)op. The claim now
follows from Proposition 2.2.5, since eiA = eiAei is a direct sum of isomorphic
simple A-modules. 2

2.2.9 Definition Let K be a field and A a K-algebra. K is called splitting
field of A if EndA(V ) ∼= K for all simple A-modules V . It follows from Schur’s
lemma that algebraically closed fields are always splitting fields.

2.2.10 Theorem Let A be a semisimple ring and let V1, . . . , Vr be representa-
tives of the isomorphism classes of simple A-modules. Then the following are
equivalent:

(i) K is a splitting field of A.

(ii) A ∼=
⊕r

i=1K
ni×ni .

(iii) dimK A =
∑r

i=1(dimK Vi)
2.

Proof: (i) ⇒ (ii): This follows from Wedderburn’s theorem, since Di = K.
(ii) ⇒ (iii): The simple Kn×n-modules are isomorphic to Kn, hence dimK Vi =
ni.
(iii) ⇒ (i): Note that the simple modules in eiA = Dni×ni

i have dimension ni

over Di. Applying Wedderburn’s theorem we therefore have

r∑

i=1

(dimK Vi)
2 = dimK A =

r∑

i=1

dimK Dni×ni

i =

r∑

i=1

n2
i dimK Di
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=
r∑

i=1

(dimDi
Vi)

2 dimK Di =
r∑

i=1

(dimK Vi)
2(dimK Di)

−1.

This implies that dimK Di = 1 for all i, hence K is a splitting field of A. 2

2.2.11 Corollary Let A be a semisimple ring and let Z(A) := {b ∈ A | ab =
ba for all a ∈ A} be the centre of A. Then the number of isomorphism classes
of simple A-modules is ≤ dimK Z(A). The number is = dimK Z(A) if K is a
splitting field of A.

Proof: This follows since for a homogeneous component Dn×n we have
Z(Dn×n) = Z(D) and dimK Z(D) ≥ 1 for a skew field D over K. 2

2.2.12 Example Let Q8 be the quaternion group of order 8, i.e.

G = {±1,±i,±j ± k} = 〈i, j〉

with ij = k, jk = i, ki = j and i2 = j2 = k2 = −1. Let K be a field
with char(K) 6= 2. Q8 has four 1-dimensional representations over K, namely
∆1 : i 7→ 1, j 7→ 1, ∆2 : i 7→ −1, j 7→ 1, ∆3 : i 7→ 1, j 7→ −1 and ∆4 : i 7→
−1, j 7→ −1. Since |Q8| = 8, this implies that KQ8

∼= K ⊕K ⊕K ⊕K ⊕K2×2

or KQ8
∼= K ⊕K ⊕ K ⊕ K ⊕ D where D is a skew field with dimK(D) = 4.

One sees that the last irreducible representation ∆5 has to be faithful, since
otherwise i2 would be in the kernel of all irreducible representations and thus
in the kernel of the regular representation.

If K contains a primitive 4-th root of unity ζ, then ∆5 : i 7→

(
0 1
−1 0

)

, j 7→
(
ζ 0
0 −ζ

)

is an irreducible 2-dimensional representation. Hence, in that case K

is a splitting field of KQ8.
On the other hand, if K ⊆ R, we can conclude that ∆5 is not 2-dimensional,
since we can assume that i is mapped to the companion matrix of the 4-th

cyclotomic polynomial, i.e. to ∆5(i) =

(
0 1
−1 0

)

. But there exists no matrix

∆5(j) of order 4 which conjugates ∆5(i) to −∆5(i). (To draw this conclusion
it is in fact enough to assume that x2 + y2 = −1 has no solution in K.) Hence
EndKQ8

(V5) = D in this case, and since Q8 is not abelian, D is a non-abelian
skew field with dimK(D) = 4, called the skew field of Hamilton quaternions.

2.2.13 Theorem Let K be a field and G a group with char(K) ∤ |G|.

(i) Let C1, . . . , Cr be the conjugacy classes of G and C+
i :=

∑

g∈Ci
g, then

C+
1 , . . . , C

+
r is a basis of Z(KG).

(ii) The number of irreducible representations of G over K (up to equivalence)
is ≤ the number of conjugacy classes of G.

(iii) If K is a splitting field of KG, then the number of irreducible rep-
resentations of G over K equals the number of conjugacy classes and
∑r

i=1 n
2
i = |G|, where ni is the degree of the i-th irreducible representa-

tion.
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(iv) If K is a splitting field of KG, then the regular representation of KG
contains an irreducible representation of degree ni with multiplicity ni.

Proof: (i): Let a =
∑

g∈G agg ∈ Z(KG), then hah−1 =
∑

g∈G ag(hgh
−1) =

∑

g∈G ah−1ghg = a for all h ∈ G. Hence the coefficients ag have to be constant

on the conjugacy classes. It is clear that the C+
i are linearly independent.

(ii)-(iv): This now follows immediately from Wedderburn’s theorem and Corol-
lary 2.2.11. 2

2.2.14 Corollary Let G be a finite group, K a splitting field with char(K) ∤ G.
If ∆ is an irreducible representation of G with degree n over K, then ∆(G)
contains n2 linearly independent elements, i.e. a basis of the full matrix ring
Kn×n.

2.2.15 Example Let char(K) 6= 2, 3 and G = S3, then KG is semisimple.
Clearly, the trivial representation ∆1 and the 1-dimensional representation ∆2 :
g 7→ sign(g) are irreducible. Let ∆3 be the 2-dimensional representation with

∆3((1, 2)) =

(
0 1
1 0

)

, ∆3((2, 3)) =

(
1 0
−1 −1

)

.

We compute the endomorphism ring of the module V3 corresponding to ∆3 and
obtain CK2×2(∆3(S3)) = {A ∈ K2×2 | A∆3(g) = ∆3(g)A for all g ∈ S3} =
{(

a 0
0 a

)

| a ∈ K

}

. Thus EndK(V3) ∼= K, hence V3 is a simple module and K

is a splitting field of KS3.
We have KS3

∼= K⊕K⊕K2×2 and the central primitive idempotents are given
by

e1 =
1

|G|

∑

g∈G

g, e2 =
1

|G|

∑

g∈G

sign(g)g,

e3 = 1 − e1 − e2 =
2

3
1 −

1

3
(1, 2, 3) −

1

3
(1, 3, 2).

If we denote the conjugacy class of 1 by C1, the class of (1, 2) by C2 and the
class of (1, 2, 3) by C3, then

e1 =
1

6
(C+

1 + C+
2 + C+

3 ), e2 =
1

6
(C+

1 − C+
2 + C+

3 ), e3 =
1

3
(2C+

1 − C+
3 ).

Exercises

15. Let K be a field and let R = {

(
a 0
b c

)

| a, b, c ∈ K} be the ring of lower triangular

matrices. How many simple modules does R have? Is R a semisimple ring?

16. Let G be a (not necessarily finite) group, H ≤ G a subgroup of finite index [G : H ].
Let K be a field of characteristic char(K) with char(K) ∤ [G : H ]. Let V be a KG-
module with submodule W ≤KG V and let U0 ≤KH V be a KH-module such that
V = W ⊕U0. Show that there exists a KG-submodule U ≤KG V with V = W ⊕U .
(Hint: Mimic the proof of Maschke’s theorem.)
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17. Let G = V4
∼= C2 × C2 be the Klein group. Write the group ring QG as a direct

sum of irreducible QG-modules.

18. Let G be a finite group and let ∆ : G→ GL2(C) be a representation of G. Suppose
that there are elements g, h ∈ G such that ∆(g) and ∆(h) do not commute. Prove
that ∆ is irreducible.

19. Let G = C∞ = 〈g〉 be the infinite cyclic group. The mapping

∆ : G→ GL2(C) : g 7→

(
1 0
1 1

)

is a 2-dimensional representation of G turning C2 into a CG-module V . Show that
V is not semisimple.

20. Prove that every finite simple group G possesses a faithful simple CG-module (i.e.
a module such that only 1 ∈ G acts trivially).

21. A hermitian bilinear form on a complex vector space V is a map φ : V × V → C
with φ(v + λw, u) = φ(v, u) + λφ(w, u), φ(v, u + λw) = φ(v, u) + λφ(v, w) and
φ(v, w) = φ(w, v). The space of all hermitian bilinear forms on V is denoted by
Bil(V ).
Let G be a finite group and V a CG-module.

(i) Show that G acts on Bil(V ) via (φg)(v, w) := φ(vg−1, wg−1).

(ii) There exists a G-invariant, positive definite form ψ ∈ Bil(V ), i.e. ψg = ψ for
all g ∈ G and ψ(v, v) ≥ 0 for all v ∈ V and ψ(v, v) = 0 ⇒ v = 0.

(iii) If W ≤CG V , then W⊥ := {v ∈ V | ψ(v, w) = 0 for all w ∈ W} is a CG-
module and V = W ⊕W⊥.

Note that this is a constructive method to find complements in semisimple modules.

22. Let A :=

{(
a b
−b a

)

| a, b ∈ C

}

⊆ C2×2.

(i) Show that I :=

{(
z iz

−iz z

)

| z ∈ C

}

⊆ A is a two-sided ideal in A.

(ii) Show that A is a semisimple ring and find the primitive central idempotents
of A.

23. Let ∆1, . . . ,∆r be the non-equivalent irreducible representations of a semisimple
ring A and let a1, . . . , ar be arbitrary elements of A. Show that there exists an
element a ∈ A such that ∆i(a) = ∆i(ai) for all 1 ≤ i ≤ r.

24. Show that A is a simple A-module if and only if A is a skew field.

25. Let V1, . . . , Vr be non-equivalent simple A-modules and let Ui :=
⊕ni

j=1 Vi be a direct
sum of ni copies of Vi.

(i) Show that EndA(Ui) ∼= EndA(Vi)
ni×ni .

(ii) Show that EndA(
⊕r

i=1 Vi) ∼=
⊕r

i=1EndA(Vi).

(iii) Show that EndA(
⊕r

i=1 Ui) ∼=
⊕r

i=1EndA(Ui) ∼=
⊕r

i=1 EndA(Vi)
ni×ni .

26. Let G = S3 and K = Q.

(i) Give an explicit isomorphism QS3 → ⊕r
i=1D

ni×ni

i according to Wedderburn’s
theorem. Give as well the inverse mapping for this isomorphism.

(ii) Determine the centre Z(QS3) and the central primitive idempotents of QS3.

21



Groups and representations Chapter 2. Semisimple rings

27. Let G be a group of order 12. Use Wedderburn’s theorem to deduce the possibilities
for the degrees of the irreducible representations of G over C.

Recalling that the number of 1-dimensional representations equals the order of the
commutator factor group G/G′, determine the degrees of the irreducible represen-
tations of the dihedral group D12 and of the alternating group A3 over C.
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Chapter 3

Characters

3.1 Class functions

3.1.1 Definition Let G be a group and ∆ : G→ GLn(K) a representation of
G. Then χ = χ(∆) : G→ K, g 7→ tr(∆(g)) is called the character of G afforded
by ∆.
A character is defined to be irreducible if the corresponding representation is
irreducible.

3.1.2 Remarks

(1) Characters are constant on conjugacy classes, since
tr(∆(ghg−1)) = tr(∆(g)∆(h)∆(g)−1) = tr(∆(h)).

(2) Characters of equivalent representations are equal, since tr(T∆(g)T−1) =
tr(∆(g)).

(3) The character value χ(1) gives the degree of the corresponding represen-
tation.

(4) If ∆ is a reducible representation with constituents ∆1 and ∆2, then the
character of ∆ is the sum of the characters of ∆1 and ∆2.

3.1.3 Definition Let K be a splitting field of KG and char(K) ∤ |G|. Let
χ1, . . . , χr be the irreducible characters of G and g1, . . . , gr representatives of
the conjugacy classes. Then the matrix C = (χi(gj))

r
i,j=1 is called the character

table of G.

3.1.4 Example In the character table of a group usually the matrix with the
character values is augmented by some information on the conjugacy classes
of elements, e.g. the element orders, the size of the class and the order of the
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centralizer. The character table of S3 therefore looks like:

|CG(gi)| 6 3 2
|Ci| 1 2 3
|〈gi〉| 1 3 2

gi 1 (1, 2, 3) (1, 2)

χ1 1 1 1
χ2 1 1 −1
χ3 2 −1 0

Note that the permutation representation of S3 of degree 3 has the character
π = χ1 + χ3.

3.1.5 Definition A map ϕ : G → K is called a class function of G if ϕ(g) =
ϕ(hgh−1) for all g, h ∈ G. The set of all class functions of G is a K-vector space
denoted by ClK(G).

3.1.6 Theorem Let char(K) = 0 and G be a group.

(i) The irreducible characters of G are linearly independent in the K-vector
space of class functions on G.

(ii) Let V,W be KG-modules. Then V ∼=KG W ⇔ χV = χW where χV

and χW are the characters of the representations of G on V and W ,
respectively.

Proof: (i): Let χi be the irreducible character corresponding to the central
primitive idempotent ei. We have

∑r
i=1 aiχi(ej) = ajχj(1), hence the χi are

linearly independent, since char(K) = 0.
(ii): Let V =

⊕r
i=1miVi and W =

⊕r
i=1m

′
iVi, then χV =

∑r
i=1miχi and

χW =
∑r

i=1m
′
iχi and it follows from (i) that χV = χW implies mi = m′

i for all
i. 2

3.1.7 Remark Note that the above statement is not true if char(K) | |G|.

Let G = Cp = 〈g〉 be the cyclic group of order p. Then ∆1(g) =

(
1 0
0 1

)

and ∆2(g) =

(
1 0
1 1

)

both define representation of G over Fp with character

χ(g) = 2 for all g ∈ Cp. But ∆1 and ∆2 are not equivalent, since ∆1 is
decomposable and ∆2 is indecomposable.

3.1.8 Theorem Let char(K) ∤ |G|, Vi the simple KG-modules with corre-
sponding central primitive idempotents ei, characters χi and skew fields Di :=
EndKG(Vi)

op. The idempotent ei can be written as

ei =
ni

|G|

∑

g∈G

χi(g
−1)g =

χi(1)

|G|[Di : K]

∑

g∈G

χi(g
−1)g

where ni = dimDi
(Vi).
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Proof: Write ei as ei =
∑

g∈G agg. Let ρ be the character of the regular rep-
resentation of KG, then ρ(g) = |G| if g = 1 and 0 otherwise. We therefore have
ρ(g−1ei) =

∑

h∈G ahρ(g
−1h) = agρ(1) = ag|G|. On the other hand we know

that ρ =
∑r

i=1 niχi. This yields ρ(g−1ei) =
∑r

j=1 njχj(g
−1ei) = niχi(g

−1ei) =

niχi(g
−1), since ei acts as the identity on Vi and as 0 on Vj . Thus we have

ag = ni|G|
−1χi(g

−1) as required. 2

3.1.9 Corollary (First orthogonality relation)
Let char(K) ∤ |G| and let χi, χj be irreducible characters of G. Then

1

|G|

∑

g∈G

χi(gh)χj(g
−1) =

{

0 if χi 6= χj
χi(h)

ni
if χi = χj

In particular one has 1
|G|

∑

g∈G χi(g)χj(g
−1) = [Di : K] if χi = χj and 0

otherwise.

Proof: This is seen by comparing the coefficients of g in the equation eiej =
δijei using the expression for ei from theorem 3.1.8. 2

3.1.10 Remarks

(1) We can define a symmetric bilinear form (·, ·)G on the vector space of class
functions on G over K by setting (ϕ,ψ)G := |G|−1

∑

g∈G ϕ(g)ψ(g−1).

(2) For the irreducible characters χi of G we have (χi, χj)G = δij [Di : K]
where Di = EndKG(Vi). (Note that for a K-algebra A we have [A :
K] = [Aop : K].) Thus, the χi form an orthogonal basis which is even
orthonormal in case that K is a splitting field for G.

(3) If K is a splitting field for G then a class function ϕ can be written as
ϕ =

∑r
i=1(ϕ,χi)Gχi. The norm of a class function ϕ =

∑r
i=1 aiχi is

(ϕ,ϕ)G =
∑r

i=1 a
2
i and a character is irreducible if and only if its norm

equals 1.

3.1.11 Theorem (Second orthogonality relation)
Let K be a splitting field for G, let χk be the irreducible characters of G, gi

representatives of the conjugacy classes of G. Then

r∑

k=1

χk(g
−1
i )χk(gj) =

{
0 if i 6= j
CG(gi) if i = j

where CG(gi) denotes the centralizer of gi in G.

Proof: Let ϕi be the i-th class indicator function, i.e. ϕi(g) = 1 if g is conju-
gate with gi and 0 otherwise. Then ϕi can be written as ϕi =

∑r
k=1(ϕi, χk)Gχk

and we have ϕi(gj) =
∑r

k=1 |G|
−1(

∑

g∈G ϕi(g)χk(g−1))χk(gj)

=
∑r

k=1 |CG(gi)|
−1χk(g

−1
i )χk(gj). 2
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3.1.12 Example We determine the character table of the symmetric group
S4. The trivial character, the signum character and the 2-dimensional character
of the factor group S4/V4

∼= S3 are easily found and seen to be irreducible. Since
we know the conjugacy classes of S4 we know that we have to find 5 irreducible
characters. We conclude that the two missing characters both have degree 3
since the sum of the squares of the character degrees has to be 24. This gives
the following partial character table, which we augment by the character π of
the natural permutation representation of S4.

CG(gi) 24 8 3 4 4
|Ci| 1 3 8 6 6
gi 1 (1, 2)(3, 4) (1, 2, 3) (1, 2) (1, 2, 3, 4)

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 2 2 −1 0 0
χ4 3
χ5 3

π 4 0 1 2 0

We compute that (π, χ1)G = 1 and (π, π)G = 2, therefore π − χ1 is an ir-
reducible character with values (3,−1, 0, 1,−1). For the values of χ5 we use
the second orthogonality relation with the first column and obtain the values
(3,−1, 0,−1, 1).

3.2 Character values

3.2.1 Theorem Let char(K) ∤ |G|, let χ be a character of G over K and let
g ∈ G be an element of order m. Then the character value χ(g) is a sum of
m-th roots of unity.
If char(K) = 0, then all character values of χ lie in the cyclotomic field Q(ζe),
where e = exp(G) := lcm(|〈g〉| | g ∈ G) is the exponent of G.

Proof: By restricting χ to the cyclic group generated by g, we are reduced
to the case G = 〈g〉. Since we are in the semisimple case, we can assume that
χ is afforded by a representation ∆ for which ∆(g) is a diagonal matrix. But
then each diagonal entry λ of ∆(g) satisfies λm = 1 and is thus an m-th root
of unity. Therefore χ(g) is a sum of m-th roots of unity.
If char(K) = 0, then Q is the prime field of K and all m-th roots of unity lie
in Q(ζm). Since Q(ζm) ⊆ Q(ζl) for m | l if follows that all character values of
G lie in Q(ζe) for e = exp(G). 2

3.2.2 Definition An element a ∈ R of a ring R is called an algebraic integer
if a is the root of a monic polynomial with coefficients in Z.

3.2.3 Lemma Let R be a commutative ring with 1.

(i) An element a ∈ R is an algebraic integer if and only if a is contained in a
subring S ⊆ R which is finitely generated as Z-module.
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(ii) The set of algebraic integers in R forms a subring of R.

Proof: (i) ⇒: Let a be a root of
∑n

i=0 aiX
i with ai ∈ Z and an = 1. Then

the finitely generated Z-module S := Z[a] = 〈1, a, a2, . . . , an−1〉Z is a subring of
R, since an = −

∑n−1
i=0 aia

i ∈ S and thus S is closed under multiplication.
⇐: Let a ∈ S = 〈b1, . . . , bm〉Z, then multiplication by a is described by a matrix
A = (Aij) ∈ Zm×m defined by bia =

∑m
j=1Aijbj . Let f be the characteristic

polynomial det(X · id−A) of A, then f is a monic polynomial with coefficients
in Z and f(A) = 0. On the other hand f(A) gives the action of f(a) on S,
hence in particular 1 · f(a) = 0 and thus f(a) = 0.
(ii) If a and b are algebraic integers of R we have Z[a] = 〈1, a, . . . , an−1〉Z and
Z[b] = 〈1, b, . . . , bm−1〉Z, hence the ring Z[a, b] is generated by {aibj | 0 ≤ i <
n, 0 ≤ j < m} and is thus finitely generated as Z-module. This shows that in
particular the elements a+ b, a− b and ab are algebraic integers and thus the
algebraic integers form a subring of R. 2

3.2.4 Remark This lemma shows that the definition of algebraic integers
agrees with what we usually call the integers in the field Q of rational numbers.
It is clear that a ∈ Z is an algebraic integer. On the other hand, if a = r

s
∈ Q

with gcd(r, s) = 1 and s > 1, we have x, y ∈ Z with 1 = xr + ys and hence
1
s

= x r
s

+ y ∈ Z[a]. But Z[s−1] is not a finitely generated Z-module, since the
powers s−n are independent over Z.

3.2.5 Corollary Let G be a finite group and χ a character of G over a field
K with char(K) ∤ |G|. Then χ(g) is an algebraic integer in K for all g ∈ G. In
particular, χ(g) ∈ Q if and only if χ(g) ∈ Z.

Proof: For an element g of order m the character value χ(g) is a sum of
m-th roots of unity. An m-th root of unity is a root of the polynomial Xm − 1
and thus an algebraic integer, sums of algebraic integers are algebraic integers
because these elements form a ring. 2

3.2.6 Theorem Let char(K) = 0 and let χ be an irreducible character of G
over K, afforded by the representation ∆.

(i) |χ(g)| ≤ χ(1) for all g ∈ G and equality holds if and only if ∆(g) = a · In
with a ∈ K.

(ii) χ(g) = χ(1) ⇔ ∆(g) = In ⇔ g ∈ ker(∆).

(iii) χ(g−1) = χ(g).

(iv) For p prime χ(gp) ≡ χ(g)p (mod p).

(v) For p prime and χ(g) ∈ Q we have χ(gp) ≡ χ(g) (mod p).

Proof: Note that we can regard all character values as complex numbers,
since for e = exp(G) we have χ(g) ∈ Q(ζe) ⊆ C.
By extending K to L = K(ζe) we can assume that ∆(g) is a diagonal matrix.
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Then for g of order m the diagonal entries of ∆(g) are m-th roots of unity. The
claims (i)-(iii) now follow immediately by considering the unit circle.
For (iv) we additionally require that

(
p
i

)
≡ 0 (mod p), hence χ(gp) =

∑n
i=1 ξ

p
i ≡

(
∑n

i=1 ξi)
p (mod p). Finally, (v) follows from (iv), since ap ≡ a (mod p) for

a ∈ Z (by Fermat’s little theorem) and since algebraic integers of Q lie in Z. 2

3.2.7 Remark The fact that χ(g−1) = χ(g) shows that the symmetric bilinear
form (·, ·)G is in fact a hermitian inner product given by

(χ,ψ)G =
1

|G|

∑

g∈G

χ(g)ψ(g).

3.2.8 Definition For a character χ of a group G we define ker(χ) := {g ∈ G |
χ(g) = χ(1)}. By the preceeding theorem, for a field of characteristic 0 this
coincides with the kernel of a representation by which χ is afforded.

3.2.9 Theorem Let χ1, . . . , χr be the irreducible C-characters of G.

(i) χi(g) ∈ R for all i ⇔ g and g−1 are conjugate.

(ii) χi(g) ∈ Z for all i⇔ g and gj are conjugate for all j with gcd(j, |〈g〉|) = 1.

Proof: It is clear that all characters have the same values on conjugate
elements. Vice versa, if all irreducible characters have the same values on two
elements g, h ∈ G, also the class indicator functions have the same values on g
and h, since the irreducible characters form a basis of the vector space of class
functions. Hence, g and h lie in the same conjugacy class. This could in fact
also be concluded from the second orthogonality relation.
(i) We have χi(g) ∈ R ⇔ χi(g) = χi(g) = χi(g

−1), hence χi(g) ∈ R for all
1 ≤ i ≤ r if and only if all the irreducible characters have the same values on g
and g−1 which is the case if and only if g and g−1 are conjugate.
(ii) We know that all character values χi(g) lie in Q(ζm) where m is the order
of g. Now on the one hand the Galois automorphisms of Q(ζm) are of the form
σj : ζm 7→ ζj

m with gcd(j,m) = 1 and χi(g) ∈ Q ⇔ σj(χi(g)) = χi(g) for all j.
On the other hand, we can assume that ∆(g) is a diagonal matrix and we can
apply σj to each of the diagonal entries, thus obtaining ∆(gj). This shows that
σj(χi(g)) = χi(g

j). We therefore conclude that χi(g) ∈ Q for all 1 ≤ i ≤ r if
and only if all irreducible characters have the same values on gj for all j with
gcd(j,m) = 1 which in turn is the case if and only if g and gj are conjugate for
all j with gcd(j,m) = 1. Since character values are algebraic integers, it follows
that χi(g) ∈ Q implies χi(g) ∈ Z. 2
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3.2.10 Example We determine the character table of the alternating group
A5. As frame we have

CG(gi) 60 4 3 5 5
|Ci| 1 15 20 12 12
gi 1 (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4, 5) (1, 2, 3, 5, 4)

χ1 1 1 1 1 1
χ2

χ3

χ4

χ5

π 5 1 2 0 0

From (π, χ1) = 1 and (π, π) = 2 we see that π − χ1 is an irreducible char-
acter which we call χ2. Thus χ2 = (4, 0, 1,−1,−1). Next we conclude from
60 = 12 +42 +χ3(1)

2 +χ4(1)
2 +χ5(1)

2 that χ3(1) = 5, χ4(1) = χ5(1) = 3. The
values on the class of (1, 2)(3, 4) are rational and are congruent to the character
degrees modulo 2. The only possibilities which agree with the orthogonality
with the first and second column are χ3((1, 2)(3, 4)) = 1, χ4((1, 2)(3, 4)) =
χ5((1, 2)(3, 4)) = −1. From the orthogonality of the third column with the
first two it now follows that χ3((1, 2, 3)) = −1 and orthogonality with itself
then implies χ4((1, 2, 3)) = χ5((1, 2, 3)) = 0. From (χ3, χ3) = 1 one con-
cludes χ3((1, 2, 3, 4, 5)) = χ3((1, 2, 3, 5, 4)) = 0. Orthogonality between χ1

and χ4 now shows that χ4((1, 2, 3, 4, 5)) + χ4((1, 2, 3, 5, 4)) = 1, analogously
we get χ5((1, 2, 3, 4, 5)) + χ5((1, 2, 3, 5, 4)) = 1. Orthogonality between the sec-
ond and fourth/fifth column implies χ4((1, 2, 3, 4, 5))+χ5((1, 2, 3, 4, 5)) = 1 and
χ4((1, 2, 3, 5, 4))+χ5((1, 2, 3, 5, 4)) = 1. Finally, orthogonality for the fourth col-
umn implies χ4((1, 2, 3, 4, 5))

2 −χ4((1, 2, 3, 4, 5))−1 = 0, thus we have (w.l.o.g.)

χ4((1, 2, 3, 4, 5)) = 1+
√

5
2 = 1+ζ5+ζ4

5 and χ4((1, 2, 3, 5, 4)) = 1−
√

5
2 = 1+ζ2

5 +ζ3
5 .

The full character table of A5 therefore is:

CG(gi) 60 4 3 5 5
|Ci| 1 15 20 12 12
gi 1 (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4, 5) (1, 2, 3, 5, 4)

χ1 1 1 1 1 1
χ2 4 0 1 −1 −1
χ3 5 1 −1 0 0

χ4 3 −1 0 1+
√

5
2

1−
√

5
2

χ5 3 −1 0 1−
√

5
2

1+
√

5
2

3.2.11 Proposition Let G be a finite group, K a splitting field of G with
char(K) = 0 and let ∆ be an irreducible representation of degree n with char-
acter χ. Define ω : Z(KG) → K such that ∆(z) = ω(z) · In for z ∈ Z(KG).
The mapping ω is called a central character of G.

(i) For a conjugacy class C and the class sum C+ :=
∑

g∈C g we have

ω(C+) = |C|
χ(1)χ(g) for g ∈ C.
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(ii) ω(C+) is an algebraic integer.

Proof: (i): We have ω(C+) · In = ∆(C+) =
∑

g∈C ∆(g), which gives

ω(C+)χ(1) = |C|χ(g).
(ii): C+

1 , . . . C
+
r is a K-basis of Z(KG) and we have C+

i C
+
j =

∑r
k=1 aijkC

+
k with

aijk ∈ K. But for gk ∈ Ck fixed we have aijk = |{(g, h) | g ∈ Ci, h ∈ Cj, gh =
gk}| ∈ Z≥0. Applying ω gives ω(C+

i )ω(C+
j ) =

∑r
k=1 aijkω(C+

k ), thus the ring

generated by the ω(C+
i ) is a finitely generated Z-module which is spanned by

the ω(C+
i ). This implies that ω(C+

i ) is an algebraic integer (since all elements
in a finitely generated Z-module are algebraic integers). 2

3.2.12 Algorithm (Dixon-Schneider)
The aijk are called the structure constants of G. There are two ways in which
the structure constants allow to compute the character table of G.

(1) If we denote the matrix for fixed first index by A(i), i.e. A(i) = (aijk)
r
j,k=1,

then the relation
∑r

k=1 aijkω(C+
k ) = ω(C+

i )ω(C+
j ) show that

A(i)






ω(C+
1 )

...
ω(C+

r )




 = ω(C+

i )






ω(C+
1 )

...
ω(C+

r )




 ,

thus the vector (ω(C+
1 ), . . . , ω(C+

r ))tr is a column-eigenvector of A(i) with
eigenvalue ω(C+

i ). From the eigenvectors, the characters can only be de-
termined up to a scalar multiple, but this is resolved by the first orthog-
onality relation, since an irreducible character has to have norm 1. We
therefore can compute the irreducible characters as simultaneous eigen-
vectors of the structure constant matrices A(i).

(2) If we let gk ∈ Ck run in the definition of the aijk, we can define the
set Sijk := {(g, h) | g ∈ Ci, h ∈ Cj, gh ∈ Ck} of pairs with product in
Ck. Then |Sijk| = aijk|Ck|, since every conjugate of gk gives rise to a
conjugate pair of (g, h). But we have (g, h) ∈ Sijk ⇔ gh = u ∈ Ck ⇔
g−1u = h ∈ Cj ⇔ (g−1, u) ∈ Si′kj, where i′ is the index of the class
Ci′ containing the inverses of Ci. We therefore have |Sijk| = |Si′kj| and
thus aijk|Ck| = ai′kj|Cj |. From ω(C+

i′ )ω(C+
k ) =

∑r
j=1 ai′kjω(C+

j ) we now

see that
|Ci′ ||Ck|

χ(1)2 χ(g−1
i )χ(gk) =

∑r
j=1 ai′kj

|Cj |
χ(1)χ(gj) =

∑r
j=1 aijk

|Ck|
χ(1)χ(gj)

which shows that

r∑

j=1

χ(gj)aijk =
|Ci|χ(g−1

i )

χ(1)
χ(gk),

since |Ci| = |Ci′ |. Thus, the vector (χ(g1), . . . , χ(gr)) is a row-eigenvector

of A(i) with eigenvalue
|Ci|χ(g−1

i )
χ(1) = ω(C+

i′ ).

3.2.13 Theorem Let K be a splitting field for G with char(K) = 0 and let χ
be an irreducible character of G. Then χ(1) | |G|.
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Proof: The first orthogonality relation says that |G| =
∑

g∈G χ(g)χ(g−1) =
∑r

i=1 |Ci|χ(gi)χ(g−1
i ) and therefore |G|/χ(1) =

∑r
i=1 ω(C+

i )χ(g−1
i ) is an al-

gebraic integer, since both ω(C+
i ) and χ(g−1

i ) are algebraic integers. But an
algebraic integer in Q is an integer. 2

3.2.14 Remark A stronger result by Itô says that χ(1) | [G : N ] for every
abelian normal subgroup N �G.

3.3 Burnsides’s p
a
q
b theorem

A famous application of character theory is the proof of Burnside’s theorem
that a group of order paqb with p, q prime is soluble. The proof involves two
other theorems, which are interesting in their own right.

3.3.1 Theorem Let ∆ be an irreducible representation of G with character
χ and let C be a conjugacy class of G with gcd(χ(1), |C|) = 1. Then either
∆(g) ∈ Z(∆(G)) or χ(g) = 0.

Proof: Let a, b ∈ Z with a|C| + bχ(1) = 1, then multiplying by χ(g)
χ(1) gives

aω(C+) + bχ(g) = χ(g)
χ(1) . The left hand side is an algebraic integer, therefore

χ(g)
χ(1) is an algebraic integer. We have ∆(g) ∈ Z(∆(G)) ⇔ |χ(g)| = χ(1), since

∆ is irreducible, therefore
∣
∣
∣
χ(g)
χ(1)

∣
∣
∣ < 1 if ∆(g) 6∈ Z(∆(G)). Let m be the order

of g, then χ(g) ∈ Q(ζm). For every Galois automorphism σ ∈ Aut(Q(ζm)) we

have |χ(g)σ | ≤ χ(1), therefore for θ :=
∏

σ∈Aut(Q(ζm))

χ(g)

χ(1)

σ

we have |θ| < 1. But

with χ(g)
χ(1) every Galois conjugate χ(g)

χ(1)

σ
is also an algebraic integer, since it is a

root of the same monic polynomial as χ(g)
χ(1) . This shows that θ is an algebraic

integer. On the other hand, θ is fixed under all elements of Aut(Q(ζm)), thus
θ ∈ Q and since it is an algebraic integer we have θ ∈ Z. From |θ| < 1 we now
conclude that θ = 0 and therefore χ(g) = 0. 2

3.3.2 Theorem Let G be a non-abelian simple group. Then G has no conju-
gacy class of prime power length pn except {1}.

Proof: Let 1 6= g ∈ G, C the conjugacy class of g and assume that |C| = pa.
Let χ be a non-trivial irreducible character of G afforded by the representation
∆. Then Z(∆(G)) = {1}, since G is a non-abelian simple group (which implies
G ∼= ∆(G)). By theorem 3.3.1 we know that χ(g) = 0 if p ∤ χ(1). The second
orthogonality relation for the classes of g and 1 now reads as:

0 =
1

|G|

r∑

i=1

χi(g)χi(1) = 1 +
∑

p|χi(1)

χi(g)χi(1)

and therefore −1
p

=
∑

p|χi(1)
χi(g)

χi(1)
p

. The right hand side of this equation is

an algebraic integer, since χi(g) is an algebraic integer and χi(1)
p

∈ Z. But −1
p
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is not an algebraic integer, which contradicts the assumption of a conjugacy
class of prime power length. 2

3.3.3 Theorem (Burnside)
If |G| = paqb with p and q prime, then G is soluble.

Proof: We use induction on |G|. Let N�G be a maximal normal subgroup of
G. If N 6= {1} then by induction N and G/N are soluble and thus, G is soluble.
We can therefore assume that G is simple. Let P 6= {1} be a Sylow subgroup
of G and 1 6= g ∈ Z(P ). Then P ≤ CG(g) and thus the length [G : CG(g)] of
the conjugacy class of g is a prime power. By theorem 3.3.2 this implies that
G is an abelian group and is in particular soluble. 2

3.4 Tensor products

3.4.1 Definition For two vector spaces V and W with bases (v1, . . . , vn) and
(w1, . . . , wm), respectively, the tensor product V ⊗KW of V and W is defined to
be the vector space spanned by the n ·m linearly independent elements vi ⊗wj .
For two elements v =

∑n
i=1 aivi ∈ V and w =

∑m
j=1 bjwj ∈W the (pure) tensor

v ⊗w is defined by v ⊗ w :=
∑n

i=1

∑m
j=1 aibj(vi ⊗ wj).

3.4.2 Remarks

(1) We can regard ⊗K as a K-bilinear mapping ⊗K : V ×W → V ⊗K W ,
since

(i) (v + v′) ⊗ w = v ⊗ w + v′ ⊗ w for all v, v′ ∈ V , w ∈W ,

(ii) v ⊗ (w + w′) = v ⊗ w + v ⊗ w′ for all v ∈ V , w,w′ ∈W ,

(iii) λv ⊗ w = v ⊗ λw = λ(v ⊗ w) for all v ∈ V , w ∈W and λ ∈ K.

If there is no confusion about the fieldK we will usually omit the subscript
K and write V ⊗W instead of V ⊗K W .

(2) Note that not every element of V ⊗W is a pure tensor of the form v⊗w
for some v ∈ V,w ∈ W . For V = W = Fn

p we have dim(V ⊗W ) = n2,

thus |V ⊗W | = pn2

, but there are only (pn)2 = p2n pure tensors.

(3) The construction of the tensor product V ⊗ W is independent on the
choice of bases for V and W . If we choose different bases (v′1, . . . , v

′
n) for

V and (w′
1, . . . , w

′
m) for W , then (v′1 ⊗w′

1, v
′
1 ⊗w′

2, . . . , v
′
n ⊗w′

m) is also a
basis of V ⊗W .

3.4.3 Lemma

(i) For two linear mappings ϕ ∈ EndK(V ) and ψ ∈ EndK(W ) there is a
unique linear mapping ϕ⊗ψ ∈ EndK(V ⊗W ) such that (v⊗w)(ϕ⊗ψ) =
vϕ⊗ wψ.
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(ii) If ϕ has matrix A with respect to a basis (v1, . . . , vn) of V and ψ has
matrix B with respect to a basis (w1, . . . , wm) of W , then the matrix of
ϕ ⊗ ψ with respect to the basis (v1 ⊗ w1, v1 ⊗ w2, . . . , vn ⊗ wm) is given
by the Kronecker product

A⊗B =






A11B · · · A1nB
...

...
An1B · · · AnnB






(iii) (A⊗B)(A′ ⊗B′) = AA′ ⊗BB′.

(iv) tr(A⊗B) = tr(A) · tr(B).

Proof: (i): Let (v1, . . . , vn) and (w1, . . . , wm) be bases of V and W , respec-
tively. Uniqueness of ϕ ⊗ ψ is clear, since vi ⊗ wj form a basis of V ⊗W . We
now define (vi ⊗ wj)(ϕ ⊗ ψ) := viϕ ⊗ wjψ, then the desired property follows
from the bilinearity of ⊗.
(ii): This follows from (i) by writing out the matrices.
(iii): This is seen by applying both sides to vi ⊗ wj .
(iv): We have tr(A⊗B) = A11 tr(B) + . . .+Ann tr(B) = tr(A) · tr(B). 2

3.4.4 Corollary If ∆ and ∆′ are representations of the group G with modules
V andW and characters χ and χ′, then ∆⊗∆′ : G→ V ⊗W,g 7→ ∆(g)⊗∆′(g) is
a representation of G with character χ ·χ′. In particular, products of characters
are characters again.

Proof: We only have to prove that ∆ ⊗ ∆′ is a group homomorphism, the
rest follows from Lemma 3.4.3. We have (∆ ⊗ ∆′)(gh) = ∆(gh) ⊗ ∆′(gh) =
∆(g)∆(h) ⊗ ∆′(g)∆′(h) = (∆(g) ⊗ ∆′(g))(∆(h) ⊗ ∆′(h)) = (∆ ⊗ ∆′)(g)(∆ ⊗
∆′)(h). 2

3.4.5 Remark A word of warning: Note that the representation ∆ ⊗ ∆′ is
defined only on the group elements and has to be extended from there to the
group ring KG by linearity. For arbitrary a ∈ KG we have (∆ ⊗ ∆′)(a) 6=
∆(a) ⊗ ∆′(a), for example for c 6= 0, 1 and g ∈ G we have (∆ ⊗ ∆′)(cg) =
c(∆(g) ⊗ ∆′(g)) 6= c2(∆(g) ⊗ ∆′(g)) = ∆(cg) ⊗ ∆′(cg).

3.4.6 Theorem (Burnside-Brauer)
Let χ be a faithful character of G and suppose that χ(g) takes on precisely m
different values on G. Then every irreducible character ψ of G is a constituent
of one of the powers χ0, χ1, . . . , χm−1, i.e. (χj , ψ) > 0 for some 0 ≤ j < m.

Proof: Let a1, . . . , am be the distinct values of χ(g) and assume that a1 =
χ(1). Define Gi := {g ∈ G | χ(g) = ai} and bi :=

∑

g∈Gi
ψ(g). The first

orthogonality relation now reads as (χj , ψ) = 1
|G|

∑m
i=1 a

j
i bi. Now assume that

ψ is not a constituent of any of the χj for 0 ≤ j < m, then (b1, . . . , bm) is a
solution for them linear equations

∑m
i=1 a

j
i bi = 0. But the matrix of this system

of equations is a Vandermonde-matrix, its determinant is ±
∏

i<j(ai − aj) 6= 0.
Hence all bi have to be zero which contradicts b1 = ψ(1) 6= 0. 2
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3.4.7 Examples

(1) The character ρ of the regular representation takes on only two different
values, hence all irreducible characters occur as constituents of ρ0 = χ1

and ρ. Of course we knew this already, since ρ contains every irreducible
character χi with multiplicity χi(1).

(2) Let χ3 = π−χ1 be the character of S4 obtained by subtracting the trivial
character from the natural permutation character. Then χ3 takes on the
values (3,−1, 0, 1,−1) on the conjugacy classes, hence m = 4. We have
(χ2

3, χ1) = 1, (χ2
3, χ3) = 1 and (χ2

3, χ
2
3) = 4. Since χ2

3(1) = 9 we can
conclude that the other two irreducible constituents of χ2

3 are the second
3-dimensional character and the 2-dimensional character obtained from
the factor group S3. We have not found the signum-character χ2 yet, but
from the above theorem we know that (χ3

3, χ2) > 0. It turns out that
(χ3

3, χ2) = 1.

3.4.8 Proposition Let V and W be KG-modules. Then V ∗ ⊗ W ∼=KG

HomK(V,W ).

Proof: Note that HomK(V,W ) is a KG-module by v(ϕg) := (vg−1)ϕg. To
define an isomorphism between V ∗ ⊗W and HomK(V,W ) it is enough to give
the image of pure tensors, since these generate V ∗⊗W . We define Φ : V ∗⊗W →
HomK(V,W ) by vΦ(λ⊗w) := (vλ)w, then it is clear that Φ is a homomorphism
of K-vector spaces. We have v(Φ(λ ⊗ w)g) = (vg−1)Φ(λ ⊗ w)g = (vg−1)λwg.
On the other hand Φ((λ ⊗ w)g) = Φ(λg ⊗ wg) and we have v(λg) = (vg−1)λ
for the action of G on the dual module V ∗. Hence, vΦ((λ⊗w)g) = (vg−1)λwg,
which shows that Φ is a KG-homomorphism.

To show that Φ is injective let (v1, . . . , vn) be a basis of V and let (λ1, . . . , λn)
be the dual basis of V ∗. Note that an arbitrary element of V ∗ ⊗ W can be
written as

∑n
i=1 λi ⊗wi with wi ∈W . Now, vjΦ(

∑n
i=1 λi ⊗wi) =

∑n
i=1 vj(λi ⊗

wi) =
∑n

i=1(vjλi)wi =
∑n

i=1 δijwi = wj. We therefore have Φ(
∑n

i=1 λi ⊗ wi) =
0 ⇒ wj = 0 for all j ⇒ λj ⊗ wj = 0 for all j ⇒

∑n
j=1 λj ⊗ wj = 0. Since

dim(V ∗⊗W ) = dim(V ) ·dim(W ) = dim(HomK(V,W )) it follows that Φ is also
surjective and hence an isomorphism. 2

3.4.9 Theorem Let char(K) 6= 2 and let V be a KG-module of dimension n
with character χ.

(i) V ⊗ V = V [2] ⊕ V [1,1], where V [2] := 〈{v ⊗ w | v ⊗ w = w ⊗ v}〉 is
the subspace of dimension

(
n+1

2

)
spanned by the symmetric tensors and

V [1,1] := 〈{v ⊗ w | v ⊗ w = −w ⊗ v}〉 is the subspace of dimension
(
n
2

)

spanned by the alternating tensors. The modules V [2] and V [1,1] are called
the symmetrizations of V ⊗ V .

(ii) The character of G on V [2] is χ[2](g) = 1
2(χ(g)2 + χ(g2)), the character of

G on V [1,1] is χ[1,1](g) = 1
2(χ(g)2 − χ(g2)).
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Proof: If (v1, . . . , vn) is a basis of V then (vi ⊗ vj + vj ⊗ vi, vk ⊗ vk | 1 ≤
i < j ≤ n, 1 ≤ k ≤ n) is a basis of V [2] consisting of

(
n+1

2

)
elements and

(vi ⊗ vj − vj ⊗ vi | 1 ≤ i < j ≤ n) is a basis of V [1,1] consisting of
(
n
2

)
elements.

It is clear that V [2] and V [1,1] are G-invariant submodules, since (v ⊗ w)g =
vg ⊗ wg. Now let g ∈ G and assume that ∆(g) is a diagonal matrix with
entries λ1, . . . , λn. Then the action of g on (vi ⊗ vj − vj ⊗ vi) is given by
(vi ⊗ vj − vj ⊗ vi)g = λiλj(vi ⊗ vj − vj ⊗ vi) and hence the character on V [1,1] is
χ[1,1](g) =

∑

i<j λiλj = 1
2((

∑n
i=1 λi)

2 − (
∑n

i=1 λ
2
i ))

2 = 1
2(χ(g)2 − χ(g2)). Since

χ2 = χ[2] + χ[1,1] it follows that χ[2](g) = χ(g)2 + χ(g2). 2

3.4.10 Definition For a finite group G with irreducible characters χ1, . . . , χr

define θk(g) := |{h ∈ G | hk = g}| for g ∈ G. Then θk is a class function and
we can write it as θk =

∑r
i=1 νk(χi)χi. The coefficient νk(χi) is called the k-th

Frobenius-Schur indicator of χi.

3.4.11 Corollary Let G have precisely t involutions (elements of order 2),
then 1 + t =

∑r
i=1 ν2(χi)χi(1).

Proof: This is clear since θ2(1) = 1 + t. 2

3.4.12 Lemma For an irreducible character χ of G one has

νk(χ) :=
1

|G|

∑

g∈G

χ(gk).

Proof: Since θk has integer values we have νk(χ) = (χ, θk) = (χ, θk) =
1
|G|

∑

g∈G χ(g)θ(g) = 1
|G|

∑

g∈G

∑

hk=g χ(g) = 1
|G|

∑

h∈G χ(hk). 2

3.4.13 Corollary Let K be a splitting field for G with char(K) = 0 and let
χ be an irreducible character of G. Then ν2(χ) ∈ {0, 1,−1}. More precisely:

ν2(χ) = 0 ⇔ χ 6= χ

ν2(χ) = 1 ⇔ χ = χ and (χ[2], χ1)G = 1

ν2(χ) = −1 ⇔ χ = χ and (χ[1,1], χ1)G = 1

Proof: Let V be the irreducible module corresponding to the character χ
then χ2 is the character on V ⊗V . We have (χ2, χ1) = (χ,χ) and in case χ 6= χ
the trivial module is not a constituent of V ⊗V and a fortiori not of V [2]. From
the relation (χ[2], χ1) = 1

2 (χ2, χ1) + 1
2ν2(χ) the claim now follows. 2

3.4.14 Remark Let G be a finite group and V a simple KG-module. The
action of G on V ⊗V can be interpreted as an action of G on the bilinear forms
on V with values in K:

Let (v1, . . . , vn) be a basis of V , denote the corresponding representation
by ∆, then vig =

∑n
k=1 ∆(g)ik. A general element w ∈ V ⊗ V is given

by w =
∑n

i,j=1 aij(vi ⊗ vj). Then the action of g on w is given by wg =
∑n

i,j

∑n
k,l aij∆(g)ik∆(g)jl. If we identify w with the matrix A = (aij), then wg
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is identified with the matrix ∆(g)A∆(g)tr . Thus, if we interpret A as the Gram
matrix of a bilinear form then the action of g becomes the usual action on Gram
matrices. Moreover, we see that w is a symmetric tensor (i.e. w ∈ V [2]) if and
only if the matrix A is symmetric (i.e. A = Atr) and w is an antisymmetric
tensor (i.e. w ∈ V [1,1]) if and only if A is antisymmetric (i.e. A = −Atr).

3.4.15 Corollary Let K be a splitting field for G with char(K) = 0 and let χ
be an irreducible character of G with corresponding module V . If χ = χ there
exists (up to scalar multiples) a unique non-degenerateG-invariant bilinear form
Φ on V . This form Φ is symmetric if and only if ν2(χ) = 1, it is symplectic
(antisymmetric) if and only if ν2(χ) = −1.

Proof: We already know that (χ[2], χ1) = 1 if ν2(χ) = 1 and (χ[1,1], χ1) = 1
if ν2(χ) = −1. From the above remark we see that in the first case G fixes a
symmetric bilinear form and in the latter case an antisymmetric bilinear form.
Finally, it is clear that the invariant form Φ has to be non-degenerate, since
otherwise the radical {v ∈ V | Φ(v, v′) = 0 for all v′ ∈ V } of Φ would be a
proper G-invariant submodule. 2

We have seen that a real-valued character indicates that the corresponding
representation fixes a bilinear form and the Frobenius-Schur indicator ν2(χ)
distinguishes whether the form is symmetric or antisymmetric. We will now
show that ν2(χ) actually tells us much more, namely whether a real-valued
character is the character of a representation that can be written over R. For
that we have to discuss how we can interpret a CG-module as an RG-module.

3.4.16 Definition Let V be a CG-module with basis (v1, . . . , vn) and represen-
tation ∆. Define VR to be the vector space with basis (v1, . . . , vn, iv1, . . . , ivn).
We can turn VR into an RG-module by

vjg :=

n∑

k=1

Re(∆(g)jk)vk + Im(∆(g)jk)ivk

(ivj)g :=

n∑

k=1

−Im(∆(g)jk)vk +Re(∆(g)jk)ivk.

The representation on VR has degree 2n and can be written as

(
Re(∆(g)) Im(∆(g))
−Im(∆(g)) Re(∆(g))

)

.

If χ is the character on V , then the character on VR is 2Re(χ) = χ+ χ.

3.4.17 Lemma If V is an irreducible CG-module and VR is a reducible RG-
module, then χ is afforded by a real representation.

Proof: If VR is a reducible RG-module we have VR = U ⊕W where U is an
RG-module with character χ and W is an RG-module with character χ. Since
U is an RG-module, the character χ is afforded by a real representation. 2
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3.4.18 Lemma Let V be an RG-module and let Φ be a G-invariant symmet-
ric bilinear form on V . Suppose there exist v,w ∈ V with Φ(v, v) > 0 and
Φ(w,w) < 0. Then V is reducible.

Proof: From
∑

g∈G ∆(g)∆(g)tr we obtain a positive definite bilinear form Ψ
on V . We now choose a basis (v1, . . . , vn) of V which is orthonormal with respect
to Ψ, i.e. Ψ(vi, vj) = δij . The Gram matrix F of Φ with respect to this basis is
a symmetric matrix. By the spectral theorem we can find an orthogonal matrix
Q (i.e. Q−1 = Qtr) such that QFQ−1 = D is a diagonal matrix. Without loss
of generality we can assume that D11 > 0 and D22 < 0. We now define a new
G-invariant bilinear form Φ′ on V by Φ′(v,w) := Φ(v,w) −D11Ψ(v,w). Then
Φ′(v1, w) = 0 for all w ∈ V , hence v1 lies in the radical of Φ′. On the other
hand Φ′(v2, v2) = D22 −D11 < 0, hence Φ′ is not the zero-form and therefore
the radical of Φ′ is a proper RG-submodule of V . 2

3.4.19 Theorem Let K be a splitting field of the finite group G and let χ be
an irreducible character of G. Then χ is afforded by a real representation if and
only if ν2(χ) = 1.

Proof: ⇒: Let χ be afforded by the real representation ∆. Then F :=
∑

g∈G ∆(g)∆(g)tr is the Gram matrix of a symmetric bilinear form fixed by
∆(G). Moreover, F is positive definite and in particular 6= 0. Therefore,
ν2(χ) = 1.
⇐: Let V be a simple CG-module with character χ. Since ν2(χ) = 1, there
exists a G-invariant symmetric bilinear form Φ on V . We define a mapping
ι : VR → V ,

∑n
j=1 ajvj + bj(ivj) 7→ (aj + ibj)vj for aj, bj ∈ R, then ι is clearly

a bijection. The mapping Ψ : VR × VR → C defined by Ψ(v,w) := Φ(vι, wι) is
easily seen to be a G-invariant symmetric bilinear form on VR. Since Φ is not
the zero-form, there are v,w ∈ V with Φ(v,w) 6= 0. Therefore we can choose
v1 ∈ {v,w, v + w} such that Φ(v1, v1) 6= 0 and by dividing v1 by a square root
of Φ(v1, v1) we can assume that Φ(v1, v1) = 1. But then Ψ(v1, v1) = 1 and
Ψ(iv1, iv1) = −1, hence VR is reducible by Lemma 3.4.18. By Lemma 3.4.17
this shows that χ is afforded by a real representation. 2

3.4.20 Remark The Frobenius-Schur indicator distinguishes over C the fol-
lowing three cases:

(1) If ν2(χ) = 0 then χ 6= χ and the representation necessarily involves ele-
ments from C \ R.

(2) If ν2(χ) = 1 then the representation can be realized over R and fixes a
positive definite G-invariant bilinear form.

(3) If ν2(χ) = −1 then although the character values are real the represen-
tation can not be realized over R and it fixes a symplectic G-invariant
bilinear form.
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3.4.21 Example The character table of the quaternion group Q8 is

CG(gi) 8 8 4 4 4
|Ci| 1 1 2 2 2
gi 1 i2 i j k

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

For i = 1, 2, 3, 4 we have χ
[2]
i (g) = 1

2(χi(g)
2 + χi(g

2)) = 1, thus χ
[2]
i = χ1.

Furthermore, χ
[2]
5 = χ2 + χ3 + χ4 and χ

[1,1]
5 = χ1. This can also be seen by

computing ν2(χ5) = 1
8

∑

g∈Q8
χ5(g

2) = 1
8(2 + 2 + 6 · (−2)) = −1.

Exercises

28. Let K be an arbitrary field and let ∆ be an irreducible representation of G over K.
Show that

∑

g∈G ∆(g) = 0 unless ∆ is the trivial representation.

29. Let G be a finite group and K a field with char(K) = 0. Let χ be a character of
G over K and let ∆ be a representation of G affording χ. Prove that detχ : G →
K, g 7→ det(∆(g)) is a 1-dimensional character of G. Show that detχ is well-defined,
i.e. independent of the choice of ∆ amongst the equivalent representations.

30. Let G be a non-abelian group of order 8.

(i) Show that G has a unique nonlinear irreducible character χ over C.

(ii) Show that χ(1) = 2, χ(g) = −2 for g ∈ G′ \ {1} and χ(h) = 0 for h ∈ G \G′.

(iii) Show that in case G ∼= Q8 the character detχ from the previous exercise is the
trivial character of G whereas in case G ∼= D8 it is not.

Note that D8 and Q8 are examples of nonisomorphic groups with identical character
tables.

31. Let G and H be groups. Determine the character table of the direct product G×H
in terms of the character tables of G and H .

32. Let G be a finite group and K a field with char(K) = 0.

(i) Let G act on a finite set Ω. Show that the character π of the permutation
representation of G on V = 〈vω | ω ∈ Ω〉 is given by π(g) = |FixΩ(g)| where
FixΩ(g) = {ω ∈ Ω | ωg = ω}.

(ii) G acts on itself by conjugation. Determine the character of the corresponding
permutation representation in purely group theoretic terms.

(iii) Show that each sum over a row in the character table of G is a non-negative
integer. (Hint: Use the bilinear form on class functions and part (ii).)

33. Let χ be a non-trivial character of a group G and suppose that all character values
χ(g) are non-negative real numbers. Show that χ is reducible.
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34. Let g1, . . . , gr ∈ G be representatives of the conjugacy classes of G and let C =
(χi(gj))

r
i,j=1 be the character table of G. Show that | det(C)|2 =

∏r

j=1 |CG(gj)|.
(Hint: The orthogonality relations say that C is almost a unitary matrix.)

35. Determine the conjugacy classes, the irreducible representations over C and the
character table of the dihedral groups D2n. (Hint: Consider the action of D2n on a
regular n-gon.)

36. Let χ be a character of G over a field K with char(K) = 0 and let χ =
∑r

i=1 aiχi

be the decomposition of χ into irreducible characters.

(i) Show that ker(χ) = ∩{ker(χi) | ai > 0}.

(ii) Show that ∩r
i=1 ker(χi) = {1}.

(iii) Prove that every normal subgroup N �G can be ’read off’ the character table
as the intersection of some of the ker(χi). (Note: Every normal subgroup is a
union of conjugacy classes and a normal subgroup is assumed to be ’known’
when the classes it consists of are known.)

37. A character χ is called faithful if ker(χ) = {1}.

(i) Show that the centre Z(G) is cyclic ifG has a faithful irreducible representation
over C.

(ii) Assume that G is a p-group and that Z(G) is cyclic. Prove that G has a
faithful irreducible representation over C. (Hint: Every normal subgroup of G
intersects Z(G) and if Z(G) is cyclic it contains a unique subgroup of order
p.)

38. Let G be a finite group, K a splitting field with char(K) = 0 and let χi, 1 ≤ i ≤ r be
the irreducible characters of G. Recall that the structure constants aijk are defined
by C+

i C
+
j =

∑r

k=1 aijkC
+
k , where C+

1 , . . . , C
+
r are the class sums.

(i) Show that

aijk =
|Ci||Cj |

|G|

r∑

l=1

χl(gi)χl(gj)χl(g
−1
k )

χl(1)

where gi is a representative of the conjugacy class with class sum C+
i .

(ii) Conclude that aijk|Ck| = ai′kj |Cj |, where i′ is the index of the conjugacy class
of g−1

i .

39. In the Dixon-Schneider algorithm we use the fact that the irreducible characters
are row-eigenvectors of the structure constant matrices A(i) = (aijk)1≤j,k≤r with

eigenvalues ω(C+
i′ ) =

|Ci|χ(g−1

i
)

χ(1) . Show that no two irreducible characters have the

same eigenvalues for all A(i).
Give an iterative method which splits the space of class functions into 1-dimensional
subspaces each containing one irreducible character.

40. Use the Dixon-Schneider algorithm to determine the central characters ωi and the
character table of the dihedral group D10 of order 10.

41. Determine the character table of the simple group GL3(2) of order 168. (Hint: The
conjugacy classes are parametrized by the characteristic polynomials of the matrices.
Use symmetrized tensor products and permutation characters.)

42. Let χ, ψ, θ be irreducible characters of the finite group G. Show that (χψ, θ) ≤ θ(1).
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43. Let G be a group and let χ be the character of a C-irreducible representation of
G. Show that if ν2(χ) = −1, then χ(1) is even. Deduce that ν2(χ) = 1 for χ with
χ = χ and χ(1) odd.

44. Let ∆ be an irreducible representation of degree 2 of G and let χ be the character
of ∆. Show that χ[1,1](g) = det(∆(g)) for all g ∈ G. Conclude that ν2(χ) = −1 if
and only if det(∆(g)) = 1 for all g ∈ G.

45. Let G = 〈g, h | g5 = h2 = 1, hgh = g−1〉 be the dihedral group D10 of order 10.

(i) Show that

∆(g) :=

(
ζ5 0
0 ζ−1

5

)

, ∆(h) :=

(
0 1
1 0

)

defines a faithful irreducible representation of D10 over C.

(ii) Compute the Frobenius-Schur indicator ν2(χ) of the character χ of ∆. Is ∆
equivalent with a representation that can be realized over R? If so, determine
such a real representation.

(iii) Determine χ[2] and χ[1,1]. Compute a G-invariant bilinear form for ∆(G).

(iv) Decompose χ2 and χ3 into irreducible characters.
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Chapter 4

Induced representations

It is clear that a KG-module can be regarded as a KH-module for a subgroup
H ≤ G by restricting the action to H. In this chapter we will deal with the
opposite situation, i.e. a module for a subgroup H is known and we want to
construct a module for the full group from this.

4.1 Induction

4.1.1 Definition Let H ≤ G be a subgroup and let V be a KG-module. Then
by restricting the action to KH, V becomes a KH-module which is denoted
by V|H or resG

H(V ).

4.1.2 Theorem Let H ≤ G be a subgroup and let W be a KH-module. Let
I ≤W ⊗KG be defined by I := 〈w⊗hg−wh⊗g | w ∈W,h ∈ H, g ∈ G〉. Then
the quotient space (W⊗KG)/I becomes aKG-module via (w⊗g)g′ := w⊗(gg′).
This KG-module is denoted by WG.
If g1, . . . , gm is a transversal for H in G (i.e. G = ∪̇m

i=1Hgi), then WG ∼=
⊕m

i=1W⊗gi and this decomposition is independent of the choice of the transver-
sal. In particular dimK(WG) = [G : H] dimK(W ).

Proof: If we forget the action of H on W and regard W as a KG-module
with trivial G-action, the given action (w⊗ g)g′ = w⊗ (gg′) is the usual tensor
product action on W ⊗ KG. Moreover, since (w ⊗ hg)x − (wh ⊗ g)x = w ⊗
h(gx) − wh ⊗ (gx), we see that I is a KG-submodule of W ⊗ KG and hence
WG is a KG-module.

Now let g1, . . . , gm be a transversal for H in G and define

ϕ : w ⊗ g = w ⊗ hgi 7→ wh⊗ gi.

Then linearly extending ϕ gives a mapping ϕ : W ⊗ KG →
⊕m

i=1W ⊗ gi

which is clearly a surjective homomorphism of vector spaces. To determine
the kernel of ϕ note that a general element v ∈ W ⊗ KG is of the form v =
∑

g∈Gwg⊗g =
∑m

i=1

∑

h∈H whgi
⊗hgi. Since vϕ = (. . . ,

∑

h∈H whgi
h⊗gi, . . .) we

have v ∈ ker(ϕ) if and only if
∑

h∈H whgi
h = 0 for all i. It is therefore clear that

I ⊆ ker(ϕ). On the other hand, an element
∑

h∈H whgi
⊗ hgi ∈ ker(ϕ) can be
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written as
∑

h∈H whgi
⊗hgi =

∑

h∈H(whgi
⊗hgi−whgi

h⊗gi)+
∑

h∈H whgi
h⊗gi

and thus lies in I, since
∑

h∈H whgi
h = 0. This isomorphism induced by ϕ

implies that dimK(WG) = [G : H] dimK(W ).

Finally, it is clear that w ⊗ g ∈ W ⊗ gi if and only if g ∈ Hgi and in this
case W ⊗ g = W ⊗ gi. This shows that the decomposition WG ∼=

⊕m
i=1W ⊗ gi

is independent of the choice of the transversal. 2

4.1.3 Remark The above construction ofWG = (W⊗KG)/I is often denoted
by W ⊗KH KG, indicating that elements of KH are allowed to commute with
the tensor product sign. This is consistent with our earlier notation V ⊗K W
for the tensor product of K-vector spaces.

4.1.4 Definition Let H ≤ G be a subgroup, let W be a KH-module, and let
g1, . . . , gm be a transversal for H in G.

(i) The KG-module WG := indG
H(W ) := W ⊗KH KG = {

∑m
i=1 wi ⊗ gi | wi ∈

W} with action (w ⊗ g)g′ = w⊗ (gg′) is called the induced module of W .

(ii) If ∆ is the representation of H on W then the representation of G on WG

is denoted by ∆G or and is called the induced representation.

(iii) If χ is the character of ∆ then the character of ∆G is denoted by χG and
is called the induced character.

4.1.5 Theorem Let H ≤ G be a subgroup with transversal g1, . . . , gm and
let (w1, . . . , wn) be a basis of the KH-module W with representation ∆ and
character χ. Then B = (w1 ⊗ g1, . . . , wn ⊗ g1, w1 ⊗ g2, . . . wn ⊗ gm) is a basis of
WG.

(i) The representation ∆G with respect to B is given by

∆G(g) =






∆̇(g1gg
−1
1 ) · · · ∆̇(g1gg

−1
m )

...
...

∆̇(gmgg
−1
1 ) · · · ∆̇(gmgg

−1
m )






where ∆̇(h) = ∆(h) if h ∈ H and 0 otherwise.

(ii) The character χG of ∆G is given by χG(g) =
∑m

i=1 χ̇(gigg
−1
i ) where

χ̇(h) = χ(h) if h ∈ H and 0 otherwise.

(iii) If char(K) ∤ |H| then χG(g) = 1
|H|

∑

g′∈G χ̇(g′gg′−1).

Proof: (i)+(ii): Multiplication by g ∈ G induces a permutation of the cosets
Hgi, thus gig = hgj for some h ∈ H. Thus, (wk⊗gi)g = wk⊗(hgj) = (wkh)⊗gj

where gj is the unique element in the transversal such that gigg
−1
j ∈ H.

(iii): We have
∑

g′∈G χ̇(g′gg′−1) =
∑m

i=1

∑

h∈H χ̇((hgi)g(hgi)
−1)

=
∑m

i=1

∑

h∈H χ̇(gigg
−1
i ) = |H|

∑m
i=1 χ̇(gigg

−1
i ) = |H|χG(g). 2
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4.1.6 Remark Writing χG(g) as χG(g) = 1
|H|

∑

g′∈G χ̇(g′gg′−1) again shows
that the definition of the induced module is independent of the choice of the
transversal, since the right hand side does not depend on the transversal and
the character determines the representation.

4.1.7 Corollary Let H ≤ G be a subgroup.

(i) If ∆ is the trivial representation of H then ∆G is the permutation rep-
resentation of G on G/H and the permutation character 1G

H(g) gives the
number of fixed points of g on G/H.
More generally, representations induced from 1-dimensional representa-
tions of a subgroup are called monomial representations.

(ii) If ∆ is the regular representation of H, then ∆G is the regular represen-
tation of G.

Proof: (i): Note that ∆G(g)ij = 1 if gigg
−1
j ∈ H and 0 else. Thus, ∆G(g)ij =

1 ⇔ Hgig = Hgj and therefore ∆G is the permutation character on the cosets
in G/H.
(ii): This follows, since for a transversal g1, . . . , gm of H in G the basis {h⊗ gi |
h ∈ H, 1 ≤ i ≤ m} is the same as {1 ⊗ g | g ∈ G}. 2

4.1.8 Theorem (Frobenius reciprocity)
Let H ≤ G be a subgroup, let χ and ϕ be a characters of G and H, respectively,
over K with char(K) ∤ |G|. Then

(χ,ϕG)G = (χ|H , ϕ)H .

Proof: We have (ϕG, χ) = 1
|G|

∑m
i=1

∑

g∈G χ(g−1)ϕ̇(gigg
−1
i )

= 1
|G|

∑m
i=1

∑

g∈g−1

i Hgi
χ(g−1)ϕ̇(gigg

−1
i ) = 1

|G|
∑m

i=1

∑

h∈H χ(g−1
i h−1gi)ϕ(h)

= [G:H]
|G|

∑

h∈H χ(h−1)ϕ(h) = (ϕ,χ|H)H . 2

4.1.9 Example Let G = S4 and H = S3 ≤ S4. Assume first that we know
the character tables of G and H:

CG(gi) 24 8 3 4 4
|Ci| 1 3 8 6 6
gi 1 (1, 2)(3, 4) (1, 2, 3) (1, 2) (1, 2, 3, 4)
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 2 2 −1 0 0
χ4 3 −1 0 1 −1
χ5 3 −1 0 −1 1

|CG(gi)| 6 3 2
|Ci| 1 2 3
gi 1 (1, 2, 3) (1, 2)
ϕ1 1 1 1
ϕ2 1 1 −1
ϕ3 2 −1 0

We get the restrictions of the characters of S4 to S3 as χ1|H = ϕ1, χ2|H = ϕ2,
χ3|H = ϕ3, χ4|H = ϕ1 + ϕ3, χ5|H = ϕ2 + ϕ3. We can write these restrictions
into an induction-restriction table as follows: The rows are indexed by the
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irreducible characters of G, the columns by the irreducible characters of H and
the (i, j)-entry is aj if χi|H =

∑r
j=1 ajϕj . In the example, the table is

ϕ1 ϕ2 ϕ3

χ1 1 0 0
χ2 0 1 0
χ3 0 0 1
χ4 1 0 1
χ5 0 1 1

The rows of the induction-restriction table express the restrictions from G to
H as linear combinations of the irreducible characters of H and by Frobenius
reciprocity the columns express the characters induced from H to G as linear
combinations of the irreducible characters of G. Thus we have ϕG

1 = χ1 + χ4,
ϕG

2 = χ2 + χ5 and ϕG
3 = χ3 + χ4 + χ5.

The induction-restriction table shows that we can construct the irreducible
characters of S4 just from the characters of S3 and the linear characters χ1, χ2

of S4: We have χ4 = ϕG
1 − χ1, χ5 = ϕG

2 − χ2 and finally χ3 = ϕG
3 − χ4 − χ5.

4.1.10 Example Let G be a non-abelian group of order pq where p > q
are different primes. Then the Sylow-p subgroup P of G is normal and every
element of order q acts as an automorphism of Cp, thus p − 1 = kq. Since
Aut(Cp) ∼= Cp−1 is cyclic, there is a unique subgroup of order q of Aut(Cp),
hence the isomorphism type of G is determined uniquely.

The commutator group of G is P , therefore G has q linear characters
χ1, . . . , χq, namely the characters of Cq, having P in the kernel. Since the
character degrees divide the group order, the nonlinear characters of G have
degrees p or q. But from pq = q · 12 + l · p2 +m · q2 we conclude that l = 0,
hence there are m characters of degree q where m = p−1

q
= k.

To determine the conjugacy classes of G, let G = 〈a, b〉 where 〈a〉 = P and b
generates a Sylow-q-subgroup. Then the powers of a fall into k conjugacy classes
under the action of b, since every orbit has length q. Moreover, if bab−1 = as we
see that a−1ba = as−1b, hence the powers of b are representatives of different
conjugacy classes. We thus have k classes of elements of order p and q − 1
classes of elements of order q and of course the class consisting of the identity
element.

We will now determine the k characters of degree q by inducing linear char-
acters of P to G. The non-trivial linear characters of P are given by λi(a) = ζi

p,
where ζp is a primitive p-th root of unity and 1 ≤ i < p. Since 1, b, b2, . . . , bq−1 is

a transversal of P in G, we have λG
i (bl) =

∑q−1
j=0 λ̇i(b

jblb−j) =
∑q−1

j=0 λ̇i(b
l) = 0,

since bl 6∈ P . This could also have been concluded from the fact that the el-
ements of order q have no fixed points on G/P . Since P � G we furthermore

have λG
i (a) =

∑q−1
j=0 λi(b

jab−j) =
∑q−1

j=0 λi(a
js) =

∑q−1
j=0(ζ

i
p)

js =
∑q−1

j=0 ζ
lj
p where

al0 , . . . , alq−1 is a conjugacy class of elements of order p. This shows that the
induced characters λG

i and λG
i′ are different if and only if ai and ai′ represent dif-

ferent conjugacy classes. Thus we obtain k different induced characters λG
ij

. To
see that these characters are irreducible, we only have to check that they do not
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have a linear character as a constituent, since the irreducible characters have de-
grees 1 or q. But by Frobenius reciprocity we have (λG

i , χj)G = (λi, χj |P )P = 0,
since λi is a non-trivial linear character and χj |H is the trivial character. We
therefore conclude that the k induced characters are the distinct irreducible
characters of degree q of G.

As an explicit example, let p = 7, q = 3, then G = 〈a, b〉 ∼= C7 ⋊ C3. We
have bab−1 = a2 and the orbits of b on the powers of a are (a, a2, a4), (a3, a5, a6).
We get the character table of G as

CG(gi) 21 7 7 3 3
|Ci| 1 3 3 7 7
gi 1 a a3 b b2

χ1 1 1 1 1 1
χ2 1 1 1 ζ3 ζ2

3

χ3 1 1 1 ζ2
3 ζ3

λG
1 3 ζ7 + ζ2

7 + ζ4
7 ζ3

7 + ζ5
7 + ζ6

7 0 0
λG

3 3 ζ3
7 + ζ5

7 + ζ6
7 ζ7 + ζ2

7 + ζ4
7 0 0

4.1.11 Remark If χ and ψ are characters for representations on KG-modules
V and W , then (χ,ψ)G = dimHomKG(V,W ). Thus, Frobenius reciprocity im-
plies dimHomKG(WG, V ) = dimHomKH(W,V|H) and dimHomKG(V,WG) =
dimHomKH(V|H ,W ). But a much stronger result holds, namely the Frobenius-
Nakayama reciprocity.

4.1.12 Theorem (Frobenius-Nakayama reciprocity)
Let H ≤ G be a subgroup, let V be a KG-module and W a KH-module. Then
HomKG(WG, V ) ∼= HomKH(W,V|H) andHomKG(V,WG) ∼= HomKH(V|H ,W )
as K-modules.

Proof: Let ϕ ∈ HomKG(WG, V ), i.e. ϕ : W ⊗KH KG → V . We now
define ϕ′ : W → V by wϕ′ := (w ⊗ 1)ϕ. It is clear that ϕ′ is a KH-module
homomorphism, since by the definition of W ⊗KH KG we have (wϕ′)h = (w⊗
1)ϕh = (w ⊗ h)ϕ = (wh ⊗ 1)ϕ. We therefore have ϕ′ ∈ HomKH(W,V|H).
Moreover, the mapping Γ : ϕ → ϕ′ is clearly K-linear and it is injective, since
ϕ′ = 0 implies (w ⊗ 1)ϕ = 0 for all w ∈W and thus ϕ = 0.
To show that Γ is surjective, let ϕ′ ∈ HomKH(W,V|H) and let T = {g1, . . . , gm}
be a transversal for H in G. We now define (w⊗hgi)ϕ := (wϕ′)hgi = (wh)ϕ′gi,
then ϕ is a well-defined K-homomorphism from WG to V . Moreover, for g ∈ G
and gi ∈ T let gig = h′gj , then we have (w⊗hgi)ϕg = (wh)ϕ′gig = (wh)ϕ′h′gj =
(wh)h′ϕ′gj = (w⊗hh′gj)ϕ = (w⊗hgi)gϕ. This shows that ϕ is G-invariant and
thus ϕ ∈ HomKG(WG, V ). Since Γ(ϕ) = ϕ′ this establishes that Γ is bijective.

The second isomorphism is left as an exercise. 2

4.2 Permutation characters

4.2.1 Lemma Let G act transitively on Ω, let α ∈ Ω and let H := Gα :=
StabG(α). Then the permutation character π of the action of G on Ω is given
as π = (1H)G.
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Proof: Let T = {g1, . . . , gn} be a transversal of H in G, then n = |Ω| and
Ω = {αgi | 1 ≤ i ≤ n}. For g ∈ G we have π(g) = |{ω ∈ Ω | ωg = g}| = |{gi ∈
G | αgig = αgi}| = |{gi ∈ G | gigg

−1
i ∈ H}| = (1H)G(g) by the definition of the

induced character. 2

4.2.2 Proposition Let G act on Ω and let π be the permutation character of
this action. Then (π, 1G)G = 1

|G|
∑

g∈G |fixΩ(g)| equals the number of orbits of
G on Ω.

Proof: By the definition of the inner product of class functions we have
(π, 1G)G = 1

|G|
∑

g∈G π(g) and since π is the permutation character on Ω we

have π(g) = |fixΩ(g)|. Now let Ω = ∪̇r
i=1Ωi be the decomposition of Ω into

orbits under the action of G and denote by πi the permutation character of
the action of G on Ωi, then π =

∑r
i=1 πi. If we select a point αi ∈ Ωi from

each orbit and define Hi := StabG(αi), we have πi = (1Hi
)G and by Frobenius

reciprocity we get (πi, 1G)G = (1Hi
, 1Hi

)Hi
= 1. From this we conclude that

(π, 1G)G =
∑r

i=1(π1, 1G)G = r. 2

Note: This is the famous Cauchy-Frobenius fixed point theorem also known
as Burnside fixed point theorem.

4.2.3 Proposition Let G act on Ω1 and Ω2 with permutation characters π1

and π2, respectively. Then (π1, π2)G is the number of orbits of G on Ω1 × Ω2.
(Here, the action of G on Ω1 × Ω2 is given by (α, β)g := (αg, βg).

Proof: Since the number of fixed points of g and g−1 coincide we have
(π1, π2) = 1

|G|
∑

g∈G |fixΩ1
(g)||fixΩ2

(g)| = 1
|G|

∑

g∈G |fixΩ1×Ω2
(g)| and this is

the number of orbits of G on Ω1 × Ω2. 2

4.2.4 Corollary Let G act transitively on Ω with permutation character π,
let α ∈ Ω and let H := StabG(α). Assume that H has r orbits on Ω, then
(π, π)G = r, i.e. the number of orbits of H on Ω equals the number of orbits of
G on Ω×Ω. The number r = (π, π)G is called the rank of the transitive action
of G.

Proof: By Frobenius reciprocity we have r = (π|H , 1H)H = (π, (1H )G)G =
(π, π)G. 2

4.2.5 Definition A transitive action of a group G on a set Ω is called doubly
transitive if the stabilizer of a point α ∈ Ω acts transitively on Ω \ {α}. Anal-
ogously, the action is called k-transitive, if the pointwise stabilizer of (k − 1)
points acts transitively on the remaining |Ω| − (k− 1) points. For example, the
natural actions of Sn and An are n-transitive and (n−2)-transitive, respectively.

4.2.6 Corollary Let G act transitively on Ω with permutation character π,
The action is doubly transitive if and only if π = 1G + χ for an irreducible
character χ of G.

46



Groups and representations Chapter 4. Induced representations

Proof: The action of G is doubly transitive if and only if (π, π) = 2 and since
(π, 1G) = 1 this equivalent with π = 1G +χ for an irreducible character χ of G.

2

4.2.7 Example Let G = GL2(q) be the group of invertible 2 × 2-matrices
over the field Fq of q elements. Then G acts doubly transitive on the set Ω of
1-dimensional subspaces of F2

q:
The 1-dimensional subspaces of F2

q are represented by the vectors va = (1, a)
with a ∈ Fq and v∞ = (0, 1), hence |Ω| = q + 1. The action on Ω is transitive,
since any of the vectors vx can be chosen as the first row of an element of G,
hence all α ∈ Ω lie in the orbit of α0 = 〈(1, 0)〉. Now let H := StabG(α0), then

H consists of the matrices of the form

(
1 0
b c

)

with c 6= 0. In particular, we

find any vx except for v0 as the second row of an element in H, hence all the
elements of Ω \ α0 lie in the orbit of α∞ = 〈(0, 1)〉.
We can therefore conclude that the permutation character π of the action of G
on Ω is of the form π = 1G + χ where χ is a q-dimensional irreducible rational
character of G.

4.2.8 Theorem Let H ≤ G be a subgroup and let π = (1H)G be the permu-
tation character of the action of G on G/H. Then the following hold:

(i) π(1) | |G|,

(ii) π(g) ∈ Z≥0,

(iii) π(gn) ≥ π(g) for all n ∈ N,

(iv) (π, 1G)G = 1,

(v) (π, χ)G ≤ χ(1) for every character χ of G,

(vi) |〈g〉| ∤
|G|

π(1)
⇒ π(g) = 0,

(vii)
π(g)

π(1)
|gG| ∈ Z, where gG denotes the conjugacy class of g in G.

Proof: Claim (i) holds for any character, (ii) follows from the interpretation
of π(g) as the number of fixed points of g, (iii) follows, since every fixed point
of g is also a fixed point of gn and (iv) holds, since the action of G on G/H is
transitive.
(v): Write π = (1H)G, then by Frobenius reciprocity we have (π, χ)G =
(1H , χ|H)H and the multiplicity of any constituent of χ|H can not exceed the
degree χ(1).
(vi): Let m = 〈|g|〉 be the order of g, then every conjugate xgx−1 of g also
has order m and therefore can not be contained in H. This shows that π(g) =
1
|H|

∑

x∈G( ˙1H)(xgx−1) = 0.

(vii): Let Ω := G/H and define X to be the set X := {(ω, x) | ω ∈ Ω, x ∈
gG, ωx = ω}. We count the number of elements in X in two different manners:
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On the one hand, for a fixed g ∈ gG the number of pairs (ω, g) ∈ X is π(g),
hence |X| = |gG|π(g). On the other hand, for a fixed element ω ∈ Ω the num-
ber of (ω, x) ∈ X is |StabG(ω) ∩ gG|. But since G acts transitively on Ω, all
stabilizers StabG(ω) are conjugate and since gG is closed under conjugation, the
cardinality c = |StabG(ω)∩ gG| is independent of ω. Hence, |X| = |Ω|c = π(1)c

and we conclude that π(g)
π(1) |g

G| = c ∈ Z. 2

4.2.9 Remark Theorem 4.2.8 gives a number of necessary conditions which a
permutation character has to fulfill. However, they are by now means sufficient.

4.2.10 Example We determine the candidates of transitive permutation char-
acters for the symmetric group S4. The character table of S4 looks as follows:

|〈gi〉| 1 2 2 3 4
|gG

i | 1 3 6 8 6
gi 1 (1, 2)(3, 4) (1, 2) (1, 2, 3) (1, 2, 3, 4)

χ1 1 1 1 1 1
χ2 1 1 −1 1 −1
χ3 2 2 0 −1 0
χ4 3 −1 1 0 −1
χ5 3 −1 −1 0 1

Now let π =
∑5

i=1 aiχi, then from condition (v) of Theorem 4.2.8 we know
that ai ≤ χi(1) and a1 = 1 due to condition (iv). Furthermore, the fact that
π(g) ≥ 0 gives us a linear inequality for each of the conjugacy classes, i.e. we
get the system of linear inequalities

0 ≤ a2 ≤ 1, 1 + a2 + 2a3 − a4 − a5 ≥ 0
0 ≤ a3 ≤ 2, 1 − a2 + a4 − a5 ≥ 0
0 ≤ a4 ≤ 3, 1 + a2 − a3 ≥ 0
0 ≤ a5 ≤ 3, 1 − a2 − a4 + a5 ≥ 0

.

If we further restrict the integral solutions of this system to solutions with
π(1) | 24 we get the following 14 candidates for permutation characters:

π1 = χ1 = (1, 1, 1, 1, 1)
π2 = χ1 + χ2 = (2, 2, 0, 2, 0)
π3 = χ1 + χ3 = (3, 3, 1, 0, 1)
π4 = χ1 + χ4 = (4, 0, 2, 1, 0)
π5 = χ1 + χ5 = (4, 0, 0, 1, 2)
π6 = χ1 + χ2 + χ3 = (4, 4, 0, 1, 0)
π7 = χ1 + χ3 + χ4 = (6, 2, 2, 0, 0)
π8 = χ1 + χ3 + χ5 = (6, 2, 0, 0, 2)
π9 = χ1 + χ2 + 2χ3 = (6, 6, 0, 0, 0)
π10 = χ1 + χ2 + χ4 + χ5 = (8, 0, 0, 2, 0)
π11 = χ1 + χ2 + 2χ3 + χ4 + χ5 = (12, 4, 0, 0, 0)
π12 = χ1 + χ3 + 2χ4 + χ5 = (12, 0, 2, 0, 0)
π13 = χ1 + χ3 + χ4 + 2χ5 = (12, 0, 0, 0, 2)
π14 = χ1 + χ2 + 2χ3 + 3χ4 + 3χ5 = (24, 0, 0, 0, 0)

.
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So far, we have not used conditions (iii), (vi) and (vii) of Theorem 4.2.8. Since
(1, 2, 3, 4)2 = (1, 3)(2, 4) we require that the second component of πi is not
smaller than the last component. This rules out the candidates π5 and π13.
The remaining characters now also fulfill the other conditions of the theorem
and we therefore proceed to identifying the true permutation characters. We
know that conjugate subgroups yield the same permutation character, hence it is
sufficient to look at the actions of G on G/H where H runs over representatives
of the conjugacy classes of subgroups of G:
π1 is the action of S4 on S4/S4,
π2 is the action of S4 on S4/A4,
π3 is the action of S4 on S4/D8,
π4 is the action of S4 on S4/S3,
π7 is the action of S4 on S4/〈(1, 2), (3, 4)〉,
π8 is the action of S4 on S4/C4,
π9 is the action of S4 on S4/〈(1, 2)(3, 4), (1, 3)(2, 4)〉,
π10 is the action of S4 on S4/C3,
π11 is the action of S4 on S4/〈(1, 2)(3, 4)〉,
π12 is the action of S4 on S4/〈(1, 2)〉,
π14 is the action of S4 on S4/{1}, i.e. the regular character.
The only character not found is π6. To rule out this character we need some
additional argument: Assume that π6 = (1H)G, then (π6, χ2) = (1H , χ2|H),
and since χ2(1) = 1 we have χ2|H = 1H . This means that the signum-character
restricted to H gives the trivial character, hence H ≤ A4. But A4 has no
subgroup of order 6, hence π6 is not a permutation character.

4.2.11 Remark Note that we can read off the maximal subgroups from the
transitive permutation characters of G: If H ≤ U ≤ G we have (1H)G =
((1H)U )G, where (1H)U = 1U +ψ for some character ψ of U , since U acts tran-
sitively on U/H. Therefore, (1H)G = (1U )G +ψG, which shows that the permu-
tation character on G/U is completely contained in the permutation character
on G/H. We therefore can identify the permutation characters corresponding
to maximal subgroups as the permutation characters not containing any other
permutation character.

We will finish this section by constructing certain irreducible characters of
Sn. Note that the conjugacy classes of Sn are characterized by the cycle struc-
tures of the elements, hence there is a 1− 1 correspondence between conjugacy
classes of Sn and partitions of n. (Recall that a partition (n1, . . . , ns) ⊢ n of n
is a sequence (n1, . . . , ns) with ni ≥ 0, ni ≥ ni+1 and

∑s
i=1 ni = n.) Since we

know that there are as many irreducible representations as conjugacy classes
it would be most convenient if we could associate an irreducible representation
of Sn to each partition of n. This is actually possible by some clever combina-
torial constructions and we will demonstrate here the case of 2-partitions, i.e.
partitions of the form (n− k, k).

Let Ik := {I ⊆ {1, . . . , n} | |I| = k} be the set of k-element subsets of
{1, . . . , n}. Then Sn acts transitively on Ik via {i1, . . . , ik}g := {i1g, . . . , ikg}.
The permutation character πk of this action of Sn on Ik has degree πk(1) =

(
n
k

)
.
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4.2.12 Proposition With the above notation let πl and πk be the permutation
characters of the action of Sn on Il and Ik, respectively. Assume that 1 ≤ l ≤
k ≤ n

2 . Then (πk, πl)Sn = l + 1.

Proof: We know that (πk, πl) is the number of orbits of Sn on Ik × Il.
We now claim that the orbits of Sn on Ik × Il are J0, J1, . . . , Jl, where Js =
{(A,B) | A ∈ Ik, B ∈ Ik, |A ∩ B| = s}. It is clear that pairs from different
Js can not lie in one orbit, since the size of the intersection is invariant under
the action of G. Moreover, none of the Js is empty, since l ≤ k ≤ n

2 . Now let
(A,B) ∈ Js, let A \ B = {i1, . . . , ik−s}, A ∩ B = {ik−s+1, . . . , ik} and B \ A =
{ik+1, . . . , ik+l−s}. Then we can map (A,B) to (A0, B0) with A0 = {1, . . . , k},
B0 = {k − s, . . . , k + l − s} by g ∈ Sn mapping ij to j for 1 ≤ j ≤ k + l − s.
Here we require the property of Sn that we can choose the images of all points
independently. This now shows that Js is a single orbit under the action of G,
hence the claim follows. 2

4.2.13 Theorem Let πk be the permutation character of the action of Sn

on Ik and assume that k ≤ n
2 . Then πk = χ(n) + χ(n−1,1) + . . . + χ(n−k,k),

where χ(n) = 1Sn and the χ(n−i,i) are distinct irreducible characters of Sn. In
particular, one has χ(n−k,k) = πk − πk−1 and thus χ(n−k,k)(1) =

(
n
k

)
−

(
n

k−1

)
.

Proof: The proof is by induction on k: For k = 1 we already know that
π1 = 1Sn + χ with χ irreducible, since Sn acts doubly transitive. We set
χ(n−1,1) := χ. Now let k > 1. From the above proposition we know that
(πk, πk−1) = k and (πk, πk) = k+1. By induction, πk−1 is a sum of k irreducible
characters, hence it is completely contained in πk, i.e. πk = πk−1 + χ for a
character χ of Sn. From (πk, πk) = k+1 we conclude that (πk−1, χ)+(χ, χ) = 1,
which shows that χ is an irreducible character distinct from the constituents of
πk−1. The claim now follows by defining χ(n−k,k) := χ. 2

4.3 Normal subgroups

4.3.1 Definition Let H�G be a normal subgroup, let W be KH-module with
representation ∆ and character ϕ.

(i) The module W g := W ⊗ g ≤ WG is a KH-module which is conjugate
to W . The corresponding representation ∆g of H is given by ∆g(h) =
∆(ghg−1), the corresponding character ϕg by ϕg(h) = ϕ(ghg−1), since
(w ⊗ g)h = w ⊗ (ghg−1)g = w(ghg−1) ⊗ g.

(ii) The group T := IG(ϕ) := {g ∈ G | ϕg(h) = ϕ(h) for all h ∈ H} is called
the inertia group of ϕ in G. This is the group of elements g ∈ G such that
W g ∼=KH W .

4.3.2 Theorem (Clifford’s theorem)
Let H � G be a normal subgroup, let χ be an irreducible character of G and
let ϕ be an irreducible constituent of χ|H . Let T := IG(ϕ) be the inertia group
of ϕ in G. Then χ|H = e(

∑m
i=1 ϕi) where m = [G : T ] and ϕi = ϕgi for a
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transversal g1, . . . , gm of T in G (with g1 = 1). Thus, the ϕi are the different
conjugates of ϕ under the action of G and e = (χ|H , ϕ).

Proof: We first show that (χ|H , ϕi) is independent of i. Note that since χ
is a character of G, we have χg

|H = χ|H for all g ∈ G. But (θg, ϕg) = (θ, ϕ) for

any characters θ, ϕ of H, since with h also ghg−1 runs over H. This shows that
(χ|H , ϕ

g) = (χg

|H , ϕ
g) = (χ|H , ϕ) for all g ∈ G and hence (χ|H , ϕi) = (χ|H , ϕ) =

e for all i.
Next, for the induced character ϕG we have ϕG(h) = 1

|H|
∑

g∈G ϕ̇(ghg−1) =
1
|H|

∑

g∈G ϕ
g(h) for h ∈ H. This shows that the ϕi are all the irreducible

constituents of ϕG
|H . Now let θ be an irreducible character of H distinct from

the ϕi, then we have (ϕG
|H , θ) = 0 and by Frobenius reciprocity this means that

(ϕG, θG) = 0. On the other hand we have (χ|H , ϕ) 6= 0, hence (χ,ϕG) 6= 0, and

since χ is irreducible this shows that (χ, θG) = 0. From this we conclude that
(χ|H , θ) = 0, hence the ϕi are all the irreducible constituents of χ|H . 2

4.3.3 Theorem Let H � G, let ϕ be an irreducible character of H and let
T := IG(ϕ). Define A := {ψ irreducible character of T | (ψ|H , ϕ) 6= 0} and
B := {χ irreducible character of G | (χ|H , ϕ) 6= 0}. Then the following hold:

(i) If ψ ∈ A, then ψG is irreducible.

(ii) If ψG = χ with ψ ∈ A, then (ψ|H , ϕ) = (χ|H , ϕ).

(iii) If ψG = χ with ψ ∈ A, then ψ is the unique irreducible constituent of χ|T
that lies in A.

(iv) The mapping ψ → ψG is a bijection of A onto B.

Proof: Let ϕ1 = ϕ,ϕ2, . . . , ϕm be the distinct conjugates of ϕ in G, thus
[G : T ] = m. Let ψ ∈ A and let χ be an irreducible constituent of ψG.
By Frobenius reciprocity we know that ψ is a constituent of χ|T and ϕ is
a constituent of ψ|H , hence ϕ is also a constituent of χ|H and thus χ ∈ B.
Furthermore, by Clifford’s theorem we have χ|H = e(

∑m
i=1 ϕi) and ψ|H = fϕ,

since T = IG(ϕ) = IT (ϕ). As ψ is a constituent of χ|T we know that f ≤ e.

(i): We have emϕ(1) = χ(1) ≤ ψG(1) = mψ(1) = fmϕ(1) ≤ emϕ(1), hence in
particular we have χ(1) = ψG(1) and hence ψG = χ is irreducible.
(ii): From the above equation it also follows that e = f , hence (χ|H , ϕ) = e =
f = (ψ|H , ϕ).
(iii): If ψ,ψ1 ∈ A are distinct constituents of χ|T , we have (χ|H , ϕ) ≥ ((ψ +
ψ1)|H , ϕ) = (ψ|H , ϕ) + ((ψ1)|H , ϕ) > (ψ|H , ϕ) which contradicts (ii).

(iv): The mapping ψ → ψG is well-defined by (i), its image lies in B by (ii) and
it is injective by (iii). To show that it is also surjective, let χ ∈ B. Then ϕ is a
constituent of χ|H = (χ|T )|H , hence there exists an irreducible constituent ψ of
χ|T with (ψ|H , ϕ) 6= 0. We then have ψ ∈ A and by Frobenius reciprocity χ is

a constituent of ψG. But by (i), ψG is irreducible, hence χ = ψG as required.
2
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4.3.4 Corollary Let H�G be a normal subgroup, ϕ an irreducible character
of H with inertia group IG(ϕ) = H. Then ϕG is an irreducible character of G.

4.3.5 Example Let G be a non-abelian group of order pq where p > q are
different primes. Then the Sylow-p subgroup of G is normal and the Sylow-q
subgroup acts as automorphisms on it, hence G is isomorphic to the semidirect
product Cp ⋊ Cq. If we take Cp = 〈a〉 and let λ(ai) = ζi

p be a non-trivial

irreducible character of Cp, then the inertia group IG(λ) = Cp, since λbj
(a) =

λ(aj) = ζj
p for a generator b of the Sylow-q subgroup. This shows that λG is

an irreducible character of degree q of G. The other irreducible characters of
degree q are obtained in the same manner by inducing different linear characters
of Cp.

4.3.6 Proposition Let K be a splitting field of G and let χ be an irreducible
character of G. Then χ(1) | [G : Z(G)].

Proof: We use induction on |G|. If χ is not faithful, let N := ker(χ), then χ
is a faithful irreducible character of G/N . We have Z(G/N) ≥ (Z(G) ·N)/N
and hence by induction χ(1) | [G/N : Z(G/N)] | [G/N : (Z(G) ·N)/N ] = [G :
(Z(G) ·N)] | [G : Z(G)]. We therefore now assume that χ is faithful.
The elements z ∈ Z(G) act on the set of conjugacy classes by right multipli-
cation, since (xgx−1)z = x(gz)x−1. Now assume that g and gz are conjugate
for 1 6= z ∈ Z(G), then χ(g) = 0, since χ(gz) = χ(g)ζ where ζ is a non-trivial
root of unity such that χ(z) = ζ · χ(1). Therefore, on the conjugacy classes
with χ(g) 6= 0 the orbits of Z(G) have length |Z(G)|. Let C1, . . . , Ck be rep-
resentatives of the orbits of Z(G) on the conjugacy classes with χ(gi) 6= 0.
Then we have: |G| =

∑

g∈G χ(g)χ(g) =
∑k

i=1

∑

z∈Z(G) |Ci|χ(giz)χ(giz) =
∑k

i=1 |Ci||Z(G)|χ(gi)χ(gi). This implies that

|G|

|Z(G)|χ(1)
=

k∑

i=1

|Ci|χ(gi)

χ(1)
χ(gi) ∈ Z,

since both |Ci|χ(gi)
χ(1) = ω(C+

i ) and χ(gi) are algebraic integers. 2

4.3.7 Theorem (Ito)
Let K be a splitting field of G, assume that char(K) ∤ |G| and let χ be an
irreducible character of G. If A�G is an abelian normal subgroup, then χ(1) |
[G : A].

Proof: We use induction on |G|. Let λ be an irreducible constituent of χ|A
and let T := IG(λ) be the inertia group of λ in G.
If T 6= G there is an irreducible character ψ of T such that χ = ψG. By
induction we have ψ(1) | [T : A] and since χ(1) = [G : T ]ψ(1) we have χ(1) |
[G : T ][T : A] = [G : A].
Now assume that T = G. Since A is abelian, λ(1) = 1 and hence restricting
the representation ∆ affording χ to A gives ∆(a) = λ(a)In with n = χ(1). In
particular we have ∆(A) ≤ Z(∆(G)). Now let N := ker(∆), then ∆ can be
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regarded as a faithful representation of G/N and we have (A·N)/N ≤ Z(G/N).
By Proposition 4.3.6 we have χ(1) | [G/N : Z(G/N)] | [G/N : (A · N)/N ] =
[G : (A ·N)] | [G : A]. 2

4.3.8 Theorem Let K be algebraically closed, H � G with G/H cyclic. Let
ϕ be an irreducible character of H which is G-invariant, i.e. IG(ϕ) = G.

(i) There exists an irreducible character χ of G with χ|H = ϕ.

(ii) If ψ is any irreducible character ofG with (ψ|H , ϕ)H > 0, then (ψ|H , ϕ)H =
1 and ψ = λ · χ where λ is an irreducible (and thus linear) character of
G/H.

Proof: (i): Let ∆ be the representation of H with character ϕ and let W
be the corresponding KH-module. Let g ∈ G such that Hg is a generator of
G/H, then G = H〈g〉. By assumption we have ∆g ∼ ∆, hence there exists
T ∈ GL(W ) with ∆(ghg−1) = T∆(h)T−1 for all h ∈ H. For n = [G : H] we
have gn ∈ H and therefore T n∆(h)T−n = ∆(gnhg−n) = ∆(gn)∆(h)∆(g−n) for
all h ∈ H. Thus, ∆(g−n)T n ∈ EndKH(W ) = K · idW by Schur’s lemma. We
choose c ∈ K such that ∆(g−n)T n = cn · idW and define ∆(g) := c−1T .
It now remains to check that this extends ∆ to a representation of G, i.e. that
∆(hgi) := ∆(h)c−iT i defines a homomorphism G→ GL(W ): We have

∆(hgi · h′gj) = ∆((hgih′g−i)gi+j) = ∆(h)∆(gih′g−i)c−i−jT i+j

= ∆(h)T i∆(h′)T−ic−i−jT i+j = (∆(h)c−iT i)(∆(h′)c−jT−iT i+j)

= ∆(hgi)∆(h′gj).

(ii): Let λ1, . . . , λn be the irreducible (linear) characters of G/H ∼= Cn, then
ψi := λi · χ are irreducible characters of G. Moreover, ψi|H = χ|H , hence
(ψi|H , ϕ) > 0. We obtain ψi as the character of the representation extending

∆ by defining ∆(g) := c−1ζi
nT . Since W is an irreducible KH-module, we

have EndKH(W ) = K by Schur’s lemma, hence two representations extending
∆ can only be equivalent if they are equal and therefore the ψi are characters
of non-equivalent representations. By Frobenius reciprocity we now see that
(ψi, ϕ

G) > 0 for all i. But ϕG(1) = n · χ(1), hence we have ϕG =
∑n

i=1 ψi. 2

4.3.9 Corollary If H �G such that [G : H] = p is a prime number and let ϕ
be an irreducible character of H. Then one of the following holds:

(i) IG(ϕ) = H, then ϕG is irreducible and H has p characters which are
conjugate with ϕ. The character values for ϕG are ϕG(g) = 0 if g ∈ G\H.

(ii) IG(ϕ) = G, then ϕ can be extended to an irreducible character χ of G.
If char(K) 6= p there are p such extensions, if char(K) = p there is one.
Two extensions of ϕ differ by a linear character of G/H ∼= Cp.
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4.3.10 Remark For a soluble group G the above theorems allow us to ex-
plicitly construct all irreducible representations by climbing up a composition
series: Let G = G0 � G1 � . . . � Gn = {1} with Gi−1/Gi

∼= Cpi
for primes pi.

First assume that char(K) ∤ |G|. If we have already constructed the irreducible
representations ∆j of Gi, then the irreducible representation of Gi−1 are ob-
tained by either extending ∆j in pi ways or by inducing ∆j to Gi−1, thereby
joining pi representations of Gi into one of Gi−1.
If char(K) = pi in some step, the situation is even simpler: We either induce or
we have a unique extension, since Cpi

has the trivial module as its only simple
module in characteristic pi.
Note that both ways of moving up in the composition series are constructive:
Induction was already described in an earlier section and extending a represen-
tation requires solving the system of linear equations ∆(ghg−1)T = T∆(h) for
T and finding an n-th root of the scalar a with ∆(g−n)T n = a · In. The last
step is the source of some complications in practice, since it requires to deal
with algebraic extensions of growing degrees.

4.3.11 Example Let G := GL2(3) be the group of invertible 2 × 2-matrices
over F3, then |G| = 48 and G has a composition series G = GL2(3) �SL2(3) �

Q8 � C4 � C2 � {1} with cyclic quotients of orders 2, 3, 2, 2, 2. The following
figure shows the character degrees of G over a splitting field of characteristic
char(K) 6= 2, 3, char(K) = 2 and char(K) = 3, respectively.

char(K) 6= 2, 3 char(K) = 2 char(K) = 3
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Note that the trivial character can always be extended and that a non-
abelian group must have a nonlinear character. If the number of characters of a
fixed degree on a certain level is not a multiple of pi, then at least one of them
can be extended.
char(K) 6= 2, 3: It is clear that C4 has 4 linear characters. Not all of them can
extend to Q8, hence a pair induces to a 2-dimensional character. On the next
level, SL2(3)/C2

∼= A4 is not abelian, hence three of the 1-dimensional charac-
ters induce to an irreducible character of SL2(3). The only character of degree
2 has to be extendible. Finally, GL2(3)/Q8

∼= S3 is not abelian, hence not all
1-dimensional characters can be extendible. The only character of degree 3 and
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one of the 2-dimensional characters have to be extendible. The fact that the
other two 2-dimensional characters induce to an irreducible character has to be
concluded from the action of GL2(3) on the corresponding characters.
char(K) = 2: It is clear that Q8 is in the kernel of every irreducible representa-
tion and since GL2(3)/Q8

∼= S3 is not abelian, not all the characters of SL2(3)
can be extendible to GL2(3).
char(K) = 3: The same arguments as in the case char(K) 6= 2, 3 hold, with
the exception that the trivial character and the 2-dimensional character of Q8

extend only to a single character of SL2(3).

4.3.12 Example We compute the character table of S5 from the character
table of A5. The characters ϕ1, ϕ2 and ϕ3 of A5 of degrees 1, 4 and 5 are
S5-invariant and therefore have two extensions to S5, differing by a factor of
−1 on the classes outside A5. From this we obtain the trivial character χ1

and the signum-character χ′
1. Furthermore, since we know that π − χ1 is an

irreducible character, where π is the natural permutation character of S5, we
can also determine the extensions χ2 and χ′

2 of ϕ2. The two characters ϕ4, ϕ5

of degree 3 have A5 as their inertia group and their induction to S5 gives the
same irreducible character χ4,5 with values 0 outside A5. We thus obtain the
following partial character table:

CG(gi) 120 8 6 5 12 4 6
|Ci| 1 15 20 24 10 30 20
gi 1 (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4, 5) (1, 2) (1, 2, 3, 4) (1, 2)(3, 4, 5)

χ1 1 1 1 1 1 1 1
χ′

1 1 1 1 1 −1 −1 −1
χ2 4 0 1 −1 2 0 −1
χ′

2 4 0 1 −1 −2 0 1
χ3 5 1 −1 0 a b c
χ′

3 5 1 −1 0 −a −b −c
χ4,5 6 −2 0 1 0 0 0

From the second orthogonality relations it follows that |a| = |b| = |c| = 1 and
that ab = −1 and ac = 1, thus if we choose a = 1 we conclude that b = −1 and
c = 1.

Exercises

46. Prove the transitivity of induction: Let H ≤ U ≤ G be subgroups and let W be a
KH-module with character ϕ. Show that (ϕU )G = ϕG.

47. Let H ≤ G be a subgroup and let χ be a character of G and ϕ a character of H .

(i) Show that (ϕ · χ|H)G = ϕG · χ.

(ii) Show that ker(ϕG) =
⋂

g∈G

g ker(ϕ)g−1.

(iii) Let N � G be a normal subgroup of G and let χ be an irreducible character
of G with (χ|N , 1N)N 6= 0. Prove that N ≤ ker(χ).
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48. Let H ≤ G be a subgroup, let V be a KG-module and W a KH-module. Show that
HomKG(V,WG) ∼= HomKH(V|H ,W ) as K-modules. (Hint: For a homomorphism

ϕ ∈ HomKH(V|H ,W ) consider the map ϕ′ : V → WG : v 7→
∑m

i=1(vg
−1
i )ϕ ⊗ gi.)

49. Let H ≤ G be a subgroup, let ϕ be an irreducible character of H and let ϕG =
∑r

i=1 aiχi be the decomposition of ϕG into irreducible characters of G. Show that
∑r

i=1 a
2
i ≤ [G : H ].

50. Compute the induction-restriction table between the alternating groups A5 and A4.

51. Let H ≤ G be a subgroup.

(i) Let χ be an irreducible character of G with H · ker(χ) = G. Show that χ|H is
an irreducible character of H .

(ii) Assume that H is a maximal subgroup of G and let χ 6= 1G be a non-trivial
constituent of π := (1H)G, i.e. (χ, π) 6= 0. Show that ker(χ) = ker(π).

52. Let G act transitively on Ω with |Ω| > 1. Show that G contains a fixed-point free
element g, i.e. an element g such that |fixΩ(g)| = 0.

53. Let G act doubly transitive on Ω and let H ≤ G with [G : H ] < |Ω|. Show that H
acts transitively on Ω.

54. Determine all candidates of transitive permutation characters of the alternating
group A5 from the character table of A5. Which of the so obtained characters are
in fact permutation characters?

55. Let H � G and let ϕ be an irreducible character of H such that ϕG is irreducible.
Show that ϕG(g) = 0 for all g ∈ G \H .

56. LetH�G, let χ be an irreducible character ofG and let ϕ be an irreducible character
of H such that (χ|H , ϕ) 6= 0. Show that ϕ(1) | χ(1).

57. Suppose that G has exactly one nonlinear irreducible character. Prove that the
derived subgroup G′ is an elementary abelian group. (Hint: Consider the action
of G on the irreducible characters of G′ and use the fact that the restriction of an
irreducible character of G to G′ is the sum of irreducible characters of G′ lying in
one orbit.)

58. Let G be a finite group, p a prime and suppose that χ(1) is a power of p for every
irreducible character of G. Show that G has a normal abelian p-complement, i.e. a
subgroup H ≤ G with p ∤ |H | and [G : H ] = pa. (Hint: Show that p divides [G : G′]
and use induction on |G|.)

59. Let H � G, then G acts on the conjugacy classes of H by conjugation and on the
irreducible characters of H by χg(h) = χ(ghg−1). Show that the number of fixed
points for these two actions coincide and that the number of orbits for these two
actions are also the same. (Hint: Regard the two actions as actions on the columns
and rows of the character table of H which is an invertible matrix.)

60. Let A�G be an abelian normal subgroup of G and let ϕ be an irreducible character
of A with IG(ϕ) = G. Show that ϕ can be extended to G if A has a complement in
G, i.e. if there is a subgroup H ≤ G with H · A = G and H ∩A = {1}.
Give an example that demonstrates that the conclusion is not necessarily true if A
does not have a complement in G.

56


