Groups and representations

Bernd Souvignier
January 2010

Groups and representations

## Contents

1 Modules and representations ..... 1
1.1 Representations ..... 1
1.2 Group ring ..... 2
1.3 Modules ..... 4
1.4 Homomorphisms ..... 8
2 Semisimple rings ..... 13
2.1 Maschke's theorem ..... 13
2.2 Wedderburn decomposition ..... 15
3 Characters ..... 23
3.1 Class functions ..... 23
3.2 Character values ..... 26
3.3 Burnsides's $p^{a} q^{b}$ theorem ..... 31
3.4 Tensor products ..... 32
4 Induced representations ..... 41
4.1 Induction ..... 41
4.2 Permutation characters ..... 45
4.3 Normal subgroups ..... 50

## Literature

Standard references for this course are:

- J.L. Alperin, R.B. Bell: Groups and Representations. Springer, 1995.
- W. Burnside: Theory of Groups of Finite Order. Dover, 2004
- M. Burrow: Representation Theory of Finite Groups. Dover, 1993.
- C.W. Curtis, I. Reiner: Methods of Representation Theory. Wiley, 1981.
- L.C. Grove: Groups and Characters. Wiley, 1997.
- B. Huppert: Endliche Gruppen I (Chapter V). Springer, 1967.
- I.M. Isaacs: Character Theory of Finite Groups. AMS, 2006.
- G. James, M. Liebeck: Representations and Characters of Groups. Cambridge University Press, 2001.
- J.-P. Serre: Linear Representations of Finite Groups. Springer, 1996.


## Chapter 1

## Modules and representations

General note: During this course, all modules and algebras are assumed to be finite dimensional. Mostly we will be concerned with finite groups, but many general notions are also valid for infinite groups. This will be appropriately indicated.

### 1.1 Representations

1.1.1 Definition Let $K$ be a field and $V$ an $n$-dimensional $K$-vector space. Then $G L(V):=\{\varphi: V \rightarrow V \mid \varphi$ linear, invertible $\}$ is called the general linear group of $V$.

By fixing a basis $\left(v_{1}, \ldots, v_{n}\right)$ of $V$, the group $G L(V)$ is seen to be canonically isomorphic with $G L_{n}(K)$ via the mapping $G L(V) \rightarrow G L_{n}(K): \varphi \mapsto\left(a_{i j}\right)$, where $v_{i} \varphi=\sum_{j=1}^{n} a_{i j} v_{j}$.

Note that we will use row convention in this course. This means that matrices act on vectors from the right (i.e. on row vectors) and that the matrix of a linear mapping contains the coordinate vector of the image of the $i$-th basis vector in its $i$-th row. This choice is made partially to be compatible with the computeralgebra system Magma which represents vectors as rows.
1.1.2 Definition Let $G$ be a group, $K$ a field.
(i) For a $K$-vector space $V$, a group homomorphism $\delta: G \rightarrow G L(V)$ is called a (K-)representation of $G$.
(ii) A group homomorphism $\Delta: G \rightarrow G L_{n}(K)$ is called a (matrix) representation of $G$ of degree $n$ over $K$. If $\Delta$ is obtained from a $K$-representation $\delta$ by choosing a basis of $V$ we say that $\Delta$ belongs to $\delta$.
(iii) Two matrix representations $\Delta, \Delta^{\prime}: G \rightarrow G L_{n}(K)$ belong to the same representation $\delta$ if and only if there exists a matrix $T \in G L_{n}(K)$ such that $\Delta^{\prime}(g)=T \Delta(g) T^{-1}$ for all $g \in G(T$ is the basis transformation from the basis corresponding to $\Delta$ to the basis corresponding to $\left.\Delta^{\prime}\right)$. In this case, $\Delta$ and $\Delta^{\prime}$ are called equivalent representations.

### 1.1.3 Examples

(1) The mapping $\Delta: G \rightarrow K^{*}: g \mapsto 1$ is called the trivial representation of $G($ over $K)$.
(2) Let $C_{n}=\langle g\rangle$ be the cyclic group of order $n$. Then $C_{n}$ has the 1dimensional representations $\Delta_{k}: C_{n} \rightarrow G L_{1}(\mathbb{C}): g \mapsto \exp \left(\frac{2 \pi i}{n} k\right)$ which are pairwise inequivalent.
(3) Let $G$ act on the set $\{1, \ldots, n\}$ (e.g. if $G$ is given as a permutation group of degree $n$ ) and let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of the $n$-dimensional vector space $K^{n}$. Then the homomorphism $\Delta: G \rightarrow G L_{n}(K), g \mapsto \Delta(g)$ with $v_{i} \Delta(g):=v_{i \cdot g}$ is called a permutation representation of $G$.
(4) The symmetric group $S_{3}$ acts on $\{1,2,3\}$ and is generated by $g=(1,2)$ and $h=(2,3)$. The corresponding permutation representation $\Delta$ is given by:

$$
\Delta(g)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \Delta(h)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

If we choose $\left(v_{1}, v_{2}, v_{1}+v_{2}+v_{3}\right)$ as basis of $K^{3}$, then $\Delta$ is transformed into the equivalent representation $\Delta^{\prime}$ with

$$
\Delta^{\prime}(g)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \Delta^{\prime}(h)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & -1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

If we pick out the upper left $2 \times 2$ submatrices from $\Delta^{\prime}$ we obtain a representation $\Delta_{2}$ of degree 2 of $S_{3}$, given by

$$
\Delta_{2}(g)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \Delta_{2}(h)=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right)
$$

### 1.2 Group ring

1.2.1 Definition Let $G$ be a group, $K$ a commutative ring, then the set

$$
K G:=\left\{\sum_{g \in G} a_{g} g \mid a_{g} \in K, a_{g} \neq 0 \text { only for finitely many } g\right\}
$$

of finite formal sums is called the group ring of $G$ over $K$. Addition and multiplication in $K G$ are defined by

$$
\begin{gathered}
\left(\sum_{g \in G} a_{g} g\right)+\left(\sum_{g \in G} b_{g} g\right):=\sum_{g \in G}\left(a_{g}+b_{g}\right) g \\
\left(\sum_{g \in G} a_{g} g\right)\left(\sum_{g \in G} b_{g} g\right):=\sum_{g, h \in G}\left(a_{g} b_{h}\right) g h=\sum_{g \in G}\left(\sum_{h \in G} a_{h} b_{h^{-1} g} g\right)
\end{gathered}
$$

If $K$ is a field, $K G$ is also called the group algebra of $G$ over $K$ (recall that a $K$-algebra is a ring which at the same time is a $K$-vector space).

### 1.2.2 Remarks

(1) By straightforward computation it can be seen that the group ring $K G$ is an associative $K$-algebra. Checking associativity is a somewhat tedious calculation which nevertheless everybody should have gone through once.
(2) The group $G$ and the ring $K$ are always regarded as being embedded into $K G$.
(3) $K G$ is commutative if and only if $G$ is an abelian group.
(4) If $G$ contains an element $g \neq 1$ of finite order, then $K G$ has zero divisors: Let $g$ be of order $n$ and define $a:=\sum_{i=1}^{n} g^{i}$. Then $a^{2}=\sum_{i=1}^{n}\left(g^{i} a\right)=n \cdot a$, since $g^{i} a=a$ for all $i$. This shows that $0=a^{2}-n \cdot a=a(a-n \cdot 1)$. But $a \neq 0$ and $a \neq n \cdot 1$, since $g \neq 1$. Hence, $a$ and $a-n \cdot 1$ are zero divisors.

### 1.2.3 Examples

(1) Let $C_{3}=\langle g\rangle$ be the cyclic group of order 3. An arbitrary element of $K C_{3}$ is given by $a_{0} \cdot 1+a_{1} \cdot g+a_{2} \cdot g^{2}$. The product of two such elements gives $\left(a_{0} \cdot 1+a_{1} \cdot g+a_{2} \cdot g^{2}\right)\left(b_{0} \cdot 1+b_{1} \cdot g+b_{2} \cdot g^{2}\right)=\left(c_{0} \cdot 1+c_{1} \cdot g+c_{2} \cdot g^{2}\right)$ with $c_{0}=a_{0} b_{0}+a_{1} b_{2}+a_{2} b_{1}, c_{1}=a_{0} b_{1}+a_{1} b_{0}+a_{2} b_{2}, c_{2}=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}$.
(2) Let $\Delta$ be the permutation representation of $S_{3}$. Then $\Delta\left(K S_{3}\right)$ is a 5 dimensional $K$-algebra: It is clear that $\operatorname{dim} \Delta\left(K S_{3}\right) \leq 6$, since $K S_{3}$ is a 6 dimensional $K$-algebra. By choosing the basis $\left(v_{1}-v_{2}, v_{1}-v_{3}, v_{1}+v_{2}+v_{3}\right)$, the permutation representation is transformed into

$$
\Delta^{\prime}((1,2))=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \Delta^{\prime}((2,3))=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which consists of block diagonal matrices with blocks of sizes 2 and 1. Since the shape of block diagonal matrices is preserved under multiplication, this shows that the dimension is at most 5 . It can easily be checked that the $2 \times 2$ blocks of the group elements indeed contain a basis of $K^{2 \times 2}$, therefore the image has in fact dimension 5 .
1.2.4 Remark The group rings of cyclic groups can be described in a uniform manner. Let $G=\langle g\rangle \cong C_{n}$ be a cyclic group of order $n$. Then the homomorphism $K[x] \rightarrow K G: x \mapsto g$ shows that $K G \cong K[x] /\left(x^{n}-1\right)$ (note that $x^{n}-1$ lies in the kernel and that the dimensions of the algebras are the same). The ideals of $K G$ are now easily seen, since ideals in $K[x] /\left(x^{n}-1\right)$ are of the form $I /\left(x^{n}-1\right)$ where $I \unlhd K[x]$ is an ideal containing $\left(x^{n}-1\right)$. But since $K[x]$ is a principal ideal domain this means that $I=(f)$ with $f \mid x^{n}-1$. The ideals of $K G$ therefore are in $1-1$-correspondence with the divisors of $x^{n}-1$.

If the characteristic $\operatorname{char}(K)$ of $K$ is not a divisor of $n$, the polynomial $x^{n}-1$ is separable (i.e. it has no multiple roots in its splitting field) and therefore $x^{n}-1=f_{1} f_{2} \ldots f_{r}$ with $f_{i}$ distinct irreducible elements of $K[x]$. By the Chinese remainder theorem we can conclude that $K G \cong K[x] /\left(x^{n}-1\right) \cong K[x] /\left(f_{1}\right) \oplus$
$\ldots \oplus K[x] /\left(f_{r}\right)$. For example, $\mathbb{Q} C_{8} \cong \mathbb{Q}\left(\zeta_{8}\right) \oplus \mathbb{Q}(i) \oplus \mathbb{Q} \oplus \mathbb{Q}$ and $\mathbb{C} C_{8} \cong \mathbb{C} \oplus \ldots \oplus \mathbb{C}$ (8 times).

The situation is different for $n=\operatorname{char}(K)=p$. In this case $x^{p}-1=(x-1)^{p}$, therefore the ideals of $K G$ form a chain $K G \supset(g-1) \supset(g-1)^{2} \supset \ldots \supset$ $(g-1)^{p-1} \supset\{0\}$.
1.2.5 Remark A representation $\Delta$ of $G$ can be uniquely extended to a $K$ algebra homomorphism $\tilde{\Delta}: K G \rightarrow K^{n \times n}$ by

$$
\tilde{\Delta}\left(\sum_{g \in G} a_{g} g\right):=\sum_{g \in G} a_{g} \Delta(g) .
$$

1.2.6 Proposition Let $K$ be a field, $G, H$ finite groups and $\varphi: G \rightarrow H$ a group homomorphism. Then there exists a unique extension $\hat{\varphi}: K G \rightarrow K H$ of $\varphi$. Moreover, $\hat{\varphi}$ is injective (surjective) if and only if $\varphi$ is injective (surjective). The kernel $\operatorname{ker}(\hat{\varphi})$ is the ideal of $K G$ generated by $\{g-1 \in K G \mid g \in \operatorname{ker}(\varphi)\}$.

Proof: The uniqueness of $\hat{\varphi}$ follows from the fact that the elements of $G$ are a basis for the $K$-algebra $K G$. Comparing the dimensions of $K G$ and $\hat{\varphi}(K G)$ shows the statement about injectivity (surjectivity). Finally, it is clear that for $g \in \operatorname{ker}(\varphi)$ the element $g-1$ lies in $\operatorname{ker}(\hat{\varphi})$. By the homomorphism theorem we have $\operatorname{dim} \hat{\varphi}(K G)=|G|-\operatorname{dim} \operatorname{ker}(\hat{\varphi})$ and since $\operatorname{dim} \hat{\varphi}(K G)=|\varphi(G)|=$ $|G| /|\operatorname{ker}(\varphi)|$ it follows that dim $\operatorname{ker}(\hat{\varphi})=|G|-|G| /|\operatorname{ker}(\varphi)|$.

We now choose a transveral (set of coset representatives) $t_{1}, \ldots, t_{r}$ of $\operatorname{ker}(\varphi)$ in $G$ and write the elements of $\operatorname{ker}(\varphi)$ as $h_{1}=1, h_{2}, \ldots, h_{s}$. Then $\left\{t_{i} h_{j} \mid 1 \leq\right.$ $i \leq r, 1 \leq j \leq s\}$ is the set of elements of $G$ and therefore a basis of $K G$. By a basis transformation we obtain $\left\{t_{i}, t_{i}\left(h_{j}-1\right) \mid 1 \leq i \leq r, 2 \leq j \leq s\right\}$ as a different basis for $K G$ and in this basis we find $|G|-|G| /|\operatorname{ker}(\varphi)|$ elements which are in the kernel of $\hat{\varphi}$.

### 1.3 Modules

1.3.1 Definition Let $(V,+)$ be an abelian group and $A$ a ring (e.g. a group ring $K G$ ). Then $V$ is called a (right) $A$-module if there is a mapping $V \times A \rightarrow V$ with
(i) $(v+w) a=v a+w a$ for all $v, w \in V, a \in A$,
(ii) $v(a+b)=v a+v b$ for all $v \in V, a, b \in A$,
(iii) $v(a b)=(v a) b$ for all $v \in V, a, b \in A$,
(iv) $v 1=v$ for all $v \in V$.

We think of module elements as row vectors, therefore mappings on modules will be written on the right.

### 1.3.2 Examples

(1) If $\Delta: G \rightarrow G L_{n}(K)$ is a representation of $G$ then $K^{n}$ can be turned into a $K G$-module by $v\left(\sum_{g \in G} a_{g} g\right):=\sum_{g \in G} a_{g}(v \Delta(g))$.
(2) The group ring $K G$ is a $K G$-module. For a finite group $G$ this is called the regular module. The corresponding representation (of degree $|G|$ ) is called the regular representation of $G$. If the elements of $G$ are taken as basis elements for $K G$ this yields a permutation representation of $G$.
1.3.3 Definition Let $A$ be a ring and $V$ an $A$-module.
(i) A subgroup $W \leq V$ is called an $A$-submodule of $V$ (denoted as $W \leq_{A} V$ ) if $W$ is closed under the action of $A$. In that case, the factor module $V / W$ is also an $A$-module with the action $(v+W) a=v a+W$.
(ii) $V$ is called a simple $A$-module or irreducible if $V \neq\{0\}$ and $\{0\}$ and $V$ are the only $A$-submodules of $V$. Otherwise $V$ is called reducible.
(iii) $V$ is called a indecomposable if $V=W \oplus U$ with $W, U \leq_{A} V$ implies that $W=\{0\}$ or $U=\{0\}$.
(iv) A sequence $V=V_{0}>V_{1}>\ldots>V_{n}=\{0\}$ is called an $A$-composition series of $V$ if $V_{i} \leq_{A} V$ for all $i$ and if $V_{i-1} / V_{i}$ are simple $A$-modules. The number $n$ is called the length of the composition series, the factor modules $V_{i-1} / V_{i}$ are called its factors.
1.3.4 Remark For an $A$-module $V$ and $U, W \leq_{A} V$, also $U+W:=\{u+w \mid$ $u \in U, w \in W\}$ and $U \cap W$ are $A$-submodules of $V$.
1.3.5 Remark Representations are called reducible, irreducible, indecomposable etc. if the underlying modules have this property.
If $\Delta$ is a representation of $K G$ then the corresponding $K G$-module $V$ is reducible if and only if there exists $T \in G L_{n}(K)$ such that

$$
T \Delta(g) T^{-1}=\left(\begin{array}{cc}
\Delta_{1}(g) & 0 \\
(*) & \Delta_{2}(g)
\end{array}\right) \text { for all } g \in G
$$

where $\Delta_{1}, \Delta_{2}$ are representations of degrees $1 \leq m, n-m<n$ of $G$. In that case, $\Delta_{1}$ is the representation of $G$ on a proper submodule $W \leq_{K G} V$ and $\Delta_{2}$ is the representation on $V / W$.
If $V$ is decomposable, then $T$ can be chosen such that $(*)$ is 0 .
1.3.6 Example Let $\Delta$ be the 2-dimensional representation of $S_{3}$ given by

$$
\Delta((1,2))=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \Delta((2,3))=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right) .
$$

Then $\Delta((1,2))$ has eigenvectors $v_{1}+v_{2}$ (eigenvalue 1) and $v_{1}-v_{2}$ (eigenvalue $-1)$ and $\Delta((2,3))$ has eigenvectors $v_{1}$ (eigenvalue 1 ) and $v_{1}+2 v_{2}$ (eigenvalue -1 ).
If $\operatorname{char}(K) \neq 3$, there is no common eigenvector, hence there is no $S_{3}$-invariant

1-dimensional subspace and $\Delta$ is thus irreducible.
If $\operatorname{char}(K)=3$, then $v_{1}-v_{2}=v_{1}+2 v_{2}$ is a common eigenvector and with respect to the basis $\left(v_{1}-v_{2}, v_{1}\right)$ the representation is transformed into $\Delta^{\prime}$ with

$$
\Delta^{\prime}((1,2))=\left(\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right), \quad \Delta^{\prime}((2,3))=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Clearly, this representation is reducible, but it is indecomposable, since the subspace generated by $v_{1}-v_{2}$ has no $S_{3}$-invariant complement.
1.3.7 Definition Let $V, W$ be $A$-modules for a ring $A$. A group homomorphism $\varphi: V \rightarrow W$ is called an $A$-module homomorphism if $(v \varphi) a=(v a) \varphi$ for all $v \in V, a \in A$. Two $A$-modules which are isomorphic by an $A$-module isomorphism are denoted by $V \cong_{A} W$.

### 1.3.8 Theorem (Jordan-Hölder)

Let $A$ be a ring, $V$ an $A$-module with two composition series $V=V_{0}>V_{1}>$ $\ldots>V_{n}=\{0\}$ and $V=W_{0}>W_{1}>\ldots>W_{m}=\{0\}$.
Then the two composition series are equivalent, i.e. the lengths of the two series are equal and there is a permutation $\pi \in S_{n}$ such that $V_{i-1} / V_{i} \cong{ }_{A} W_{i \pi-1} / W_{i \pi}$.

This theorem can be proved using the Schreier-Zassenhaus refinement theorem which asserts that the submodules $V_{i j}:=\left\langle V_{i},\left(V_{i-1} \cap W_{j}\right)\right\rangle$ and $W_{i j}:=$ $\left\langle W_{j},\left(W_{j-1} \cap V_{i}\right)\right\rangle$ form a composition series with $V_{i, j-1} / V_{i j} \cong W_{i-1, j} / W_{i j}$. We give a different proof using the first isomorphism theorem.

### 1.3.9 Theorem (First Isomorphism Theorem)

Let $A$ be a ring, $V$ an $A$-module and $U, W \leq_{A} V$. Then $(U+W) / W \cong_{A}$ $U /(U \cap W)$.

Proof: The mapping $\varphi: U \rightarrow(U+W) / W: u \mapsto u+W$ is an $A$-module homomorphism and has kernel $U \cap W \leq_{A} V$.

Proof: (Jordan-Hölder) We use induction on the length $n$ of a composition series of $V$. For $n=1$, the module $V$ is simple and there is nothing to prove. Now assume that $n>1$ and that $V=V_{0}>V_{1}>\ldots>V_{n}=\{0\}$ and $V=W_{0}>W_{1}>\ldots>W_{m}=\{0\}$ are $A$-composition series of $V$. If $V_{1}=W_{1}$, we are done by induction, since $V_{1}$ has a composition series of length $n-1$.
If $V_{1} \neq W_{1}$ we have $V_{1}+W_{1}=V$, since $V_{1}+W_{1}$ is a module properly containing $V_{1}$ and $V / V_{1}$ is simple. Define $U$ to be the intersection $V_{1} \cap W_{1}$, then $U \leq_{A}$ $V$. We see that $U$ has a composition series by looking at the quotients $(U \cap$ $\left.V_{i-1}\right) /\left(U \cap V_{i}\right)$. By the first isomorphism theorem we have $\left(U \cap V_{i-1}\right) /\left(U \cap V_{i}\right) \cong_{A}$ $\left(V_{i}+\left(U \cap V_{i-1}\right)\right) / V_{i} \leq_{A} V_{i-1} / V_{i}$ and thus the quotients are either trivial or isomorphic to $V_{i-1} / V_{i}$.
Let $U=U_{0}>U_{1}>\ldots>U_{r}=\{0\}$ be a composition series of $U$. Then $V_{1}>\ldots>V_{n}$ and $V_{1}>U>U_{1}>\ldots>U_{r}$ are two composition series of $V_{1}$ which are equivalent by induction. Similarly we see that $W_{1}>\ldots>W_{m}$ and $W_{1}>U>U_{1}>\ldots>U_{r}$ are two equivalent composition series of $W_{1}$. This
shows that $n-1=r+1=m-1$ and thus $n=m$. Finally, we conclude from the first isomorphism theorem that $V / V_{1}=\left(V_{1}+W_{1}\right) / V_{1} \cong{ }_{A} W_{1} /\left(V_{1} \cap W_{1}\right)=W_{1} / U$ and that $V / W_{1} \cong_{A} V_{1} / U$. Therefore the factors in the composition series $V>V_{1}>\ldots>V_{n}$ are $\left\{V / V_{1}, V_{1} / U, U_{i-1} / U_{i}(i=1 \ldots r)\right\}$ and by replacing $V / V_{1}$ by $W_{1} / U$ and $V_{1} / U$ by $V / W_{1}$ we see that this composition series is equivalent to $V>W_{1}>\ldots>W_{n}$.
1.3.10 Remark For an arbitrary ring $A$ it is not guaranteed that an $A$-module has a composition series. However, this is true if $A$ is noetherian and artinian, i.e. if every ascending or descending chain of $A$-modules becomes constant. This is always true for finite-dimensional modules, but also for finitely generated modules over groups rings of finite groups.
1.3.11 Corollary As a consequence of the Jordan-Hölder theorem each representation $\Delta$ of a group $G$ can be written as

$$
\Delta(g)=\left(\begin{array}{cccc}
\Delta_{1}(g) & 0 & \cdots & 0 \\
(*) & \Delta_{2}(g) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
(*) & (*) & \cdots & \Delta_{k}(g)
\end{array}\right) \text { for all } g \in G
$$

where the $\Delta_{i}$ are the uniquely determined irreducible components of $\Delta$.
1.3.12 Proposition $L e t A$ be a ring. Then every simple $A$-module $V$ is of the form $V \cong A / L$ for some maximal right-ideal $L$ of $A$.

Proof: The map $A \rightarrow V: a \mapsto v \cdot a$ is a homomorphism and its kernel is a right-ideal $L$ of $A$. Since $V$ is simple, the homomorphism is surjective and the kernel is a maximal ideal.
1.3.13 Example Let $G$ be a group and $K$ a field. Then the kernel $I$ of the $K$-algebra homomorphism $\varphi: K G \rightarrow K: \sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g}$ is a maximal ideal in $K G$ and is called the augmentation ideal of $K G$. The corresponding simple factor module $K G / I$ is the $K G$-module of the trivial representation.
1.3.14 Corollary $A$ finite group $G$ has up to equivalence at most $|G|$ irreducible representations over a field $K$.

Proof: The group ring $K G$ is a $K$-vector space of dimension $|G|$, hence every composition series of $K G$ has at most $|G|$ factors. On the other hand, an irreducible $K G$-module $V$ is of the form $V \cong_{K G} K G / L$, hence it must be isomorphic to one of the factors in the composition series of $K G$.
1.3.15 Proposition Let $K$ be a field with $\operatorname{char}(K)=p>0$ and let $G$ be a $p$-group. Then the trivial representation is the only irreducible representation of $G$ over $K$.

Proof: Let $V$ be a simple $K G$-module and let $M$ be the orbit of some $0 \neq v \in V$. Then $G$ acts on $\mathbb{F}_{p} M:=\left\{\sum_{g \in G} a_{g} v g \mid a_{g} \in \mathbb{F}_{p}\right\}$ and the orbits of $G$ on $\mathbb{F}_{p} M$ have length a power of $p$. Since $\{0\}$ is an orbit, there has to be another orbit of length $1,\{w\}$ say. Then $\langle w\rangle$ is a 1 -dimensional $K G$-submodule of $V$ on which $G$ acts trivially and since $V$ is simple the claim follows.

### 1.4 Homomorphisms

1.4.1 Definition Let $V, W$ be $A$-modules for a $\operatorname{ring} A$.
(i) A group homomorphism $\varphi: V \rightarrow W$ is called an A-module homomorphism if $(v \varphi) a=(v a) \varphi$ for all $v \in V, a \in A$.
Two $A$-modules which are isomorphic by an $A$-module isomorphism are denoted by $V \cong_{A} W$.
(ii) $\operatorname{Hom}_{A}(V, W):=\{\varphi: V \rightarrow W \mid \varphi$ is $A$-module homomorphism $\}$ is an abelian group. In case that $K$ is a field and $A$ is a $K$-algebra, $\operatorname{Hom}_{A}(V, W)$ is a $K$-vector space.
(iii) $\operatorname{End}_{A}(V):=\operatorname{Hom}_{A}(V, V)$ is called the endomorphism ring of $V$ (as $A$ module) is a ring. In case that $K$ is a field and $A$ is a $K$-algebra, $E n d_{A}(V)$ is a $K$-algebra.
1.4.2 Remarks Let $G$ be a group and $K$ a field.
(1) If $\Delta$ is a representation of $G$ with associated $K G$-module $V$, the ring $E n d_{K G}(V)$ consists of those linear mappings $\varphi: V \rightarrow V$ which commute with the action of $\Delta(G)$, i.e.

$$
\operatorname{End}_{K G}(V)=\{\varphi \in \operatorname{End}(V) \mid \Delta(g) \varphi=\varphi \Delta(g) \text { for all } g \in G\}
$$

(2) $G$ acts on $\operatorname{End}(V)$ via $\varphi \mapsto \varphi^{g}$ where the endomorphism $\varphi^{g}$ is defined by $v \varphi^{g}:=\left(\left(v g^{-1}\right) \varphi\right) g$. The ring $\operatorname{End}_{K G}(V)$ is the set of fixed points under this action of $G$.
1.4.3 Theorem (Schur's lemma)

Let $K$ be a field and $A$ a $K$-algebra.
(i) If $V$ is a simple $A$-module then $\operatorname{End}_{A}(V)$ is a skew field.
(ii) If $K$ is algebraically closed and $V$ is simple then $\operatorname{End}_{A}(V) \cong K$.
(iii) If $V, W$ are simple $A$-modules, then $\operatorname{Hom}_{A}(V, W)=\{0\}$ if $V \not \not_{A} W$.

Proof: (i) + (iii): Let $V, W$ be simple $A$-modules and assume that $\varphi \in$ $\operatorname{Hom}_{A}(V, W)$. Then $\operatorname{ker}(\varphi)=\{0\}$ or $\operatorname{ker}(\varphi)=V$ and $\operatorname{im}(\varphi)=\{0\}$ or $\operatorname{im}(\varphi)=$ $W$. Thus, $\varphi$ is either 0 or bijective. This shows that $\varphi$ has to be 0 if $V \not ¥_{A} W$ and that all elements of $\operatorname{End}_{A}(V) \backslash\{0\}$ are invertible.
(ii): The map $\iota: K \rightarrow \operatorname{End}_{A}(V), a \mapsto a \cdot i d_{V}$ is injective, since $K$ is a field. Assume that $\varphi \in \operatorname{End}_{A}(V)$ then the characteristic polynomial of $\varphi$ has a zero $a$ in $K$, hence $\varphi-a \cdot i d_{V} \in \operatorname{End}_{A}(V)$ is not invertible and is thus 0 by (i). Therefore $\varphi=a \cdot i d_{V}$ which shows that $\iota$ is surjective.
1.4.4 Remark The fact that $E n d_{A}(V)=K \cdot i d_{V}$ does in general not imply that $V$ is irreducible. Let for example $K=\mathbb{F}_{p}$ and let $G$ be a Sylow $p$-subgroup of $S L_{n}(p)$, e.g. the group

$$
G=\left\{\left.\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
a_{i j} & & 1
\end{array}\right) \right\rvert\, a_{i j} \in \mathbb{F}_{p}, i>j\right\}
$$

of lower triangular matrices, then the only matrices which commute with all elements of $G$ are the scalar matrices but the first basis vector clearly generates an $\mathbb{F}_{p} G$-invariant submodule.
1.4.5 Definition Let $K$ be a field, $A$ a $K$-algebra and $V$ an $A$-module.
(i) The dual space $\operatorname{Hom}(V, K)$ is made a left $A$-module by defining

$$
v(a \lambda):=(v a) \lambda \text { for all } v \in V, a \in A, \lambda \in \operatorname{Hom}(V, K) .
$$

(ii) If $A$ is a group ring $K G$, then $V^{*}=\operatorname{Hom}(V, K)$ becomes a (right) $K G$ module by

$$
v(\lambda g):=\left(v g^{-1}\right) \lambda \text { for all } v \in V, g \in G, \lambda \in V^{*}
$$

The module $V^{*}$ is called the contragredient or dual module of $V$. The representation $\Delta^{*}$ of $G$ on $V^{*}$ obtained from this action is called the contragredient representation of $\Delta$. If we choose as basis for $V^{*}$ the dual basis of the basis underlying $\Delta$, then $\Delta^{*}(g)=\left(\Delta(g)^{-1}\right)^{t r}$.
1.4.6 Proposition Let $G$ be a group, $K$ a field and $V$ a $K G$-module. If $W \leq_{K G} V$ then $W^{\perp}:=\left\{\lambda \in V^{*} \mid w \lambda=0\right.$ for all $\left.w \in W\right\} \leq_{K G} V^{*}$. One has $V^{*} / W^{\perp} \cong_{K G} W^{*}$ and $W^{\perp} \cong_{K G}(V / W)^{*}$.

Proof: We first have to show that $W^{\perp}$ is $G$-invariant. Let $\lambda \in W^{\perp}, g \in G$ and $w \in W$, then $w(\lambda g)=\left(w g^{-1}\right) \lambda=0$, since $w g^{-1} \in W$, hence $\lambda g \in W^{\perp}$.
The first isomorphism follows, since the restriction homomorphism $V^{*} \rightarrow W^{*}$ : $\lambda \mapsto \lambda_{\mid W}$ is $G$-invariant and clearly has $W^{\perp}$ as its kernel. The second isomorphism is due to the bijection between the homomorphisms having $W$ in their kernel and the homomorphisms of $V / W$.
1.4.7 Example For a field $K$ of characteristic 3, the mapping $\Delta: S_{3} \rightarrow$ $G L_{2}(K):(1,2) \mapsto\left(\begin{array}{cc}-1 & 0 \\ -1 & 1\end{array}\right),(2,3) \mapsto\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ defines a reducible but indecomposable representation of $S_{3}$. The $K S_{3}$-module $V=K^{2}$ has a unique composition series with 1-dimensional submodule $V_{1}=\left\langle v_{1}\right\rangle$. The module $V_{1}$ belongs to the 1-dimensional representation $g \mapsto \operatorname{sign}(g)$, the quotient module is the trivial module.
The action on the dual module $V^{*}$ is given by $(1,2) \mapsto\left(\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right)$ and $(2,3) \mapsto$ $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, hence the dual module has a unique composition series with the trivial module as a submodule and the module of the signum representation as quotient module.
1.4.8 Theorem (Norton's irreducibility test)

Let $\Delta: G \rightarrow G L_{n}(K)$ be a representation of $G$ on the $K G$-module $V$ and denote the extension of $\Delta$ to $K G$ again by $\Delta$. Let $a \in K G$ such that $0<$ $\operatorname{rank}(\Delta(a))<n$. Then $\Delta$ is irreducible if and only if
(i) $v K G=V$ for all $0 \neq v \in \operatorname{ker}(\Delta(a))$
(ii) $\lambda K G=V^{*}$ for one $0 \neq \lambda \in \operatorname{ker}\left(\Delta(a)^{t r}\right)$

Proof: Assume that $\Delta$ is reducible and let $W \leq_{K G} V$ be a proper submodule. Since our criteria are basis independent we can assume that the basis underlying $\Delta$ is chosen such that it extends a basis of $W$. We therefore have

$$
\Delta(a)=\left(\begin{array}{cc}
\Delta_{1}(a) & 0 \\
(*) & \Delta_{2}(a)
\end{array}\right)
$$

Since $\Delta(a)$ is singular, either $\Delta_{1}(a)$ or $\Delta_{2}(a)$ is singular. If $\Delta_{1}(a)$ is singular, we have $\operatorname{ker}(\Delta(a)) \cap W \neq\{0\}$ and hence there is a vector $0 \neq v \in \operatorname{ker}(\Delta(a))$ such that $v K G \subseteq W$ is a proper submodule of $V$. Now assume that $\Delta_{1}(a)$ is invertible. Then every $0 \neq \lambda \in \operatorname{ker}\left(\Delta(a)^{t r}\right)$ has to lie in $U^{\perp}$ and since this is a $K G$-module, $\lambda$ generates a proper submodule of $V^{*}$.

### 1.4.9 Algorithm (Richard Parker's MeatAxe)

Let a representation $\Delta$ of degree $n$ of a group $G=\left\langle g_{1}, \ldots, g_{r}\right\rangle$ be given by the images $\Delta\left(g_{1}\right), \ldots, \Delta\left(g_{r}\right)$. This algorithm either splits $\Delta$ into smaller representations or proves the irreducibility of $\Delta$.
(1) Choose a number of random words $a \in K G$ and compute their nullity (corank) $\operatorname{nul}(a):=n-\operatorname{rank}(\Delta(a))$.
(2) Select $a \in K G$ with $0<\operatorname{rank}(\Delta(a))<n$ such that $\operatorname{nul}(a)$ is minimal.
(3) Compute $\operatorname{ker}(\Delta(a))$ and check for each 1-dimensional subspace $\langle v\rangle$ of $\operatorname{ker}(\Delta(a))$ whether $v K G$ is a proper submodule. If this is the case, a proper $K G$-submodule $W$ is found and the actions of $G$ on $W$ and on $V / W$ are computed.
(4) If all 1-dimensional subspaces of $\operatorname{ker}(\Delta(a))$ generate $V$, compute $0 \neq$ $\lambda \in \operatorname{ker}\left(\Delta(a)^{t r}\right)$. Check whether $\lambda K G=V^{*}$ by applying the matrices $\Delta(g)^{t r}$ to $\lambda$. If this is the case, $\Delta$ is irreducible, otherwise a proper $K G$ submodule $W^{*}$ of $V^{*}$ is found, the actions of $G$ on $W^{*}$ and on $V^{*} / W^{*}$ are computed and the transposed representations are returned as constituents of $\Delta$.

The modules $v K G$ (and $\lambda K G$ ) are computed by a spinning algorithm: One starts with $W_{0}:=\langle v\rangle$ and computes $W_{i+1}:=\left\langle u_{k} \Delta\left(g_{j}\right) \mid 1 \leq j \leq r, 1 \leq k \leq s\right\rangle$ for $W_{i}=\left\langle v_{1}, \ldots, v_{s}\right\rangle$ until $W_{i+1}=W_{i}$.
Note that this algorithm requires only finitely many steps if either $K$ is a finite field or $\operatorname{nul}(a)=1$.
1.4.10 Example Let $K$ be a field, $G=S_{3}$ then the 2-dimensional $G$-module $V$ of $S_{3}$ obtained by splitting off the trivial module from the permutation module of degree 3 is gives the representation $\Delta$ with

$$
\Delta((1,2))=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \Delta((2,3))=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right) .
$$

For the element $a=(1,2)+(2,3)+(2,3) \cdot(1,2) \in K G$ we get $\Delta(a)=\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right)$, so $\Delta(a)$ has rank 1 .
We have $\operatorname{ker}(\Delta(a))=\langle(1,1)\rangle$ and spinning the vector $(1,1)$ gives $(1,1) \Delta(K G)=$ $\langle(1,1),(0,-1)\rangle=V$. So the first part of the Norton criterion gives no proper submodule of $V$.
In the second step we look at the dual module $V^{*}$ and therefore at the transposed matrices. We have $\operatorname{ker}\left(\Delta(a)^{t r}\right)=\langle(2,-1)\rangle$ and applying the two generators to the vector $(2,-1)$ gives $(2,-1) \Delta(K G)^{t r}=\langle(2,-1),(-1,2)\rangle$. In case $\operatorname{char}(K) \neq 3$ this is a basis of the full dual module, hence the representation is irreducible. In case $\operatorname{char}(K)=3$ we have found that $\langle(1,1)\rangle$ is a proper submodule of $V^{*}$, so $V^{*}$ and therefore also $V$ is reducible.


#### Abstract

Some adjustments to the basic idea of the Meataxe allow to improve its efficiency for large finite fields and to extend its application to fields of characteristic 0 in many cases. The ideas involved will be discussed later.


## Exercises

1. Determine all irreducible $\mathbb{Q}$-representations of $C_{3}$ (up to equivalence).
2. Let $K$ be a field and let $G$ be a group acting on the set $\{1, \ldots, n\}$. Let $V$ be the $K G$-module with basis $\left(v_{1}, \ldots, v_{n}\right)$ on which $G$ acts by $v_{i} g:=v_{i \cdot g}$.
(i) Show that $V_{0}:=\left\langle\sum_{i=1}^{n} v_{i}\right\rangle$ and $V_{1}:=\left\langle v_{1}-v_{2}, v_{1}-v_{3}, \ldots, v_{1}-v_{n}\right\rangle$ are $K G$ submodules of $V$.
(ii) Under which condition is $V_{0} \leq V_{1}$ or $V=V_{0} \oplus V_{1}$.
(iii) Let $G$ be the alternating group $A_{5}$ and $K=\mathbb{F}_{2}$. Show that the action of $A_{5}$ on $V_{1}$ gives an irreducible representation of degree 4 of $A_{5}$ over $\mathbb{F}_{2}$.
(Hint: $A_{5}$ is a simple group.)
3. Let $V$ be a $K G$-module.
(i) Show that $V_{0}:=\{v \in V \mid v g=v$ for all $g \in G\} \leq_{K G} V$.
(ii) Show that the mapping $v \mapsto \sum_{g \in G} v g$ is a $K G$-homomorphism from $V$ to $V_{0}$. Is it necessarily surjective?
4. Let $C_{4}=\langle g\rangle$ be the cyclic group of order 4 and let

$$
a:=\frac{1+i}{2} g+\frac{1-i}{2} g^{3}, \quad b:=\frac{1-i}{2} g+\frac{1+i}{2} g^{3} \in \mathbb{C} C_{4} .
$$

Show that $\left\{1, g^{2}, a, b\right\}$ is a subgroup of the unit group $\mathbb{C} C_{4}^{*}$ of $\mathbb{C} C_{4}$ which is isomorphic with the Klein group $V_{4}$.
5. Show that the group rings $\mathbb{C} V_{4}$ and $\mathbb{C} C_{4}$ are isomorphic (as $\mathbb{C}$-algebras).
6. The dihedral group $D_{8}$ of order 8 is the symmetry group of a square. The action of $D_{8}$ on the corners of the square gives a permutation representation of $D_{8}$ which turns $\mathbb{R}^{4}$ into an $\mathbb{R} D_{8}$-module $V$. Determine the $\mathbb{R} D_{8}$-submodules of $V$.
7. Let $\Delta$ and $\Psi$ be equivalent representations of a group $G$. Show that $\Delta$ is irreducible/reducible/indecomposable/decomposable if and only if $\Psi$ is.
8. Let $G$ be a group and $K$ a field. Show that the 1-dimensional representations of $G$ are in bijection with the homomorphisms of $G / G^{\prime}$ to $K^{*}$. (Note: $G^{\prime}$ is the derived subgroup of $G$, i.e. generated by the elements $\left.[g, h]:=g^{-1} h^{-1} g h.\right)$
9. Let $G$ be a non-abelian simple group of even order. Show that every non-trivial irreducible representation of $G$ over $\mathbb{C}$ has at least degree 3 .
(Hint: $G$ contains an element of order 2. Consider 2-dimensional representations of such an element.)
10. Let $G$ be a finite group and let $a:=\sum_{g \in G} g \in K G$. Show that the 1-dimensional module $\langle a\rangle$ spanned by $a$ is the unique submodule of $K G$ that is isomorphic with the trivial $G$-module.
11. Let $G$ be a finite group, $K$ a field and $\Delta$ a 1-dimensional representation of $G$ over $K$.
(i) Show that $I:=\left\{\sum_{g \in G} a_{g} g \mid \sum_{g \in G} a_{g} \Delta(g)=0\right\}$ is a two-sided ideal of $K G$.
(ii) Show that $\Delta$ is the representation of $K G$ on the module $K G / I$.
12. Let $A$ be a ring, $V=\oplus_{i=1}^{n} V_{i}$ an $A$-module where $V_{i}$ pairwise non-equivalent simple $A$-modules. Show that every $W \leq_{A} V$ is of the form $W=\oplus_{j=1}^{r} V_{i_{j}}$ with $1 \leq i_{1}<$ $\ldots<i_{r} \leq n$. Determine the number of $A$-submodules of $V$.
13. Let $K$ be a field, $G$ a finite group and $V=K G$ the regular $G$-module. Show that $V^{*} \cong_{K G} V$.
14. Let $S_{n}$ be the symmetric group on $n$ points and let $V:=\left\langle v_{1}-v_{2}, v_{2}-v_{3}, \ldots, v_{n-1}-\right.$ $\left.v_{n}\right\rangle$ be a submodule of the natural permuation module.
(i) Use the Norton criterion to show that $V$ is an irreducible $\mathbb{Q} S_{n}$-module. (Hint: $S_{n}$ is generated by $g=(1,2, \ldots, n)$ and $h=(1,2)$. An obvious linear combination of the matrices of the action of $g$ and $h$ on $V$ has a 1-dimensional kernel.)
(ii) Find out under which condition on the field $K$ the module $V$ is an irreducible $K S_{n}$-module.
(Hint: Look at small examples, e.g. $n=3,4,5$ and generalize.)

## Chapter 2

## Semisimple rings

### 2.1 Maschke's theorem

### 2.1.1 Definition Let $A$ be a ring.

(i) An $A$-module $V$ is called semisimple if $V$ is a direct sum of simple $A$ modules.
(ii) A representation corresponding to a semisimple module is called completely reducible.
2.1.2 Theorem Let $A$ be a ring and $V$ an $A$-module. Then the following conditions are equivalent:
(i) $V$ is semisimple.
(ii) $V$ is a sum of simple $A$-modules.
(iii) Every submodule $W \leq_{A} V$ has a complement $U$, i.e. $V=W \oplus U$ with $U \leq{ }_{A} V$.

Proof: (i) $\Rightarrow$ (ii): This is clear.
(ii) $\Rightarrow$ (iii), (ii) $\Rightarrow$ (i): By assumption we have $V=\sum_{i \in I} V_{i}$, where $V_{i}$ are simple $A$-modules. Let $W \leq_{A} V$. We will use Zorn's lemma to construct a complement of $W$ in $V$. Define

$$
\mathcal{M}:=\left\{J \subseteq I \mid \sum_{j \in J} V_{j}=\bigoplus_{j \in J} V_{j} \text { and }\left(\sum_{j \in J} V_{j}\right) \cap W=\{0\}\right\} .
$$

Then $\mathcal{M} \neq \emptyset$, since $\emptyset \in \mathcal{M}$ and $\mathcal{M}$ is partially ordered with respect to set inclusion. To apply Zorn's lemma we require that every totally ordered subset (chain) $\mathcal{K} \subset \mathcal{M}$ is bounded in $\mathcal{M}$. But for a chain $\mathcal{K}$ we have $K:=\cup_{J \in \mathcal{K}} J \in \mathcal{M}$, since every $j \in K$ lies in some $J \in \mathcal{K}$ and thus $V_{j} \cap W=\{0\}$. Also, $\sum_{j \in K} V_{j}=$ $\bigoplus_{j \in K} V_{j}$ because otherwise there would be $J_{1} \subseteq J_{2} \in \mathcal{K}$ and $j_{1} \in J_{1}, j_{2} \in J_{2}$ with $V_{j_{1}} \cap V_{j_{2}} \neq\{0\}$ which contradicts $J_{2} \in \mathcal{M}$. By Zorn's lemma we can now conclude that there exists a maximal element $J_{0} \in \mathcal{M}$. We claim that
$U:=\oplus_{j \in J_{0}} V_{j}$ is a complement of $W$ in $V$.
Assume that $V^{\prime}:=W \oplus U \varsubsetneqq V$, then there exists a simple $A$-module $V_{i}$ such that $V_{i} \nsubseteq V^{\prime}$. Since $V_{i}$ is simple, this shows that $V^{\prime} \cap V_{i}=\{0\}$. In particular we have $V_{i} \cap W=\{0\}$ and $\sum_{j \in J_{0}} V_{j}+V_{i}=\oplus_{j \in J_{0}} V_{j} \oplus V_{i}$. Therefore, $J_{0} \cup\{i\} \in \mathcal{M}$ which contradicts the maximality of $J_{0}$ and thus $V^{\prime}=V$.
Applying this argument to $W=\{0\}$ implies (i), since the complement $V$ of $W$ is written as a direct sum of simple $A$-modules.
(iii) $\Rightarrow$ (ii): Define $V^{\prime}:=\sum_{W \leq_{A} V} W$, where the sum is taken over the simple $A$-submodules of $V$. By assumption, $V^{\prime}$ has a complement $U$ in $V$. If $U \neq\{0\}$, then $U$ contains a cyclic $A$-module $T$, i.e. a submodule of the form $T=\{v a \mid a \in$ $A\}$ for some $v \in U$. We can now apply Zorn's lemma to $\mathcal{M}:=\left\{S \leq_{A} T \mid S \neq\right.$ $T\}$, since $v \notin S$ for all $S \in \mathcal{M}$ implies that every chain is bounded in $\mathcal{M}$. Thus, there exists a maximal submodule $T^{\prime}$ of $T$.
By assumption, $T^{\prime}$ has a complement $V^{\prime \prime}$ in $V$ and we have $T=T^{\prime} \oplus\left(V^{\prime \prime} \cap T\right)$. But due to the maximality of $T^{\prime}$, the factor module $T / T^{\prime}$ is simple and hence $V^{\prime \prime} \cap T \cong T / T^{\prime}$ is a simple $A$-module. This contradicts the fact that $T$ lies in the complement of $V^{\prime}$ and hence $U=\{0\}$ and $V^{\prime}=V$.
2.1.3 Proposition Let $A$ be a ring and $V$ an $A$-module.
(i) If $W, U \leq_{A} V$ are semisimple modules, then $\langle W, U\rangle$ is semisimple, i.e. sums of semisimple modules are semisimple.
(ii) If $V$ is semisimple and $W \leq_{A} V$, then $W$ is semisimple, i.e. submodules of semisimple modules are semisimple.
(iii) If $V$ is semisimple and $W \leq_{A} V$, then $V / W$ is semisimple, i.e. factor modules of semisimple modules are semisimple.

Proof: (i): Since $W$ and $U$ are sums of simple modules, the sum $\langle W, U\rangle$ is also a sum of simple modules.
(ii): If $W^{\prime} \leq_{A} W$ is a submodule of $W$, then we require to find a complement $W^{\prime \prime}$ of $W^{\prime}$ in $W$. By assumption we know that $W^{\prime}$ has a complement $U \leq_{A} V$ in $V$. Define $W^{\prime \prime}:=W \cap U$, then every $w \in W$ is uniquely written as $w=w^{\prime}+u$ with $w^{\prime} \in W^{\prime}$ and $u \in U$, and therefore $W=W^{\prime} \oplus W^{\prime \prime}$.
(iii): Let $\pi$ be the canonical projection of $V$ onto $V / W$. Since $V$ is semisimple, it is the direct sum of simple $A$-modules $V_{i}$ and the image of $V_{i}$ under $\pi$ is either $\{0\}$ or a simple $A$-module (isomorphic with $V_{i}$ ). Thus, the image $\pi(V)$ is the sum of simple $A$-modules and is therefore semisimple.
2.1.4 Corollary $A$ ring $A$ is semisimple as an $A$-module if and only if every $A$-module $V$ is semisimple.

Proof: We only have to prove that semisimplicity of $A$ as an $A$-module implies semisimplicity of an arbitrary $A$-module $V$. Let $\left(v_{i} \mid i \in I\right)$ be a basis of $V$. Then the mapping $\varphi: \oplus_{i \in I} A \rightarrow V,\left(a_{i}\right)_{i \in I} \mapsto \sum_{i \in I} v_{i} a_{i}$ is an $A$-module epimorphism. Thus, $V$ is a factor module of the semisimple $A$-module $\oplus_{i \in I} A$ and is therefore semisimple itself by the previous proposition.
2.1.5 Definition A ring $A$ is called semisimple if $A$ is semisimple as an $A$ module. By the above corollary this implies that all $A$-modules are semisimple.
2.1.6 Theorem (Maschke's theorem)

Let $K$ be a field and $G$ a group. The group ring $K G$ is semisimple if and only if $\operatorname{char}(K) \nmid|G|$.

Proof: $\Rightarrow$ : Let $I$ be the augmentation ideal in $K G$ then by assumption $K G=I \oplus I^{\prime}$ and $I^{\prime} \cong_{K G} K G / I$ is the trivial $K G$-module. We have $I^{\prime}=\langle v\rangle$ with $v=\sum_{g \in G} a_{g} g$ and $v g=v$ for all $g \in G$, since $I^{\prime}$ is the trivial module. This shows that $a_{g}=a \in K$ for all $g \in G$. But $v \notin I$, therefore $\sum_{g \in G} a=|G| a \neq 0$ and thus char $(K) \nmid|G|$.
$\Leftarrow$ : Let $W \leq_{K G} K G$. As a $K$-module, $W$ has a complement and we denote the projection of $K G$ onto $W$ by $\pi$. By averaging over the group elements we turn $\pi$ into a $K G$-module homomorphism $\tilde{\pi}: K G \rightarrow K G, a \mapsto|G|^{-1} \sum_{g \in G}\left(a g^{-1}\right) \pi g$. Then $\tilde{\pi}$ is well defined, since we assume that $\operatorname{char}(K) \nmid|G|$ and one checks that $\operatorname{im}(\tilde{\pi})=W$ and $\tilde{\pi}^{2}=\tilde{\pi}$. Thus $K G=\operatorname{im}(\tilde{\pi}) \oplus \operatorname{ker}(\tilde{\pi})$, in other words, $\operatorname{ker}(\tilde{\pi})$ is a complement of $W$.

> Maschke's theorem is a branching point for the representation theory of finite groups. The first branch is the ordinary representation theory, which is concerned with the semisimple case (i.e. $\operatorname{char}(K) \nmid|G|$ ) where every representation is completely reducible. The other branch is the modular representation theory which uses different methods to analyze the situation where the group ring $K G$ is not semisimple. The extreme case of $p$-groups in characteristic $p$ shows that the irreducible modules are no longer helpful. Instead the projective indecomposable modules are studied in the modular representation theory.

> In this course we will restrict ourselves almost exclusively to the semisimple case.

### 2.2 Wedderburn decomposition

2.2.1 Lemma Let $A$ be a ring and let $A=\oplus_{i \in I} V_{i}$ be a decomposition of $V$ into a direct sum of right ideals. Then the sum is finite, i.e. I is a finite set.

Proof: The element $1 \in A$ can be written as a finite sum $1=\sum_{i \in I_{0}} e_{i}$ with $e_{i} \in V_{i}$. Then $A=1 \cdot A=\sum_{i \in I_{0}} e_{i} A \subseteq \sum_{i \in I_{0}} V_{i}$, hence $I_{0}=I$ and $e_{i} A=V_{i}$ for $i \in I$.
2.2.2 Proposition/Definition Let $A=\bigoplus_{i=1}^{n} V_{i}$ be a decomposition of $A$ into right ideals. Then $1 \in A$ can be written as $1=e_{1}+\ldots+e_{n}$ with $e_{i} \in V_{i}$.
(i) The $e_{i}$ are called (orthogonal) idempotents and fulfill $e_{i}^{2}=e_{i}, e_{i} e_{j}=0$ for $i \neq j$ and $V_{i}=e_{i} A$.
(ii) The $V_{i}$ are two-sided ideals $V_{i} \unlhd A$ if and only if the $e_{i}$ lie in the centre of $A$. In this case the $e_{i}$ are called central idempotents.
(iii) An idempotent $e_{i}$ is called a primitive idempotent if $e_{i}=e_{i}^{\prime}+e_{i}^{\prime \prime}$ with $e_{i}^{\prime}, e_{i}^{\prime \prime}$ orthogonal idempotents implies $e_{i}^{\prime}=0$ or $e_{i}^{\prime \prime}=0$. The idempotent $e_{i}$ is primitive if and only if $e_{i} A$ is an indecomposable right ideal (projective indecomposable module).
(iv) A central idempotent $e_{i}$ is called a central primitive idempotent if $e_{i}=$ $e_{i}^{\prime}+e_{i}^{\prime \prime}$ with $e_{i}^{\prime}, e_{i}^{\prime \prime}$ central orthogonal idempotents implies $e_{i}^{\prime}=0$ or $e_{i}^{\prime \prime}=0$. The idempotent $e_{i}$ is central primitive if and only if $e_{i} A$ is a two-sided ideal that can not be decomposed into a direct sum of non-trivial twosided ideals (block ideal).
(v) If $1=e_{1}+\ldots+e_{r}$ with $e_{i}$ central primitive idempotents, then the $e_{i}$ are called block idempotents. The block idempotents are unique (up to permutation).

Proof: (i): The fact that $V_{i}=e_{i} A$ follows as in the previous lemma. Furthermore, we have $e_{j}=1 \cdot e_{j}=e_{1} e_{j}+\ldots+e_{n} e_{j}$ and since $e_{i} e_{j} \in V_{i}$ it follows that $e_{i} e_{j}=0$ for $i \neq j$ and $e_{j}^{2}=e_{j}$ for all $j$.
(ii): If $V_{i} \unlhd A$ for $i \neq j$ we have $V_{i} V_{j} \subseteq V_{i} \cap V_{j}=\{0\}$, hence $e_{i} a=e_{i}\left(a e_{1}\right)+$ $\ldots+e_{i}\left(a e_{n}\right)=e_{i} a e_{i}$, since $e_{i}\left(a e_{j}\right) \in V_{i} V_{j}$. On the other hand $a e_{i}=\left(e_{1} a\right) e_{i}+$ $\ldots+\left(e_{n} a\right) e_{i}=e_{i} a e_{i}$, since $\left(e_{j} a\right) e_{j} \in V_{j} V_{i}$. Thus the $e_{i}$ lie in the centre $Z(A)$ of $A$.
The other direction is clear, since $e_{i} \in Z(A)$ implies $V_{i}=e_{i} A=A e_{i}$ and this is clearly a two-sided ideal in $A$.
(iii): Assume that $e_{i} A$ is decomposable into proper right ideals, i.e. $e_{i} A=U \oplus V$, then $1=u+v$ with $u \in U, v \in V$. Now, $u=e_{i} u=(u+v) u=u^{2}+v u$, hence $v u=0$ and $u^{2}=u$, thus $u$ and $v$ are orthogonal idempotents and $e_{i}$ is not primitive.
Conversely, if $e_{i}$ is not primitive and $e_{i}=e_{i}^{\prime}+e_{i}^{\prime \prime}$ is a proper decomposition, then $e_{i} A=e_{i}^{\prime} A \oplus e_{i}^{\prime \prime} A$ and thus $e_{i} A$ is decomposable.
(iv): This is the combination of the conditions in (ii) and (iii).
(v): Assume that $1=\sum_{i=1}^{n} e_{i}=\sum_{j=1}^{m} f_{j}$ are two decompositions into block idempotents. Now, $e_{i}=e_{i} \cdot 1=\sum_{j=1}^{m} e_{i} f_{j}$ is a decomposition into orthogonal idempotents, since $\left(e_{i} f_{j}\right)\left(e_{i} f_{k}\right)=e_{i} \delta_{j k} f_{j}$. But the $e_{i}$ are primitive, hence there is precisely one $j=j(i)$ with $e_{i} f_{j(i)}=e_{i}$ and the other $e_{i} f_{j}$ are 0 . The same argument applied to $1 \cdot f_{j(i)}$ shows that $f_{j(i)}=e_{i} f_{j(i)}=e_{i}$. Hence we have $\left\{e_{1}, \ldots, e_{n}\right\} \subseteq\left\{f_{1}, \ldots, f_{m}\right\}$ and by interchanging the roles of the $e_{i}$ and $f_{j}$ we get equality of the sets.
2.2.3 Example Let $A=K^{2 \times 2}, e_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $e_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Then $e_{1}, e_{2}$ are primitive orthogonal idempotents, $e_{1} A=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b \in K\right\}, e_{2} A=$ $\left\{\left.\left(\begin{array}{ll}0 & 0 \\ c & d\end{array}\right) \right\rvert\, c, d \in K\right\}$ and $e_{i} A \cong K^{2}$ are irreducible $A$-modules. But $f_{1}=$ $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ and $f_{2}=I_{2}-f_{1}=\left(\begin{array}{cc}0 & -1 \\ 0 & 1\end{array}\right)$ are also primitive orthogonal idempotents
with $A=f_{1} A \oplus f_{2} A$. The only central primitive idempotent is $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
2.2.4 Lemma Semisimple rings contain central primitive idempotents.

Proof: This is seen by decomposing 1 iteratively into central idempotents. If a central idempotent is not primitive it can be properly split. This process stops after finitely many steps, since by Lemma 2.2 .1 a semisimple ring is a finite direct sum of minimal left ideals.
2.2.5 Proposition Let $A$ be a semisimple ring and let $1=e_{1}+\ldots+e_{r}$ be the decomposition into central primitive idempotents.
(i) Every simple $V \leq_{A} A$ (minimal right ideal) is contained in precisely one $e_{i} A$.
(ii) If $V_{i} \leq{ }_{A} e_{i} A$ and $V_{j} \leq_{A} e_{j} A$ with $i \neq j$, then $V_{i} \nexists_{A} V_{j}$.
(iii) Every $e_{i} A$ is the (direct) sum of $A$-isomorphic minimal right ideals and is therefore called a homogeneous component.
(iv) Up to isomorphism there exist precisely $r$ simple $A$-modules.

Proof: (i): We have $1 \cdot V=e_{1} V \oplus \ldots \oplus e_{r} V$ and since $V$ is simple there is precisely one $i$ with $e_{i} V \neq\{0\}$. But then $V=e_{i} V \subseteq e_{i} A$.
(ii): The idempotent $e_{i}$ acts as identity on $V_{i}$ and as 0 on $V_{j}$, therefore $V_{i}$ and $V_{j}$ are not $A$-isomorphic.
(iii): Let $V$ be a minimal right ideal in $e_{i} A$ and let $H_{V}(A):=\sum_{W \leq_{A} A} W$, where the sum runs over all $W \leq_{A} A$ with $W \cong_{A} V\left(H_{V}(A)\right.$ is called the $V$-homogeneous component of $A$ ). By (i) and (ii) it follows that $H_{V}(A) \subseteq e_{i} A$. We now observe that $H_{V}(A)$ is a two-sided ideal of $A$, since multiplication of $V$ from the left by $a \in A$ maps $V$ to the isomorphic $A$-module $a V$ which is again contained in $H_{V}(A)$. But $e_{i} A$ is indecomposable as a two-sided ideal, therefore $H_{V}(A)=e_{i} A$. We have seen that $e_{i} A$ is a sum of simple $A$-modules, therefore by Theorem 2.1.2 it is semisimple and thus a direct sum of simple $A$-modules. (iv): This follows immediately from (i)-(iii), since every simple module is contained in precisely one homogeneous component.
2.2.6 Definition For a ring $R=(R,+, \cdot)$ the anti-isomorphic ring $R^{o p}=$ $(R,+, *)$ is obtained from $R$ by reversing the arguments in the multiplication, i.e. $a * b=b \cdot a$.
2.2.7 Proposition Let $A$ be a ring and $e \in A$ an orthogonal idempotent. Then $\operatorname{End}_{A}(e A)^{o p} \cong e A e$ as rings.

Proof: Note that $\varphi \in \operatorname{End}_{A}(e A)$ is determined by its image on $e$, since $(e a) \varphi=(e \varphi) a$. Moreover, $e \varphi \in e A e$, since $e \varphi=e^{2} \varphi=(e \varphi) e$. Therefore, the map

$$
\Phi: \operatorname{End}_{A}(e A) \rightarrow e A e, \quad \varphi \mapsto e \varphi
$$

is a homomorphism of the additive groups. It is injective, since e $\varphi=0 \mathrm{im}$ plies $\varphi=0$ and it is surjective, since defining $\varphi_{a}$ by $(e b) \varphi_{a}:=e a b$ gives $\varphi_{a} \in \operatorname{End}_{A}(e A)$ with $\Phi\left(\varphi_{a}\right)=e a e$.
In $E n d_{A}(e A)^{o p}$, the multiplication $*$ is defined by reversing the arguments of the multiplication in $\operatorname{End}_{A}(e A)$, therefore $\Phi(\varphi * \psi)=e(\psi \varphi)=(e \psi) \varphi=(e \Phi(\psi)) \varphi=$ $(e \varphi) \Phi(\psi)=\Phi(\varphi) \Phi(\psi)$. This shows that $\Phi$ respects the (suitably chosen) multiplication.

### 2.2.8 Theorem (Wedderburn)

Let $A$ be a semisimple ring. Then $A$ is a direct sum of full matrix rings over skew fields. More precisely: Let $1=e_{1}+\ldots+e_{r}$ be the decomposition into central primitive idempotents. Then $A=e_{1} A \oplus \ldots \oplus e_{r} A$ is a decomposition into two-sided ideals. Each $e_{i} A$ is the sum of $A$-isomorphic minimal right ideals, i.e. $e_{i} A \cong \underbrace{V_{i} \oplus \ldots \oplus V_{i}}_{n_{i}}$ and $e_{i} A \cong D_{i}^{n_{i} \times n_{i}}$ with $D_{i}=\operatorname{End}_{A}\left(V_{i}\right)^{o p}$.

Proof: First note that for a simple $A$-module $V$ Schur's lemma implies that $E n d_{A}(V) \cong D$ for a skew field $D$. Next one sees that $E n d_{A}(V \oplus \ldots \oplus V) \cong D^{n \times n}$ where $n$ is the number of terms in the direct sum, since the mapping $E n d_{A}(V \oplus$ $\ldots \oplus V) \rightarrow D^{n \times n}, \varphi \mapsto\left(A_{i j}\right)$ where the element $A_{i j}$ describes the restriction of $\varphi$ from the $i$-th to the $j$-th component is an $A$-invariant isomorphism. For a skew field $D$ the transposition map $A \mapsto A^{t r}$ gives an isomorphism from $\left(D^{n \times n}\right)^{o p}$ to $\left(D^{o p}\right)^{n \times n}$ therefore we have $\operatorname{End}_{A}(V \oplus \ldots \oplus V) \cong\left(\left(D^{o p}\right)^{n \times n}\right)^{o p}$. The claim now follows from Proposition 2.2.5, since $e_{i} A=e_{i} A e_{i}$ is a direct sum of isomorphic simple $A$-modules.
2.2.9 Definition Let $K$ be a field and $A$ a $K$-algebra. $K$ is called splitting field of $A$ if $\operatorname{End}_{A}(V) \cong K$ for all simple $A$-modules $V$. It follows from Schur's lemma that algebraically closed fields are always splitting fields.
2.2.10 Theorem Let $A$ be a semisimple ring and let $V_{1}, \ldots, V_{r}$ be representatives of the isomorphism classes of simple $A$-modules. Then the following are equivalent:
(i) $K$ is a splitting field of $A$.
(ii) $A \cong \bigoplus_{i=1}^{r} K^{n_{i} \times n_{i}}$.
(iii) $\operatorname{dim}_{K} A=\sum_{i=1}^{r}\left(\operatorname{dim}_{K} V_{i}\right)^{2}$.

Proof: (i) $\Rightarrow$ (ii): This follows from Wedderburn's theorem, since $D_{i}=K$. (ii) $\Rightarrow$ (iii): The simple $K^{n \times n}$-modules are isomorphic to $K^{n}$, hence $\operatorname{dim}_{K} V_{i}=$ $n_{i}$.
(iii) $\Rightarrow$ (i): Note that the simple modules in $e_{i} A=D_{i}^{n_{i} \times n_{i}}$ have dimension $n_{i}$ over $D_{i}$. Applying Wedderburn's theorem we therefore have

$$
\sum_{i=1}^{r}\left(\operatorname{dim}_{K} V_{i}\right)^{2}=\operatorname{dim}_{K} A=\sum_{i=1}^{r} \operatorname{dim}_{K} D_{i}^{n_{i} \times n_{i}}=\sum_{i=1}^{r} n_{i}^{2} \operatorname{dim}_{K} D_{i}
$$

$$
=\sum_{i=1}^{r}\left(\operatorname{dim}_{D_{i}} V_{i}\right)^{2} \operatorname{dim}_{K} D_{i}=\sum_{i=1}^{r}\left(\operatorname{dim}_{K} V_{i}\right)^{2}\left(\operatorname{dim}_{K} D_{i}\right)^{-1} .
$$

This implies that $\operatorname{dim}_{K} D_{i}=1$ for all $i$, hence $K$ is a splitting field of $A$.
2.2.11 Corollary Let $A$ be a semisimple ring and let $Z(A):=\{b \in A \mid a b=$ $b a$ for all $a \in A\}$ be the centre of $A$. Then the number of isomorphism classes of simple $A$-modules is $\leq \operatorname{dim}_{K} Z(A)$. The number is $=\operatorname{dim}_{K} Z(A)$ if $K$ is a splitting field of $A$.

Proof: This follows since for a homogeneous component $D^{n \times n}$ we have $Z\left(D^{n \times n}\right)=Z(D)$ and $\operatorname{dim}_{K} Z(D) \geq 1$ for a skew field $D$ over $K$.
2.2.12 Example Let $Q_{8}$ be the quaternion group of order 8, i.e.

$$
G=\{ \pm 1, \pm i, \pm j \pm k\}=\langle i, j\rangle
$$

with $i j=k, j k=i, k i=j$ and $i^{2}=j^{2}=k^{2}=-1$. Let $K$ be a field with $\operatorname{char}(K) \neq 2 . Q_{8}$ has four 1-dimensional representations over $K$, namely $\Delta_{1}: i \mapsto 1, j \mapsto 1, \Delta_{2}: i \mapsto-1, j \mapsto 1, \Delta_{3}: i \mapsto 1, j \mapsto-1$ and $\Delta_{4}: i \mapsto$ $-1, j \mapsto-1$. Since $\left|Q_{8}\right|=8$, this implies that $K Q_{8} \cong K \oplus K \oplus K \oplus K \oplus K^{2 \times 2}$ or $K Q_{8} \cong K \oplus K \oplus K \oplus K \oplus D$ where $D$ is a skew field with $\operatorname{dim}_{K}(D)=4$. One sees that the last irreducible representation $\Delta_{5}$ has to be faithful, since otherwise $i^{2}$ would be in the kernel of all irreducible representations and thus in the kernel of the regular representation.
If $K$ contains a primitive 4 -th root of unity $\zeta$, then $\Delta_{5}: i \mapsto\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \quad j \mapsto$ $\left(\begin{array}{cc}\zeta & 0 \\ 0 & -\zeta\end{array}\right)$ is an irreducible 2-dimensional representation. Hence, in that case $K$ is a splitting field of $K Q_{8}$.
On the other hand, if $K \subseteq \mathbb{R}$, we can conclude that $\Delta_{5}$ is not 2-dimensional, since we can assume that $i$ is mapped to the companion matrix of the 4 -th cyclotomic polynomial, i.e. to $\Delta_{5}(i)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. But there exists no matrix $\Delta_{5}(j)$ of order 4 which conjugates $\Delta_{5}(i)$ to $-\Delta_{5}(i)$. (To draw this conclusion it is in fact enough to assume that $x^{2}+y^{2}=-1$ has no solution in $K$.) Hence $\operatorname{End}_{K Q_{8}}\left(V_{5}\right)=D$ in this case, and since $Q_{8}$ is not abelian, $D$ is a non-abelian skew field with $\operatorname{dim}_{K}(D)=4$, called the skew field of Hamilton quaternions.
2.2.13 Theorem Let $K$ be a field and $G$ a group with $\operatorname{char}(K) \nmid|G|$.
(i) Let $C_{1}, \ldots, C_{r}$ be the conjugacy classes of $G$ and $C_{i}^{+}:=\sum_{g \in C_{i}} g$, then $C_{1}^{+}, \ldots, C_{r}^{+}$is a basis of $Z(K G)$.
(ii) The number of irreducible representations of $G$ over $K$ (up to equivalence) is $\leq$ the number of conjugacy classes of $G$.
(iii) If $K$ is a splitting field of $K G$, then the number of irreducible representations of $G$ over $K$ equals the number of conjugacy classes and $\sum_{i=1}^{r} n_{i}^{2}=|G|$, where $n_{i}$ is the degree of the $i$-th irreducible representation.
(iv) If $K$ is a splitting field of $K G$, then the regular representation of $K G$ contains an irreducible representation of degree $n_{i}$ with multiplicity $n_{i}$.

Proof: (i): Let $a=\sum_{g \in G} a_{g} g \in Z(K G)$, then $h a h^{-1}=\sum_{g \in G} a_{g}\left(h g h^{-1}\right)=$ $\sum_{g \in G} a_{h^{-1} g h} g=a$ for all $h \in G$. Hence the coefficients $a_{g}$ have to be constant on the conjugacy classes. It is clear that the $C_{i}^{+}$are linearly independent.
(ii)-(iv): This now follows immediately from Wedderburn's theorem and Corollary 2.2 .11 .
2.2.14 Corollary Let $G$ be a finite group, $K$ a splitting field with char $(K) \nmid G$. If $\Delta$ is an irreducible representation of $G$ with degree $n$ over $K$, then $\Delta(G)$ contains $n^{2}$ linearly independent elements, i.e. a basis of the full matrix ring $K^{n \times n}$.
2.2.15 Example Let $\operatorname{char}(K) \neq 2,3$ and $G=S_{3}$, then $K G$ is semisimple. Clearly, the trivial representation $\Delta_{1}$ and the 1-dimensional representation $\Delta_{2}$ : $g \mapsto \operatorname{sign}(g)$ are irreducible. Let $\Delta_{3}$ be the 2-dimensional representation with

$$
\Delta_{3}((1,2))=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \Delta_{3}((2,3))=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right)
$$

We compute the endomorphism ring of the module $V_{3}$ corresponding to $\Delta_{3}$ and obtain $C_{K^{2 \times 2}}\left(\Delta_{3}\left(S_{3}\right)\right)=\left\{A \in K^{2 \times 2} \mid A \Delta_{3}(g)=\Delta_{3}(g) A\right.$ for all $\left.g \in S_{3}\right\}=$ $\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right) \right\rvert\, a \in K\right\}$. Thus $\operatorname{End}_{K}\left(V_{3}\right) \cong K$, hence $V_{3}$ is a simple module and $K$ is a splitting field of $K S_{3}$.
We have $K S_{3} \cong K \oplus K \oplus K^{2 \times 2}$ and the central primitive idempotents are given by

$$
\begin{gathered}
e_{1}=\frac{1}{|G|} \sum_{g \in G} g, \quad e_{2}=\frac{1}{|G|} \sum_{g \in G} \operatorname{sign}(g) g, \\
e_{3}=1-e_{1}-e_{2}=\frac{2}{3} 1-\frac{1}{3}(1,2,3)-\frac{1}{3}(1,3,2) .
\end{gathered}
$$

If we denote the conjugacy class of 1 by $C_{1}$, the class of $(1,2)$ by $C_{2}$ and the class of $(1,2,3)$ by $C_{3}$, then

$$
e_{1}=\frac{1}{6}\left(C_{1}^{+}+C_{2}^{+}+C_{3}^{+}\right), \quad e_{2}=\frac{1}{6}\left(C_{1}^{+}-C_{2}^{+}+C_{3}^{+}\right), \quad e_{3}=\frac{1}{3}\left(2 C_{1}^{+}-C_{3}^{+}\right)
$$

## ExERCISES

15. Let $K$ be a field and let $R=\left\{\left.\left(\begin{array}{cc}a & 0 \\ b & c\end{array}\right) \right\rvert\, a, b, c \in K\right\}$ be the ring of lower triangular matrices. How many simple modules does $R$ have? Is $R$ a semisimple ring?
16. Let $G$ be a (not necessarily finite) group, $H \leq G$ a subgroup of finite index $[G: H]$. Let $K$ be a field of characteristic $\operatorname{char}(K)$ with $\operatorname{char}(K) \nmid[G: H]$. Let $V$ be a $K G$ module with submodule $W \leq_{K G} V$ and let $U_{0} \leq_{K H} V$ be a $K H$-module such that $V=W \oplus U_{0}$. Show that there exists a $K G$-submodule $U \leq_{K G} V$ with $V=W \oplus U$. (Hint: Mimic the proof of Maschke's theorem.)
17. Let $G=V_{4} \cong C_{2} \times C_{2}$ be the Klein group. Write the group ring $\mathbb{Q} G$ as a direct sum of irreducible $\mathbb{Q} G$-modules.
18. Let $G$ be a finite group and let $\Delta: G \rightarrow G L_{2}(\mathbb{C})$ be a representation of $G$. Suppose that there are elements $g, h \in G$ such that $\Delta(g)$ and $\Delta(h)$ do not commute. Prove that $\Delta$ is irreducible.
19. Let $G=C_{\infty}=\langle g\rangle$ be the infinite cyclic group. The mapping

$$
\Delta: G \rightarrow G L_{2}(\mathbb{C}): g \mapsto\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

is a 2-dimensional representation of $G$ turning $\mathbb{C}^{2}$ into a $\mathbb{C} G$-module $V$. Show that $V$ is not semisimple.
20. Prove that every finite simple group $G$ possesses a faithful simple $\mathbb{C} G$-module (i.e. a module such that only $1 \in G$ acts trivially).
21. A hermitian bilinear form on a complex vector space $V$ is a map $\phi: V \times V \rightarrow \mathbb{C}$ with $\phi(v+\lambda w, u)=\phi(v, u)+\lambda \phi(w, u), \phi(v, u+\lambda w)=\phi(v, u)+\bar{\lambda} \phi(v, w)$ and $\phi(v, w)=\overline{\phi(w, v)}$. The space of all hermitian bilinear forms on $V$ is denoted by $\operatorname{Bil}(V)$.
Let $G$ be a finite group and $V$ a $\mathbb{C} G$-module.
(i) Show that $G$ acts on $\operatorname{Bil}(V)$ via $(\phi g)(v, w):=\phi\left(v g^{-1}, w g^{-1}\right)$.
(ii) There exists a $G$-invariant, positive definite form $\psi \in \operatorname{Bil}(V)$, i.e. $\psi g=\psi$ for all $g \in G$ and $\psi(v, v) \geq 0$ for all $v \in V$ and $\psi(v, v)=0 \Rightarrow v=0$.
(iii) If $W \leq_{\mathbb{C} G} V$, then $W^{\perp}:=\{v \in V \mid \psi(v, w)=0$ for all $w \in W\}$ is a $\mathbb{C} G$ module and $V=W \oplus W^{\perp}$.

Note that this is a constructive method to find complements in semisimple modules.
22. Let $A:=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{C}\right\} \subseteq \mathbb{C}^{2 \times 2}$.
(i) Show that $I:=\left\{\left.\left(\begin{array}{cc}z & i z \\ -i z & z\end{array}\right) \right\rvert\, z \in \mathbb{C}\right\} \subseteq A$ is a two-sided ideal in $A$.
(ii) Show that $A$ is a semisimple ring and find the primitive central idempotents of $A$.
23. Let $\Delta_{1}, \ldots, \Delta_{r}$ be the non-equivalent irreducible representations of a semisimple ring $A$ and let $a_{1}, \ldots, a_{r}$ be arbitrary elements of $A$. Show that there exists an element $a \in A$ such that $\Delta_{i}(a)=\Delta_{i}\left(a_{i}\right)$ for all $1 \leq i \leq r$.
24. Show that $A$ is a simple $A$-module if and only if $A$ is a skew field.
25. Let $V_{1}, \ldots, V_{r}$ be non-equivalent simple $A$-modules and let $U_{i}:=\bigoplus_{j=1}^{n_{i}} V_{i}$ be a direct sum of $n_{i}$ copies of $V_{i}$.
(i) Show that $\operatorname{End}_{A}\left(U_{i}\right) \cong \operatorname{End}_{A}\left(V_{i}\right)^{n_{i} \times n_{i}}$.
(ii) Show that $\operatorname{End}_{A}\left(\bigoplus_{i=1}^{r} V_{i}\right) \cong \bigoplus_{i=1}^{r} \operatorname{End}_{A}\left(V_{i}\right)$.
(iii) Show that $\operatorname{End}_{A}\left(\bigoplus_{i=1}^{r} U_{i}\right) \cong \bigoplus_{i=1}^{r} \operatorname{End}_{A}\left(U_{i}\right) \cong \bigoplus_{i=1}^{r} \operatorname{End}_{A}\left(V_{i}\right)^{n_{i} \times n_{i}}$.
26. Let $G=S_{3}$ and $K=\mathbb{Q}$.
(i) Give an explicit isomorphism $\mathbb{Q} S_{3} \rightarrow \oplus_{i=1}^{r} D_{i}^{n_{i} \times n_{i}}$ according to Wedderburn's theorem. Give as well the inverse mapping for this isomorphism.
(ii) Determine the centre $Z\left(\mathbb{Q} S_{3}\right)$ and the central primitive idempotents of $\mathbb{Q} S_{3}$.
27. Let $G$ be a group of order 12. Use Wedderburn's theorem to deduce the possibilities for the degrees of the irreducible representations of $G$ over $\mathbb{C}$.
Recalling that the number of 1-dimensional representations equals the order of the commutator factor group $G / G^{\prime}$, determine the degrees of the irreducible representations of the dihedral group $D_{12}$ and of the alternating group $A_{3}$ over $\mathbb{C}$.

## Chapter 3

## Characters

### 3.1 Class functions

3.1.1 Definition Let $G$ be a group and $\Delta: G \rightarrow G L_{n}(K)$ a representation of $G$. Then $\chi=\chi(\Delta): G \rightarrow K, g \mapsto \operatorname{tr}(\Delta(g))$ is called the character of $G$ afforded by $\Delta$.
A character is defined to be irreducible if the corresponding representation is irreducible.

### 3.1.2 Remarks

(1) Characters are constant on conjugacy classes, since $\operatorname{tr}\left(\Delta\left(g h g^{-1}\right)\right)=\operatorname{tr}\left(\Delta(g) \Delta(h) \Delta(g)^{-1}\right)=\operatorname{tr}(\Delta(h))$.
(2) Characters of equivalent representations are equal, since $\operatorname{tr}\left(T \Delta(g) T^{-1}\right)=$ $\operatorname{tr}(\Delta(g))$.
(3) The character value $\chi(1)$ gives the degree of the corresponding representation.
(4) If $\Delta$ is a reducible representation with constituents $\Delta_{1}$ and $\Delta_{2}$, then the character of $\Delta$ is the sum of the characters of $\Delta_{1}$ and $\Delta_{2}$.
3.1.3 Definition Let $K$ be a splitting field of $K G$ and $\operatorname{char}(K) \nmid|G|$. Let $\chi_{1}, \ldots, \chi_{r}$ be the irreducible characters of $G$ and $g_{1}, \ldots, g_{r}$ representatives of the conjugacy classes. Then the matrix $\mathcal{C}=\left(\chi_{i}\left(g_{j}\right)\right)_{i, j=1}^{r}$ is called the character table of $G$.
3.1.4 Example In the character table of a group usually the matrix with the character values is augmented by some information on the conjugacy classes of elements, e.g. the element orders, the size of the class and the order of the
centralizer. The character table of $S_{3}$ therefore looks like:

| $\left\|C_{G}\left(g_{i}\right)\right\|$ | 6 | 3 | 2 |
| :---: | :---: | :---: | :---: |
| $\left\|C_{i}\right\|$ | 1 | 2 | 3 |
| $\left\|\left\langle g_{i}\right\rangle\right\|$ | 1 | 3 | 2 |
| $g_{i}$ | 1 | $(1,2,3)$ | $(1,2)$ |
| $\chi_{1}$ | 1 | 1 | 1 |
| $\chi_{2}$ | 1 | 1 | -1 |
| $\chi_{3}$ | 2 | -1 | 0 |

Note that the permutation representation of $S_{3}$ of degree 3 has the character $\pi=\chi_{1}+\chi_{3}$.
3.1.5 Definition A map $\varphi: G \rightarrow K$ is called a class function of $G$ if $\varphi(g)=$ $\varphi\left(h g h^{-1}\right)$ for all $g, h \in G$. The set of all class functions of $G$ is a $K$-vector space denoted by $C l_{K}(G)$.
3.1.6 Theorem Let char $(K)=0$ and $G$ be a group.
(i) The irreducible characters of $G$ are linearly independent in the $K$-vector space of class functions on $G$.
(ii) Let $V, W$ be $K G$-modules. Then $V \cong_{K G} W \Leftrightarrow \chi_{V}=\chi_{W}$ where $\chi_{V}$ and $\chi_{W}$ are the characters of the representations of $G$ on $V$ and $W$, respectively.

Proof: (i): Let $\chi_{i}$ be the irreducible character corresponding to the central primitive idempotent $e_{i}$. We have $\sum_{i=1}^{r} a_{i} \chi_{i}\left(e_{j}\right)=a_{j} \chi_{j}(1)$, hence the $\chi_{i}$ are linearly independent, since $\operatorname{char}(K)=0$.
(ii): Let $V=\bigoplus_{i=1}^{r} m_{i} V_{i}$ and $W=\bigoplus_{i=1}^{r} m_{i}^{\prime} V_{i}$, then $\chi_{V}=\sum_{i=1}^{r} m_{i} \chi_{i}$ and $\chi_{W}=\sum_{i=1}^{r} m_{i}^{\prime} \chi_{i}$ and it follows from (i) that $\chi_{V}=\chi_{W}$ implies $m_{i}=m_{i}^{\prime}$ for all $i$.
3.1.7 Remark Note that the above statement is not true if $\operatorname{char}(K)||G|$. Let $G=C_{p}=\langle g\rangle$ be the cyclic group of order $p$. Then $\Delta_{1}(g)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\Delta_{2}(g)=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ both define representation of $G$ over $\mathbb{F}_{p}$ with character $\chi(g)=2$ for all $g \in \mathbb{C}_{p}$. But $\Delta_{1}$ and $\Delta_{2}$ are not equivalent, since $\Delta_{1}$ is decomposable and $\Delta_{2}$ is indecomposable.
3.1.8 Theorem Let char $(K) \nmid|G|, V_{i}$ the simple $K G$-modules with corresponding central primitive idempotents $e_{i}$, characters $\chi_{i}$ and skew fields $D_{i}:=$ $E n d_{K G}\left(V_{i}\right)^{o p}$. The idempotent $e_{i}$ can be written as

$$
e_{i}=\frac{n_{i}}{|G|} \sum_{g \in G} \chi_{i}\left(g^{-1}\right) g=\frac{\chi_{i}(1)}{|G|\left[D_{i}: K\right]} \sum_{g \in G} \chi_{i}\left(g^{-1}\right) g
$$

where $n_{i}=\operatorname{dim}_{D_{i}}\left(V_{i}\right)$.

Proof: Write $e_{i}$ as $e_{i}=\sum_{g \in G} a_{g} g$. Let $\rho$ be the character of the regular representation of $K G$, then $\rho(g)=|G|$ if $g=1$ and 0 otherwise. We therefore have $\rho\left(g^{-1} e_{i}\right)=\sum_{h \in G} a_{h} \rho\left(g^{-1} h\right)=a_{g} \rho(1)=a_{g}|G|$. On the other hand we know that $\rho=\sum_{i=1}^{r} n_{i} \chi_{i}$. This yields $\rho\left(g^{-1} e_{i}\right)=\sum_{j=1}^{r} n_{j} \chi_{j}\left(g^{-1} e_{i}\right)=n_{i} \chi_{i}\left(g^{-1} e_{i}\right)=$ $n_{i} \chi_{i}\left(g^{-1}\right)$, since $e_{i}$ acts as the identity on $V_{i}$ and as 0 on $V_{j}$. Thus we have $a_{g}=n_{i}|G|^{-1} \chi_{i}\left(g^{-1}\right)$ as required.

### 3.1.9 Corollary (First orthogonality relation)

Let $\operatorname{char}(K) \nmid|G|$ and let $\chi_{i}, \chi_{j}$ be irreducible characters of $G$. Then

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g h) \chi_{j}\left(g^{-1}\right)= \begin{cases}0 & \text { if } \chi_{i} \neq \chi_{j} \\ \frac{\chi_{i}(h)}{n_{i}} & \text { if } \chi_{i}=\chi_{j}\end{cases}
$$

In particular one has $\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \chi_{j}\left(g^{-1}\right)=\left[D_{i}: K\right]$ if $\chi_{i}=\chi_{j}$ and 0 otherwise.

Proof: This is seen by comparing the coefficients of $g$ in the equation $e_{i} e_{j}=$ $\delta_{i j} e_{i}$ using the expression for $e_{i}$ from theorem 3.1.8.

### 3.1.10 Remarks

(1) We can define a symmetric bilinear form $(\cdot, \cdot)_{G}$ on the vector space of class functions on $G$ over $K$ by setting $(\varphi, \psi)_{G}:=|G|^{-1} \sum_{g \in G} \varphi(g) \psi\left(g^{-1}\right)$.
(2) For the irreducible characters $\chi_{i}$ of $G$ we have $\left(\chi_{i}, \chi_{j}\right)_{G}=\delta_{i j}\left[D_{i}: K\right]$ where $D_{i}=\operatorname{End}_{K G}\left(V_{i}\right)$. (Note that for a $K$-algebra $A$ we have $[A$ : $\left.K]=\left[A^{o p}: K\right].\right)$ Thus, the $\chi_{i}$ form an orthogonal basis which is even orthonormal in case that $K$ is a splitting field for $G$.
(3) If $K$ is a splitting field for $G$ then a class function $\varphi$ can be written as $\varphi=\sum_{i=1}^{r}\left(\varphi, \chi_{i}\right)_{G} \chi_{i}$. The norm of a class function $\varphi=\sum_{i=1}^{r} a_{i} \chi_{i}$ is $(\varphi, \varphi)_{G}=\sum_{i=1}^{r} a_{i}^{2}$ and a character is irreducible if and only if its norm equals 1 .

### 3.1.11 Theorem (Second orthogonality relation)

Let $K$ be a splitting field for $G$, let $\chi_{k}$ be the irreducible characters of $G, g_{i}$ representatives of the conjugacy classes of $G$. Then

$$
\sum_{k=1}^{r} \chi_{k}\left(g_{i}^{-1}\right) \chi_{k}\left(g_{j}\right)= \begin{cases}0 & \text { if } i \neq j \\ C_{G}\left(g_{i}\right) & \text { if } i=j\end{cases}
$$

where $C_{G}\left(g_{i}\right)$ denotes the centralizer of $g_{i}$ in $G$.

Proof: Let $\varphi_{i}$ be the $i$-th class indicator function, i.e. $\varphi_{i}(g)=1$ if $g$ is conjugate with $g_{i}$ and 0 otherwise. Then $\varphi_{i}$ can be written as $\varphi_{i}=\sum_{k=1}^{r}\left(\varphi_{i}, \chi_{k}\right)_{G} \chi_{k}$ and we have $\varphi_{i}\left(g_{j}\right)=\sum_{k=1}^{r}|G|^{-1}\left(\sum_{g \in G} \varphi_{i}(g) \chi_{k}\left(g^{-1}\right)\right) \chi_{k}\left(g_{j}\right)$ $=\sum_{k=1}^{r}\left|C_{G}\left(g_{i}\right)\right|^{-1} \chi_{k}\left(g_{i}^{-1}\right) \chi_{k}\left(g_{j}\right)$.
3.1.12 Example We determine the character table of the symmetric group $S_{4}$. The trivial character, the signum character and the 2-dimensional character of the factor group $S_{4} / V_{4} \cong S_{3}$ are easily found and seen to be irreducible. Since we know the conjugacy classes of $S_{4}$ we know that we have to find 5 irreducible characters. We conclude that the two missing characters both have degree 3 since the sum of the squares of the character degrees has to be 24 . This gives the following partial character table, which we augment by the character $\pi$ of the natural permutation representation of $S_{4}$.

| $C_{G}\left(g_{i}\right)$ | 24 | 8 | 3 | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|C_{i}\right\|$ | 1 | 3 | 8 | 6 | 6 |
| $g_{i}$ | 1 | $(1,2)(3,4)$ | $(1,2,3)$ | $(1,2)$ | $(1,2,3,4)$ |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ | 1 | 1 | 1 | -1 | -1 |
| $\chi_{3}$ | 2 | 2 | -1 | 0 | 0 |
| $\chi_{4}$ | 3 |  |  |  |  |
| $\chi_{5}$ | 3 |  |  |  |  |
| $\pi$ | 4 | 0 | 1 | 2 | 0 |

We compute that $\left(\pi, \chi_{1}\right)_{G}=1$ and $(\pi, \pi)_{G}=2$, therefore $\pi-\chi_{1}$ is an irreducible character with values $(3,-1,0,1,-1)$. For the values of $\chi_{5}$ we use the second orthogonality relation with the first column and obtain the values $(3,-1,0,-1,1)$.

### 3.2 Character values

3.2.1 Theorem Let $\operatorname{char}(K) \nmid|G|$, let $\chi$ be a character of $G$ over $K$ and let $g \in G$ be an element of order $m$. Then the character value $\chi(g)$ is a sum of $m$-th roots of unity.
If $\operatorname{char}(K)=0$, then all character values of $\chi$ lie in the cyclotomic field $\mathbb{Q}\left(\zeta_{e}\right)$, where $e=\exp (G):=\operatorname{lcm}(|\langle g\rangle| \mid g \in G)$ is the exponent of $G$.

Proof: By restricting $\chi$ to the cyclic group generated by $g$, we are reduced to the case $G=\langle g\rangle$. Since we are in the semisimple case, we can assume that $\chi$ is afforded by a representation $\Delta$ for which $\Delta(g)$ is a diagonal matrix. But then each diagonal entry $\lambda$ of $\Delta(g)$ satisfies $\lambda^{m}=1$ and is thus an $m$-th root of unity. Therefore $\chi(g)$ is a sum of $m$-th roots of unity.
If $\operatorname{char}(K)=0$, then $\mathbb{Q}$ is the prime field of $K$ and all $m$-th roots of unity lie in $\mathbb{Q}\left(\zeta_{m}\right)$. Since $\mathbb{Q}\left(\zeta_{m}\right) \subseteq \mathbb{Q}\left(\zeta_{l}\right)$ for $m \mid l$ if follows that all character values of $G$ lie in $\mathbb{Q}\left(\zeta_{e}\right)$ for $e=\exp (G)$.
3.2.2 Definition An element $a \in R$ of a ring $R$ is called an algebraic integer if $a$ is the root of a monic polynomial with coefficients in $\mathbb{Z}$.
3.2.3 Lemma Let $R$ be a commutative ring with 1 .
(i) An element $a \in R$ is an algebraic integer if and only if $a$ is contained in a subring $S \subseteq R$ which is finitely generated as $\mathbb{Z}$-module.
(ii) The set of algebraic integers in $R$ forms a subring of $R$.

Proof: (i) $\Rightarrow$ : Let $a$ be a root of $\sum_{i=0}^{n} a_{i} X^{i}$ with $a_{i} \in \mathbb{Z}$ and $a_{n}=1$. Then the finitely generated $\mathbb{Z}$-module $S:=\mathbb{Z}[a]=\left\langle 1, a, a^{2}, \ldots, a^{n-1}\right\rangle_{\mathbb{Z}}$ is a subring of $R$, since $a^{n}=-\sum_{i=0}^{n-1} a_{i} a^{i} \in S$ and thus $S$ is closed under multiplication.
$\Leftarrow$ : Let $a \in S=\left\langle b_{1}, \ldots, b_{m}\right\rangle_{\mathbb{Z}}$, then multiplication by $a$ is described by a matrix $A=\left(A_{i j}\right) \in \mathbb{Z}^{m \times m}$ defined by $b_{i} a=\sum_{j=1}^{m} A_{i j} b_{j}$. Let $f$ be the characteristic polynomial $\operatorname{det}(X \cdot i d-A)$ of $A$, then $f$ is a monic polynomial with coefficients in $\mathbb{Z}$ and $f(A)=0$. On the other hand $f(A)$ gives the action of $f(a)$ on $S$, hence in particular $1 \cdot f(a)=0$ and thus $f(a)=0$.
(ii) If $a$ and $b$ are algebraic integers of $R$ we have $\mathbb{Z}[a]=\left\langle 1, a, \ldots, a^{n-1}\right\rangle_{\mathbb{Z}}$ and $\mathbb{Z}[b]=\left\langle 1, b, \ldots, b^{m-1}\right\rangle_{\mathbb{Z}}$, hence the ring $\mathbb{Z}[a, b]$ is generated by $\left\{a^{i} b^{j} \mid 0 \leq i<\right.$ $n, 0 \leq j<m\}$ and is thus finitely generated as $\mathbb{Z}$-module. This shows that in particular the elements $a+b, a-b$ and $a b$ are algebraic integers and thus the algebraic integers form a subring of $R$.
3.2.4 Remark This lemma shows that the definition of algebraic integers agrees with what we usually call the integers in the field $\mathbb{Q}$ of rational numbers. It is clear that $a \in \mathbb{Z}$ is an algebraic integer. On the other hand, if $a=\frac{r}{s} \in \mathbb{Q}$ with $\operatorname{gcd}(r, s)=1$ and $s>1$, we have $x, y \in \mathbb{Z}$ with $1=x r+y s$ and hence $\frac{1}{s}=x \frac{r}{s}+y \in \mathbb{Z}[a]$. But $\mathbb{Z}\left[s^{-1}\right]$ is not a finitely generated $\mathbb{Z}$-module, since the powers $s^{-n}$ are independent over $\mathbb{Z}$.
3.2.5 Corollary Let $G$ be a finite group and $\chi$ a character of $G$ over a field $K$ with $\operatorname{char}(K) \nmid|G|$. Then $\chi(g)$ is an algebraic integer in $K$ for all $g \in G$. In particular, $\chi(g) \in \mathbb{Q}$ if and only if $\chi(g) \in \mathbb{Z}$.

Proof: For an element $g$ of order $m$ the character value $\chi(g)$ is a sum of $m$-th roots of unity. An $m$-th root of unity is a root of the polynomial $X^{m}-1$ and thus an algebraic integer, sums of algebraic integers are algebraic integers because these elements form a ring.
3.2.6 Theorem Let $\operatorname{char}(K)=0$ and let $\chi$ be an irreducible character of $G$ over $K$, afforded by the representation $\Delta$.
(i) $|\chi(g)| \leq \chi(1)$ for all $g \in G$ and equality holds if and only if $\Delta(g)=a \cdot I_{n}$ with $a \in K$.
(ii) $\chi(g)=\chi(1) \Leftrightarrow \Delta(g)=I_{n} \Leftrightarrow g \in \operatorname{ker}(\Delta)$.
(iii) $\chi\left(g^{-1}\right)=\overline{\chi(g)}$.
(iv) For $p$ prime $\chi\left(g^{p}\right) \equiv \chi(g)^{p}(\bmod p)$.
(v) For $p$ prime and $\chi(g) \in \mathbb{Q}$ we have $\chi\left(g^{p}\right) \equiv \chi(g)(\bmod p)$.

Proof: Note that we can regard all character values as complex numbers, since for $e=\exp (G)$ we have $\chi(g) \in \mathbb{Q}\left(\zeta_{e}\right) \subseteq \mathbb{C}$.
By extending $K$ to $L=K\left(\zeta_{e}\right)$ we can assume that $\Delta(g)$ is a diagonal matrix.

Then for $g$ of order $m$ the diagonal entries of $\Delta(g)$ are $m$-th roots of unity. The claims (i)-(iii) now follow immediately by considering the unit circle.
For (iv) we additionally require that $\binom{p}{i} \equiv 0(\bmod p)$, hence $\chi\left(g^{p}\right)=\sum_{i=1}^{n} \xi_{i}^{p} \equiv$ $\left(\sum_{i=1}^{n} \xi_{i}\right)^{p}(\bmod p)$. Finally, (v) follows from (iv), since $a^{p} \equiv a(\bmod p)$ for $a \in \mathbb{Z}$ (by Fermat's little theorem) and since algebraic integers of $\mathbb{Q}$ lie in $\mathbb{Z}$.
3.2.7 Remark The fact that $\chi\left(g^{-1}\right)=\overline{\chi(g)}$ shows that the symmetric bilinear form $(\cdot, \cdot)_{G}$ is in fact a hermitian inner product given by

$$
(\chi, \psi)_{G}=\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)}
$$

3.2.8 Definition For a character $\chi$ of a group $G$ we define $\operatorname{ker}(\chi):=\{g \in G \mid$ $\chi(g)=\chi(1)\}$. By the preceeding theorem, for a field of characteristic 0 this coincides with the kernel of a representation by which $\chi$ is afforded.
3.2.9 Theorem Let $\chi_{1}, \ldots, \chi_{r}$ be the irreducible $\mathbb{C}$-characters of $G$.
(i) $\chi_{i}(g) \in \mathbb{R}$ for all $i \Leftrightarrow g$ and $g^{-1}$ are conjugate.
(ii) $\chi_{i}(g) \in \mathbb{Z}$ for all $i \Leftrightarrow g$ and $g^{j}$ are conjugate for all $j$ with $\operatorname{gcd}(j,|\langle g\rangle|)=1$.

Proof: It is clear that all characters have the same values on conjugate elements. Vice versa, if all irreducible characters have the same values on two elements $g, h \in G$, also the class indicator functions have the same values on $g$ and $h$, since the irreducible characters form a basis of the vector space of class functions. Hence, $g$ and $h$ lie in the same conjugacy class. This could in fact also be concluded from the second orthogonality relation.
(i) We have $\chi_{i}(g) \in \mathbb{R} \Leftrightarrow \chi_{i}(g)=\overline{\chi_{i}(g)}=\chi_{i}\left(g^{-1}\right)$, hence $\chi_{i}(g) \in \mathbb{R}$ for all $1 \leq i \leq r$ if and only if all the irreducible characters have the same values on $g$ and $g^{-1}$ which is the case if and only if $g$ and $g^{-1}$ are conjugate.
(ii) We know that all character values $\chi_{i}(g)$ lie in $\mathbb{Q}\left(\zeta_{m}\right)$ where $m$ is the order of $g$. Now on the one hand the Galois automorphisms of $\mathbb{Q}\left(\zeta_{m}\right)$ are of the form $\sigma_{j}: \zeta_{m} \mapsto \zeta_{m}^{j}$ with $\operatorname{gcd}(j, m)=1$ and $\chi_{i}(g) \in \mathbb{Q} \Leftrightarrow \sigma_{j}\left(\chi_{i}(g)\right)=\chi_{i}(g)$ for all $j$. On the other hand, we can assume that $\Delta(g)$ is a diagonal matrix and we can apply $\sigma_{j}$ to each of the diagonal entries, thus obtaining $\Delta\left(g^{j}\right)$. This shows that $\sigma_{j}\left(\chi_{i}(g)\right)=\chi_{i}\left(g^{j}\right)$. We therefore conclude that $\chi_{i}(g) \in \mathbb{Q}$ for all $1 \leq i \leq r$ if and only if all irreducible characters have the same values on $g^{j}$ for all $j$ with $\operatorname{gcd}(j, m)=1$ which in turn is the case if and only if $g$ and $g^{j}$ are conjugate for all $j$ with $\operatorname{gcd}(j, m)=1$. Since character values are algebraic integers, it follows that $\chi_{i}(g) \in \mathbb{Q}$ implies $\chi_{i}(g) \in \mathbb{Z}$.
3.2.10 Example We determine the character table of the alternating group $A_{5}$. As frame we have

| $C_{G}\left(g_{i}\right)$ | 60 | 4 | 3 | 5 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|C_{i}\right\|$ | 1 | 15 | 20 | 12 | 12 |
| $g_{i}$ | 1 | $(1,2)(3,4)$ | $(1,2,3)$ | $(1,2,3,4,5)$ | $(1,2,3,5,4)$ |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ |  |  |  |  |  |
| $\chi_{3}$ |  |  |  |  |  |
| $\chi_{4}$ |  |  |  |  |  |
| $\chi_{5}$ |  |  | 2 | 0 | 0 |

From $\left(\pi, \chi_{1}\right)=1$ and $(\pi, \pi)=2$ we see that $\pi-\chi_{1}$ is an irreducible character which we call $\chi_{2}$. Thus $\chi_{2}=(4,0,1,-1,-1)$. Next we conclude from $60=1^{2}+4^{2}+\chi_{3}(1)^{2}+\chi_{4}(1)^{2}+\chi_{5}(1)^{2}$ that $\chi_{3}(1)=5, \chi_{4}(1)=\chi_{5}(1)=3$. The values on the class of $(1,2)(3,4)$ are rational and are congruent to the character degrees modulo 2 . The only possibilities which agree with the orthogonality with the first and second column are $\chi_{3}((1,2)(3,4))=1, \chi_{4}((1,2)(3,4))=$ $\chi_{5}((1,2)(3,4))=-1$. From the orthogonality of the third column with the first two it now follows that $\chi_{3}((1,2,3))=-1$ and orthogonality with itself then implies $\chi_{4}((1,2,3))=\chi_{5}((1,2,3))=0$. From $\left(\chi_{3}, \chi_{3}\right)=1$ one concludes $\chi_{3}((1,2,3,4,5))=\chi_{3}((1,2,3,5,4))=0$. Orthogonality between $\chi_{1}$ and $\chi_{4}$ now shows that $\chi_{4}((1,2,3,4,5))+\chi_{4}((1,2,3,5,4))=1$, analogously we get $\chi_{5}((1,2,3,4,5))+\chi_{5}((1,2,3,5,4))=1$. Orthogonality between the second and fourth/fifth column implies $\chi_{4}((1,2,3,4,5))+\chi_{5}((1,2,3,4,5))=1$ and $\chi_{4}((1,2,3,5,4))+\chi_{5}((1,2,3,5,4))=1$. Finally, orthogonality for the fourth column implies $\chi_{4}((1,2,3,4,5))^{2}-\chi_{4}((1,2,3,4,5))-1=0$, thus we have (w.l.o.g.) $\chi_{4}((1,2,3,4,5))=\frac{1+\sqrt{5}}{2}=1+\zeta_{5}+\zeta_{5}^{4}$ and $\chi_{4}((1,2,3,5,4))=\frac{1-\sqrt{5}}{2}=1+\zeta_{5}^{2}+\zeta_{5}^{3}$. The full character table of $A_{5}$ therefore is:

| $C_{G}\left(g_{i}\right)$ | 60 | 4 | 3 | 5 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|C_{i}\right\|$ | 1 | 15 | 20 | 12 | 12 |
| $g_{i}$ | 1 | $(1,2)(3,4)$ | $(1,2,3)$ | $(1,2,3,4,5)$ | $(1,2,3,5,4)$ |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ | 4 | 0 | 1 | -1 | -1 |
| $\chi_{3}$ | 5 | 1 | -1 | 0 | 0 |
| $\chi_{4}$ | 3 | -1 | 0 | $\frac{1+\sqrt{5}}{2}$ | $\frac{1-\sqrt{5}}{2}$ |
| $\chi_{5}$ | 3 | -1 | 0 | $\frac{1-\sqrt{5}}{2}$ | $\frac{1+\sqrt{5}}{2}$ |

3.2.11 Proposition $L e t ~ G$ be a finite group, $K$ a splitting field of $G$ with $\operatorname{char}(K)=0$ and let $\Delta$ be an irreducible representation of degree $n$ with character $\chi$. Define $\omega: Z(K G) \rightarrow K$ such that $\Delta(z)=\omega(z) \cdot I_{n}$ for $z \in Z(K G)$. The mapping $\omega$ is called a central character of $G$.
(i) For a conjugacy class $C$ and the class sum $C^{+}:=\sum_{g \in C} g$ we have $\omega\left(C^{+}\right)=\frac{|C|}{\chi(1)} \chi(g)$ for $g \in C$.
(ii) $\omega\left(C^{+}\right)$is an algebraic integer.

Proof: (i): We have $\omega\left(C^{+}\right) \cdot I_{n}=\Delta\left(C^{+}\right)=\sum_{g \in C} \Delta(g)$, which gives $\omega\left(C^{+}\right) \chi(1)=|C| \chi(g)$.
(ii): $C_{1}^{+}, \ldots C_{r}^{+}$is a $K$-basis of $Z(K G)$ and we have $C_{i}^{+} C_{j}^{+}=\sum_{k=1}^{r} a_{i j k} C_{k}^{+}$with $a_{i j k} \in K$. But for $g_{k} \in C_{k}$ fixed we have $a_{i j k}=\mid\left\{(g, h) \mid g \in C_{i}, h \in C_{j}, g h=\right.$ $\left.g_{k}\right\} \mid \in \mathbb{Z}_{\geq 0}$. Applying $\omega$ gives $\omega\left(C_{i}^{+}\right) \omega\left(C_{j}^{+}\right)=\sum_{k=1}^{r} a_{i j k} \omega\left(C_{k}^{+}\right)$, thus the ring generated by the $\omega\left(C_{i}^{+}\right)$is a finitely generated $\mathbb{Z}$-module which is spanned by the $\omega\left(C_{i}^{+}\right)$. This implies that $\omega\left(C_{i}^{+}\right)$is an algebraic integer (since all elements in a finitely generated $\mathbb{Z}$-module are algebraic integers).

### 3.2.12 Algorithm (Dixon-Schneider)

The $a_{i j k}$ are called the structure constants of $G$. There are two ways in which the structure constants allow to compute the character table of $G$.
(1) If we denote the matrix for fixed first index by $A^{(i)}$, i.e. $A^{(i)}=\left(a_{i j k}\right)_{j, k=1}^{r}$, then the relation $\sum_{k=1}^{r} a_{i j k} \omega\left(C_{k}^{+}\right)=\omega\left(C_{i}^{+}\right) \omega\left(C_{j}^{+}\right)$show that

$$
A^{(i)}\left(\begin{array}{c}
\omega\left(C_{1}^{+}\right) \\
\vdots \\
\omega\left(C_{r}^{+}\right)
\end{array}\right)=\omega\left(C_{i}^{+}\right)\left(\begin{array}{c}
\omega\left(C_{1}^{+}\right) \\
\vdots \\
\omega\left(C_{r}^{+}\right)
\end{array}\right)
$$

thus the vector $\left(\omega\left(C_{1}^{+}\right), \ldots, \omega\left(C_{r}^{+}\right)\right)^{t r}$ is a column-eigenvector of $A^{(i)}$ with eigenvalue $\omega\left(C_{i}^{+}\right)$. From the eigenvectors, the characters can only be determined up to a scalar multiple, but this is resolved by the first orthogonality relation, since an irreducible character has to have norm 1 . We therefore can compute the irreducible characters as simultaneous eigenvectors of the structure constant matrices $A^{(i)}$.
(2) If we let $g_{k} \in C_{k}$ run in the definition of the $a_{i j k}$, we can define the set $S_{i j k}:=\left\{(g, h) \mid g \in C_{i}, h \in C_{j}, g h \in C_{k}\right\}$ of pairs with product in $C_{k}$. Then $\left|S_{i j k}\right|=a_{i j k}\left|C_{k}\right|$, since every conjugate of $g_{k}$ gives rise to a conjugate pair of $(g, h)$. But we have $(g, h) \in S_{i j k} \Leftrightarrow g h=u \in C_{k} \Leftrightarrow$ $g^{-1} u=h \in C_{j} \Leftrightarrow\left(g^{-1}, u\right) \in S_{i^{\prime} k j}$, where $i^{\prime}$ is the index of the class $C_{i^{\prime}}$ containing the inverses of $C_{i}$. We therefore have $\left|S_{i j k}\right|=\left|S_{i^{\prime} k j}\right|$ and thus $a_{i j k}\left|C_{k}\right|=a_{i^{\prime} k j}\left|C_{j}\right|$. From $\omega\left(C_{i^{\prime}}^{+}\right) \omega\left(C_{k}^{+}\right)=\sum_{j=1}^{r} a_{i^{\prime} k j} \omega\left(C_{j}^{+}\right)$we now see that $\frac{\left|C_{i^{\prime}}\right|\left|C_{k}\right|}{\chi(1)^{2}} \chi\left(g_{i}^{-1}\right) \chi\left(g_{k}\right)=\sum_{j=1}^{r} a_{i^{\prime} k j} \frac{\left|C_{j}\right|}{\chi(1)} \chi\left(g_{j}\right)=\sum_{j=1}^{r} a_{i j k} \frac{\left|C_{k}\right|}{\chi(1)} \chi\left(g_{j}\right)$ which shows that

$$
\sum_{j=1}^{r} \chi\left(g_{j}\right) a_{i j k}=\frac{\left|C_{i}\right| \chi\left(g_{i}^{-1}\right)}{\chi(1)} \chi\left(g_{k}\right)
$$

since $\left|C_{i}\right|=\left|C_{i^{\prime}}\right|$. Thus, the vector $\left(\chi\left(g_{1}\right), \ldots, \chi\left(g_{r}\right)\right)$ is a row-eigenvector of $A^{(i)}$ with eigenvalue $\frac{\left|C_{i}\right| \chi\left(g_{i}^{-1}\right)}{\chi(1)}=\omega\left(C_{i^{\prime}}^{+}\right)$.
3.2.13 Theorem Let $K$ be a splitting field for $G$ with $\operatorname{char}(K)=0$ and let $\chi$ be an irreducible character of $G$. Then $\chi(1)||G|$.

Proof: The first orthogonality relation says that $|G|=\sum_{g \in G} \chi(g) \chi\left(g^{-1}\right)=$ $\sum_{i=1}^{r}\left|C_{i}\right| \chi\left(g_{i}\right) \chi\left(g_{i}^{-1}\right)$ and therefore $|G| / \chi(1)=\sum_{i=1}^{r} \omega\left(C_{i}^{+}\right) \chi\left(g_{i}^{-1}\right)$ is an algebraic integer, since both $\omega\left(C_{i}^{+}\right)$and $\chi\left(g_{i}^{-1}\right)$ are algebraic integers. But an algebraic integer in $\mathbb{Q}$ is an integer.
3.2.14 Remark A stronger result by Itô says that $\chi(1) \mid[G: N]$ for every abelian normal subgroup $N \unlhd G$.

### 3.3 Burnsides's $p^{a} q^{b}$ theorem

A famous application of character theory is the proof of Burnside's theorem that a group of order $p^{a} q^{b}$ with $p, q$ prime is soluble. The proof involves two other theorems, which are interesting in their own right.
3.3.1 Theorem Let $\Delta$ be an irreducible representation of $G$ with character $\chi$ and let $C$ be a conjugacy class of $G$ with $\operatorname{gcd}(\chi(1),|C|)=1$. Then either $\Delta(g) \in Z(\Delta(G))$ or $\chi(g)=0$.

Proof: Let $a, b \in \mathbb{Z}$ with $a|C|+b \chi(1)=1$, then multiplying by $\frac{\chi(g)}{\chi(1)}$ gives $a \omega\left(C^{+}\right)+b \chi(g)=\frac{\chi(g)}{\chi(1)}$. The left hand side is an algebraic integer, therefore $\frac{\chi(g)}{\chi(1)}$ is an algebraic integer. We have $\Delta(g) \in Z(\Delta(G)) \Leftrightarrow|\chi(g)|=\chi(1)$, since $\Delta$ is irreducible, therefore $\left|\frac{\chi(g)}{\chi(1)}\right|<1$ if $\Delta(g) \notin Z(\Delta(G))$. Let $m$ be the order of $g$, then $\chi(g) \in \mathbb{Q}\left(\zeta_{m}\right)$. For every Galois automorphism $\sigma \in \operatorname{Aut}\left(\mathbb{Q}\left(\zeta_{m}\right)\right)$ we have $\left|\chi(g)^{\sigma}\right| \leq \chi(1)$, therefore for $\theta:=\prod_{\sigma \in \operatorname{Aut}\left(\mathbb{Q}\left(\zeta_{m}\right)\right)} \frac{\chi(g)^{\sigma}}{\chi(1)}$ we have $|\theta|<1$. But with $\frac{\chi(g)}{\chi(1)}$ every Galois conjugate $\frac{\chi(g)^{\sigma}}{\chi(1)}$ is also an algebraic integer, since it is a root of the same monic polynomial as $\frac{\chi(g)}{\chi(1)}$. This shows that $\theta$ is an algebraic integer. On the other hand, $\theta$ is fixed under all elements of $\operatorname{Aut}\left(\mathbb{Q}\left(\zeta_{m}\right)\right)$, thus $\theta \in \mathbb{Q}$ and since it is an algebraic integer we have $\theta \in \mathbb{Z}$. From $|\theta|<1$ we now conclude that $\theta=0$ and therefore $\chi(g)=0$.
3.3.2 Theorem Let $G$ be a non-abelian simple group. Then $G$ has no conjugacy class of prime power length $p^{n}$ except $\{1\}$.

Proof: Let $1 \neq g \in G, C$ the conjugacy class of $g$ and assume that $|C|=p^{a}$. Let $\chi$ be a non-trivial irreducible character of $G$ afforded by the representation $\Delta$. Then $Z(\Delta(G))=\{1\}$, since $G$ is a non-abelian simple group (which implies $G \cong \Delta(G))$. By theorem 3.3.1 we know that $\chi(g)=0$ if $p \nmid \chi(1)$. The second orthogonality relation for the classes of $g$ and 1 now reads as:

$$
0=\frac{1}{|G|} \sum_{i=1}^{r} \chi_{i}(g) \chi_{i}(1)=1+\sum_{p \mid \chi_{i}(1)} \chi_{i}(g) \chi_{i}(1)
$$

and therefore $-\frac{1}{p}=\sum_{p \mid \chi_{i}(1)} \chi_{i}(g) \frac{\chi_{i}(1)}{p}$. The right hand side of this equation is an algebraic integer, since $\chi_{i}(g)$ is an algebraic integer and $\frac{\chi_{i}(1)}{p} \in \mathbb{Z}$. But $-\frac{1}{p}$
is not an algebraic integer, which contradicts the assumption of a conjugacy class of prime power length.

### 3.3.3 Theorem (Burnside)

If $|G|=p^{a} q^{b}$ with $p$ and $q$ prime, then $G$ is soluble.
Proof: We use induction on $|G|$. Let $N \unlhd G$ be a maximal normal subgroup of $G$. If $N \neq\{1\}$ then by induction $N$ and $G / N$ are soluble and thus, $G$ is soluble. We can therefore assume that $G$ is simple. Let $P \neq\{1\}$ be a Sylow subgroup of $G$ and $1 \neq g \in Z(P)$. Then $P \leq C_{G}(g)$ and thus the length $\left[G: C_{G}(g)\right]$ of the conjugacy class of $g$ is a prime power. By theorem 3.3.2 this implies that $G$ is an abelian group and is in particular soluble.

### 3.4 Tensor products

3.4.1 Definition For two vector spaces $V$ and $W$ with bases $\left(v_{1}, \ldots, v_{n}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$, respectively, the tensor product $V \otimes_{K} W$ of $V$ and $W$ is defined to be the vector space spanned by the $n \cdot m$ linearly independent elements $v_{i} \otimes w_{j}$. For two elements $v=\sum_{i=1}^{n} a_{i} v_{i} \in V$ and $w=\sum_{j=1}^{m} b_{j} w_{j} \in W$ the (pure) tensor $v \otimes w$ is defined by $v \otimes w:=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j}\left(v_{i} \otimes w_{j}\right)$.

### 3.4.2 Remarks

(1) We can regard $\otimes_{K}$ as a $K$-bilinear mapping $\otimes_{K}: V \times W \rightarrow V \otimes_{K} W$, since
(i) $\left(v+v^{\prime}\right) \otimes w=v \otimes w+v^{\prime} \otimes w$ for all $v, v^{\prime} \in V, w \in W$,
(ii) $v \otimes\left(w+w^{\prime}\right)=v \otimes w+v \otimes w^{\prime}$ for all $v \in V, w, w^{\prime} \in W$,
(iii) $\lambda v \otimes w=v \otimes \lambda w=\lambda(v \otimes w)$ for all $v \in V, w \in W$ and $\lambda \in K$.

If there is no confusion about the field $K$ we will usually omit the subscript $K$ and write $V \otimes W$ instead of $V \otimes_{K} W$.
(2) Note that not every element of $V \otimes W$ is a pure tensor of the form $v \otimes w$ for some $v \in V, w \in W$. For $V=W=\mathbb{F}_{p}^{n}$ we have $\operatorname{dim}(V \otimes W)=n^{2}$, thus $|V \otimes W|=p^{n^{2}}$, but there are only $\left(p^{n}\right)^{2}=p^{2 n}$ pure tensors.
(3) The construction of the tensor product $V \otimes W$ is independent on the choice of bases for $V$ and $W$. If we choose different bases $\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)$ for $V$ and $\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)$ for $W$, then $\left(v_{1}^{\prime} \otimes w_{1}^{\prime}, v_{1}^{\prime} \otimes w_{2}^{\prime}, \ldots, v_{n}^{\prime} \otimes w_{m}^{\prime}\right)$ is also a basis of $V \otimes W$.

### 3.4.3 Lemma

(i) For two linear mappings $\varphi \in \operatorname{End}_{K}(V)$ and $\psi \in \operatorname{End}_{K}(W)$ there is a unique linear mapping $\varphi \otimes \psi \in \operatorname{End}_{K}(V \otimes W)$ such that $(v \otimes w)(\varphi \otimes \psi)=$ $v \varphi \otimes w \psi$.
(ii) If $\varphi$ has matrix $A$ with respect to a basis $\left(v_{1}, \ldots, v_{n}\right)$ of $V$ and $\psi$ has matrix $B$ with respect to a basis $\left(w_{1}, \ldots, w_{m}\right)$ of $W$, then the matrix of $\varphi \otimes \psi$ with respect to the basis $\left(v_{1} \otimes w_{1}, v_{1} \otimes w_{2}, \ldots, v_{n} \otimes w_{m}\right)$ is given by the Kronecker product

$$
A \otimes B=\left(\begin{array}{ccc}
A_{11} B & \cdots & A_{1 n} B \\
\vdots & & \vdots \\
A_{n 1} B & \cdots & A_{n n} B
\end{array}\right)
$$

(iii) $(A \otimes B)\left(A^{\prime} \otimes B^{\prime}\right)=A A^{\prime} \otimes B B^{\prime}$.
(iv) $\operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \cdot \operatorname{tr}(B)$.

Proof: (i): Let $\left(v_{1}, \ldots, v_{n}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$ be bases of $V$ and $W$, respectively. Uniqueness of $\varphi \otimes \psi$ is clear, since $v_{i} \otimes w_{j}$ form a basis of $V \otimes W$. We now define $\left(v_{i} \otimes w_{j}\right)(\varphi \otimes \psi):=v_{i} \varphi \otimes w_{j} \psi$, then the desired property follows from the bilinearity of $\otimes$.
(ii): This follows from (i) by writing out the matrices.
(iii): This is seen by applying both sides to $v_{i} \otimes w_{j}$.
(iv): We have $\operatorname{tr}(A \otimes B)=A_{11} \operatorname{tr}(B)+\ldots+A_{n n} \operatorname{tr}(B)=\operatorname{tr}(A) \cdot \operatorname{tr}(B)$.
3.4.4 Corollary If $\Delta$ and $\Delta^{\prime}$ are representations of the group $G$ with modules $V$ and $W$ and characters $\chi$ and $\chi^{\prime}$, then $\Delta \otimes \Delta^{\prime}: G \rightarrow V \otimes W, g \mapsto \Delta(g) \otimes \Delta^{\prime}(g)$ is a representation of $G$ with character $\chi \cdot \chi^{\prime}$. In particular, products of characters are characters again.

Proof: We only have to prove that $\Delta \otimes \Delta^{\prime}$ is a group homomorphism, the rest follows from Lemma 3.4.3. We have $\left(\Delta \otimes \Delta^{\prime}\right)(g h)=\Delta(g h) \otimes \Delta^{\prime}(g h)=$ $\Delta(g) \Delta(h) \otimes \Delta^{\prime}(g) \Delta^{\prime}(h)=\left(\Delta(g) \otimes \Delta^{\prime}(g)\right)\left(\Delta(h) \otimes \Delta^{\prime}(h)\right)=\left(\Delta \otimes \Delta^{\prime}\right)(g)(\Delta \otimes$ $\left.\Delta^{\prime}\right)(h)$.
3.4.5 Remark A word of warning: Note that the representation $\Delta \otimes \Delta^{\prime}$ is defined only on the group elements and has to be extended from there to the group ring $K G$ by linearity. For arbitrary $a \in K G$ we have $\left(\Delta \otimes \Delta^{\prime}\right)(a) \neq$ $\Delta(a) \otimes \Delta^{\prime}(a)$, for example for $c \neq 0,1$ and $g \in G$ we have $\left(\Delta \otimes \Delta^{\prime}\right)(c g)=$ $c\left(\Delta(g) \otimes \Delta^{\prime}(g)\right) \neq c^{2}\left(\Delta(g) \otimes \Delta^{\prime}(g)\right)=\Delta(c g) \otimes \Delta^{\prime}(c g)$.
3.4.6 Theorem (Burnside-Brauer)

Let $\chi$ be a faithful character of $G$ and suppose that $\chi(g)$ takes on precisely $m$ different values on $G$. Then every irreducible character $\psi$ of $G$ is a constituent of one of the powers $\chi^{0}, \chi^{1}, \ldots, \chi^{m-1}$, i.e. $\left(\chi^{j}, \psi\right)>0$ for some $0 \leq j<m$.

Proof: Let $a_{1}, \ldots, a_{m}$ be the distinct values of $\chi(g)$ and assume that $a_{1}=$ $\chi(1)$. Define $G_{i}:=\left\{g \in G \mid \chi(g)=a_{i}\right\}$ and $b_{i}:=\sum_{g \in G_{i}} \overline{\psi(g)}$. The first orthogonality relation now reads as $\left(\chi^{j}, \psi\right)=\frac{1}{|G|} \sum_{i=1}^{m} a_{i}^{j} b_{i}$. Now assume that $\psi$ is not a constituent of any of the $\chi^{j}$ for $0 \leq j<m$, then $\left(b_{1}, \ldots, b_{m}\right)$ is a solution for the $m$ linear equations $\sum_{i=1}^{m} a_{i}^{j} b_{i}=0$. But the matrix of this system of equations is a Vandermonde-matrix, its determinant is $\pm \prod_{i<j}\left(a_{i}-a_{j}\right) \neq 0$. Hence all $b_{i}$ have to be zero which contradicts $b_{1}=\psi(1) \neq 0$.

### 3.4.7 Examples

(1) The character $\rho$ of the regular representation takes on only two different values, hence all irreducible characters occur as constituents of $\rho^{0}=\chi_{1}$ and $\rho$. Of course we knew this already, since $\rho$ contains every irreducible character $\chi_{i}$ with multiplicity $\chi_{i}(1)$.
(2) Let $\chi_{3}=\pi-\chi_{1}$ be the character of $S_{4}$ obtained by subtracting the trivial character from the natural permutation character. Then $\chi_{3}$ takes on the values $(3,-1,0,1,-1)$ on the conjugacy classes, hence $m=4$. We have $\left(\chi_{3}^{2}, \chi_{1}\right)=1,\left(\chi_{3}^{2}, \chi_{3}\right)=1$ and $\left(\chi_{3}^{2}, \chi_{3}^{2}\right)=4$. Since $\chi_{3}^{2}(1)=9$ we can conclude that the other two irreducible constituents of $\chi_{3}^{2}$ are the second 3 -dimensional character and the 2 -dimensional character obtained from the factor group $S_{3}$. We have not found the signum-character $\chi_{2}$ yet, but from the above theorem we know that $\left(\chi_{3}^{3}, \chi_{2}\right)>0$. It turns out that $\left(\chi_{3}^{3}, \chi_{2}\right)=1$.
3.4.8 Proposition Let $V$ and $W$ be $K G$-modules. Then $V^{*} \otimes W \cong_{K G}$ $\operatorname{Hom}_{K}(V, W)$.

Proof: Note that $\operatorname{Hom}_{K}(V, W)$ is a $K G$-module by $v(\varphi g):=\left(v g^{-1}\right) \varphi g$. To define an isomorphism between $V^{*} \otimes W$ and $\operatorname{Hom}_{K}(V, W)$ it is enough to give the image of pure tensors, since these generate $V^{*} \otimes W$. We define $\Phi: V^{*} \otimes W \rightarrow$ $\operatorname{Hom}_{K}(V, W)$ by $v \Phi(\lambda \otimes w):=(v \lambda) w$, then it is clear that $\Phi$ is a homomorphism of $K$-vector spaces. We have $v(\Phi(\lambda \otimes w) g)=\left(v g^{-1}\right) \Phi(\lambda \otimes w) g=\left(v g^{-1}\right) \lambda w g$. On the other hand $\Phi((\lambda \otimes w) g)=\Phi(\lambda g \otimes w g)$ and we have $v(\lambda g)=\left(v g^{-1}\right) \lambda$ for the action of $G$ on the dual module $V^{*}$. Hence, $v \Phi((\lambda \otimes w) g)=\left(v g^{-1}\right) \lambda w g$, which shows that $\Phi$ is a $K G$-homomorphism.

To show that $\Phi$ is injective let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of $V$ and let $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the dual basis of $V^{*}$. Note that an arbitrary element of $V^{*} \otimes W$ can be written as $\sum_{i=1}^{n} \lambda_{i} \otimes w_{i}$ with $w_{i} \in W$. Now, $v_{j} \Phi\left(\sum_{i=1}^{n} \lambda_{i} \otimes w_{i}\right)=\sum_{i=1}^{n} v_{j}\left(\lambda_{i} \otimes\right.$ $\left.w_{i}\right)=\sum_{i=1}^{n}\left(v_{j} \lambda_{i}\right) w_{i}=\sum_{i=1}^{n} \delta_{i j} w_{i}=w_{j}$. We therefore have $\Phi\left(\sum_{i=1}^{n} \lambda_{i} \otimes w_{i}\right)=$ $0 \Rightarrow w_{j}=0$ for all $j \Rightarrow \lambda_{j} \otimes w_{j}=0$ for all $j \Rightarrow \sum_{j=1}^{n} \lambda_{j} \otimes w_{j}=0$. Since $\operatorname{dim}\left(V^{*} \otimes W\right)=\operatorname{dim}(V) \cdot \operatorname{dim}(W)=\operatorname{dim}\left(\operatorname{Hom}_{K}(V, W)\right)$ it follows that $\Phi$ is also surjective and hence an isomorphism.
3.4.9 Theorem Let $\operatorname{char}(K) \neq 2$ and let $V$ be a $K G$-module of dimension $n$ with character $\chi$.
(i) $V \otimes V=V^{[2]} \oplus V^{[1,1]}$, where $V^{[2]}:=\langle\{v \otimes w \mid v \otimes w=w \otimes v\}\rangle$ is the subspace of dimension $\binom{n+1}{2}$ spanned by the symmetric tensors and $V^{[1,1]}:=\langle\{v \otimes w \mid v \otimes w=-w \otimes v\}\rangle$ is the subspace of dimension $\binom{n}{2}$ spanned by the alternating tensors. The modules $V^{[2]}$ and $V^{[1,1]}$ are called the symmetrizations of $V \otimes V$.
(ii) The character of $G$ on $V^{[2]}$ is $\chi^{[2]}(g)=\frac{1}{2}\left(\chi(g)^{2}+\chi\left(g^{2}\right)\right)$, the character of $G$ on $V^{[1,1]}$ is $\chi^{[1,1]}(g)=\frac{1}{2}\left(\chi(g)^{2}-\chi\left(g^{2}\right)\right)$.

Proof: If $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of $V$ then $\left(v_{i} \otimes v_{j}+v_{j} \otimes v_{i}, v_{k} \otimes v_{k} \mid 1 \leq\right.$ $i<j \leq n, 1 \leq k \leq n)$ is a basis of $V^{[2]}$ consisting of $\binom{n+1}{2}$ elements and $\left(v_{i} \otimes v_{j}-v_{j} \otimes v_{i} \mid 1 \leq i<j \leq n\right)$ is a basis of $V^{[1,1]}$ consisting of $\binom{n}{2}$ elements. It is clear that $V^{[2]}$ and $V^{[1,1]}$ are $G$-invariant submodules, since $(v \otimes w) g=$ $v g \otimes w g$. Now let $g \in G$ and assume that $\Delta(g)$ is a diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$. Then the action of $g$ on $\left(v_{i} \otimes v_{j}-v_{j} \otimes v_{i}\right)$ is given by $\left(v_{i} \otimes v_{j}-v_{j} \otimes v_{i}\right) g=\lambda_{i} \lambda_{j}\left(v_{i} \otimes v_{j}-v_{j} \otimes v_{i}\right)$ and hence the character on $V^{[1,1]}$ is $\chi^{[1,1]}(g)=\sum_{i<j} \lambda_{i} \lambda_{j}=\frac{1}{2}\left(\left(\sum_{i=1}^{n} \lambda_{i}\right)^{2}-\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)\right)^{2}=\frac{1}{2}\left(\chi(g)^{2}-\chi\left(g^{2}\right)\right)$. Since $\chi^{2}=\chi^{[2]}+\chi^{[1,1]}$ it follows that $\chi^{[2]}(g)=\chi(g)^{2}+\chi\left(g^{2}\right)$.
3.4.10 Definition For a finite group $G$ with irreducible characters $\chi_{1}, \ldots, \chi_{r}$ define $\theta_{k}(g):=\left|\left\{h \in G \mid h^{k}=g\right\}\right|$ for $g \in G$. Then $\theta_{k}$ is a class function and we can write it as $\theta_{k}=\sum_{i=1}^{r} \nu_{k}\left(\chi_{i}\right) \chi_{i}$. The coefficient $\nu_{k}\left(\chi_{i}\right)$ is called the $k$-th Frobenius-Schur indicator of $\chi_{i}$.
3.4.11 Corollary Let $G$ have precisely $t$ involutions (elements of order 2), then $1+t=\sum_{i=1}^{r} \nu_{2}\left(\chi_{i}\right) \chi_{i}(1)$.

Proof: This is clear since $\theta_{2}(1)=1+t$.
3.4.12 Lemma For an irreducible character $\chi$ of $G$ one has

$$
\nu_{k}(\chi):=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{k}\right)
$$

Proof: Since $\theta_{k}$ has integer values we have $\nu_{k}(\chi)=\left(\chi, \theta_{k}\right)=\left(\chi, \overline{\theta_{k}}\right)=$ $\frac{1}{|G|} \sum_{g \in G} \chi(g) \theta(g)=\frac{1}{|G|} \sum_{g \in G} \sum_{h^{k}=g} \chi(g)=\frac{1}{|G|} \sum_{h \in G} \chi\left(h^{k}\right)$.
3.4.13 Corollary Let $K$ be a splitting field for $G$ with $\operatorname{char}(K)=0$ and let $\chi$ be an irreducible character of $G$. Then $\nu_{2}(\chi) \in\{0,1,-1\}$. More precisely:

$$
\begin{aligned}
& \nu_{2}(\chi)=0 \Leftrightarrow \chi \neq \bar{\chi} \\
& \nu_{2}(\chi)=1 \Leftrightarrow \chi=\bar{\chi} \text { and }\left(\chi^{[2]}, \chi_{1}\right)_{G}=1 \\
& \nu_{2}(\chi)=-1 \Leftrightarrow \chi=\bar{\chi} \text { and }\left(\chi^{[1,1]}, \chi_{1}\right)_{G}=1
\end{aligned}
$$

Proof: Let $V$ be the irreducible module corresponding to the character $\chi$ then $\chi^{2}$ is the character on $V \otimes V$. We have $\left(\chi^{2}, \chi_{1}\right)=(\chi, \bar{\chi})$ and in case $\chi \neq \bar{\chi}$ the trivial module is not a constituent of $V \otimes V$ and a fortiori not of $V^{[2]}$. From the relation $\left(\chi^{[2]}, \chi_{1}\right)=\frac{1}{2}\left(\chi^{2}, \chi_{1}\right)+\frac{1}{2} \nu_{2}(\chi)$ the claim now follows.
3.4.14 Remark Let $G$ be a finite group and $V$ a simple $K G$-module. The action of $G$ on $V \otimes V$ can be interpreted as an action of $G$ on the bilinear forms on $V$ with values in $K$ :

Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of $V$, denote the corresponding representation by $\Delta$, then $v_{i} g=\sum_{k=1}^{n} \Delta(g)_{i k}$. A general element $w \in V \otimes V$ is given by $w=\sum_{i, j=1}^{n} a_{i j}\left(v_{i} \otimes v_{j}\right)$. Then the action of $g$ on $w$ is given by $w g=$ $\sum_{i, j}^{n} \sum_{k, l}^{n} a_{i j} \Delta(g)_{i k} \Delta(g)_{j l}$. If we identify $w$ with the matrix $A=\left(a_{i j}\right)$, then $w g$
is identified with the matrix $\Delta(g) A \Delta(g)^{t r}$. Thus, if we interpret $A$ as the Gram matrix of a bilinear form then the action of $g$ becomes the usual action on Gram matrices. Moreover, we see that $w$ is a symmetric tensor (i.e. $w \in V^{[2]}$ ) if and only if the matrix $A$ is symmetric (i.e. $A=A^{t r}$ ) and $w$ is an antisymmetric tensor (i.e. $w \in V^{[1,1]}$ ) if and only if $A$ is antisymmetric (i.e. $A=-A^{t r}$ ).
3.4.15 Corollary Let $K$ be a splitting field for $G$ with $\operatorname{char}(K)=0$ and let $\chi$ be an irreducible character of $G$ with corresponding module $V$. If $\chi=\bar{\chi}$ there exists (up to scalar multiples) a unique non-degenerate $G$-invariant bilinear form $\Phi$ on $V$. This form $\Phi$ is symmetric if and only if $\nu_{2}(\chi)=1$, it is symplectic (antisymmetric) if and only if $\nu_{2}(\chi)=-1$.

Proof: We already know that $\left(\chi^{[2]}, \chi_{1}\right)=1$ if $\nu_{2}(\chi)=1$ and $\left(\chi^{[1,1]}, \chi_{1}\right)=1$ if $\nu_{2}(\chi)=-1$. From the above remark we see that in the first case $G$ fixes a symmetric bilinear form and in the latter case an antisymmetric bilinear form. Finally, it is clear that the invariant form $\Phi$ has to be non-degenerate, since otherwise the radical $\left\{v \in V \mid \Phi\left(v, v^{\prime}\right)=0\right.$ for all $\left.v^{\prime} \in V\right\}$ of $\Phi$ would be a proper $G$-invariant submodule.

We have seen that a real-valued character indicates that the corresponding representation fixes a bilinear form and the Frobenius-Schur indicator $\nu_{2}(\chi)$ distinguishes whether the form is symmetric or antisymmetric. We will now show that $\nu_{2}(\chi)$ actually tells us much more, namely whether a real-valued character is the character of a representation that can be written over $\mathbb{R}$. For that we have to discuss how we can interpret a $\mathbb{C} G$-module as an $\mathbb{R} G$-module.
3.4.16 Definition Let $V$ be a $\mathbb{C} G$-module with basis $\left(v_{1}, \ldots, v_{n}\right)$ and representation $\Delta$. Define $V_{\mathbb{R}}$ to be the vector space with basis $\left(v_{1}, \ldots, v_{n}, i v_{1}, \ldots, i v_{n}\right)$. We can turn $V_{\mathbb{R}}$ into an $\mathbb{R} G$-module by

$$
\begin{aligned}
v_{j} g & :=\sum_{k=1}^{n} \operatorname{Re}\left(\Delta(g)_{j k}\right) v_{k}+\operatorname{Im}\left(\Delta(g)_{j k}\right) i v_{k} \\
\left(i v_{j}\right) g & :=\sum_{k=1}^{n}-\operatorname{Im}\left(\Delta(g)_{j k}\right) v_{k}+\operatorname{Re}\left(\Delta(g)_{j k}\right) i v_{k}
\end{aligned}
$$

The representation on $V_{\mathbb{R}}$ has degree $2 n$ and can be written as

$$
\left(\begin{array}{cc}
\operatorname{Re}(\Delta(g)) & \operatorname{Im}(\Delta(g)) \\
-\operatorname{Im}(\Delta(g)) & \operatorname{Re}(\Delta(g))
\end{array}\right)
$$

If $\chi$ is the character on $V$, then the character on $V_{\mathbb{R}}$ is $2 \operatorname{Re}(\chi)=\chi+\bar{\chi}$.
3.4.17 Lemma If $V$ is an irreducible $\mathbb{C} G$-module and $V_{\mathbb{R}}$ is a reducible $\mathbb{R} G$ module, then $\chi$ is afforded by a real representation.

Proof: If $V_{\mathbb{R}}$ is a reducible $\mathbb{R} G$-module we have $V_{\mathbb{R}}=U \oplus W$ where $U$ is an $\mathbb{R} G$-module with character $\chi$ and $W$ is an $\mathbb{R} G$-module with character $\bar{\chi}$. Since $U$ is an $\mathbb{R} G$-module, the character $\chi$ is afforded by a real representation.
3.4.18 Lemma Let $V$ be an $\mathbb{R} G$-module and let $\Phi$ be a $G$-invariant symmetric bilinear form on $V$. Suppose there exist $v, w \in V$ with $\Phi(v, v)>0$ and $\Phi(w, w)<0$. Then $V$ is reducible.

Proof: From $\sum_{g \in G} \Delta(g) \Delta(g)^{t r}$ we obtain a positive definite bilinear form $\Psi$ on $V$. We now choose a basis $\left(v_{1}, \ldots, v_{n}\right)$ of $V$ which is orthonormal with respect to $\Psi$, i.e. $\Psi\left(v_{i}, v_{j}\right)=\delta_{i j}$. The Gram matrix $F$ of $\Phi$ with respect to this basis is a symmetric matrix. By the spectral theorem we can find an orthogonal matrix $Q$ (i.e. $Q^{-1}=Q^{t r}$ ) such that $Q F Q^{-1}=D$ is a diagonal matrix. Without loss of generality we can assume that $D_{11}>0$ and $D_{22}<0$. We now define a new $G$-invariant bilinear form $\Phi^{\prime}$ on $V$ by $\Phi^{\prime}(v, w):=\Phi(v, w)-D_{11} \Psi(v, w)$. Then $\Phi^{\prime}\left(v_{1}, w\right)=0$ for all $w \in V$, hence $v_{1}$ lies in the radical of $\Phi^{\prime}$. On the other hand $\Phi^{\prime}\left(v_{2}, v_{2}\right)=D_{22}-D_{11}<0$, hence $\Phi^{\prime}$ is not the zero-form and therefore the radical of $\Phi^{\prime}$ is a proper $\mathbb{R} G$-submodule of $V$.
3.4.19 Theorem Let $K$ be a splitting field of the finite group $G$ and let $\chi$ be an irreducible character of $G$. Then $\chi$ is afforded by a real representation if and only if $\nu_{2}(\chi)=1$.

Proof: $\Rightarrow$ : Let $\chi$ be afforded by the real representation $\Delta$. Then $F:=$ $\sum_{g \in G} \Delta(g) \Delta(g)^{t r}$ is the Gram matrix of a symmetric bilinear form fixed by $\Delta(G)$. Moreover, $F$ is positive definite and in particular $\neq 0$. Therefore, $\nu_{2}(\chi)=1$.
$\Leftarrow$ : Let $V$ be a simple $\mathbb{C} G$-module with character $\chi$. Since $\nu_{2}(\chi)=1$, there exists a $G$-invariant symmetric bilinear form $\Phi$ on $V$. We define a mapping $\iota: V_{\mathbb{R}} \rightarrow V, \sum_{j=1}^{n} a_{j} v_{j}+b_{j}\left(i v_{j}\right) \mapsto\left(a_{j}+i b_{j}\right) v_{j}$ for $a_{j}, b_{j} \in \mathbb{R}$, then $\iota$ is clearly a bijection. The mapping $\Psi: V_{\mathbb{R}} \times V_{\mathbb{R}} \rightarrow \mathbb{C}$ defined by $\Psi(v, w):=\Phi(v \iota, w \iota)$ is easily seen to be a $G$-invariant symmetric bilinear form on $V_{\mathbb{R}}$. Since $\Phi$ is not the zero-form, there are $v, w \in V$ with $\Phi(v, w) \neq 0$. Therefore we can choose $v_{1} \in\{v, w, v+w\}$ such that $\Phi\left(v_{1}, v_{1}\right) \neq 0$ and by dividing $v_{1}$ by a square root of $\Phi\left(v_{1}, v_{1}\right)$ we can assume that $\Phi\left(v_{1}, v_{1}\right)=1$. But then $\Psi\left(v_{1}, v_{1}\right)=1$ and $\Psi\left(i v_{1}, i v_{1}\right)=-1$, hence $V_{\mathbb{R}}$ is reducible by Lemma 3.4.18. By Lemma 3.4.17 this shows that $\chi$ is afforded by a real representation.
3.4.20 Remark The Frobenius-Schur indicator distinguishes over $\mathbb{C}$ the following three cases:
(1) If $\nu_{2}(\chi)=0$ then $\chi \neq \bar{\chi}$ and the representation necessarily involves elements from $\mathbb{C} \backslash \mathbb{R}$.
(2) If $\nu_{2}(\chi)=1$ then the representation can be realized over $\mathbb{R}$ and fixes a positive definite $G$-invariant bilinear form.
(3) If $\nu_{2}(\chi)=-1$ then although the character values are real the representation can not be realized over $\mathbb{R}$ and it fixes a symplectic $G$-invariant bilinear form.
3.4.21 Example The character table of the quaternion group $Q_{8}$ is

| $C_{G}\left(g_{i}\right)$ | 8 | 8 | 4 | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|C_{i}\right\|$ | 1 | 1 | 2 | 2 | 2 |
| $g_{i}$ | 1 | $i^{2}$ | $i$ | $j$ | $k$ |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ | 1 | 1 | 1 | -1 | -1 |
| $\chi_{3}$ | 1 | 1 | -1 | 1 | -1 |
| $\chi_{4}$ | 1 | 1 | -1 | -1 | 1 |
| $\chi_{5}$ | 2 | -2 | 0 | 0 | 0 |

For $i=1,2,3,4$ we have $\chi_{i}^{[2]}(g)=\frac{1}{2}\left(\chi_{i}(g)^{2}+\chi_{i}\left(g^{2}\right)\right)=1$, thus $\chi_{i}^{[2]}=\chi_{1}$. Furthermore, $\chi_{5}^{[2]}=\chi_{2}+\chi_{3}+\chi_{4}$ and $\chi_{5}^{[1,1]}=\chi_{1}$. This can also be seen by computing $\nu_{2}\left(\chi_{5}\right)=\frac{1}{8} \sum_{g \in Q_{8}} \chi_{5}\left(g^{2}\right)=\frac{1}{8}(2+2+6 \cdot(-2))=-1$.

## Exercises

28. Let $K$ be an arbitrary field and let $\Delta$ be an irreducible representation of $G$ over $K$. Show that $\sum_{g \in G} \Delta(g)=0$ unless $\Delta$ is the trivial representation.
29. Let $G$ be a finite group and $K$ a field with $\operatorname{char}(K)=0$. Let $\chi$ be a character of $G$ over $K$ and let $\Delta$ be a representation of $G$ affording $\chi$. Prove that $\operatorname{det}_{\chi}: G \rightarrow$ $K, g \mapsto \operatorname{det}(\Delta(g))$ is a 1-dimensional character of $G$. Show that $\operatorname{det}_{\chi}$ is well-defined, i.e. independent of the choice of $\Delta$ amongst the equivalent representations.
30. Let $G$ be a non-abelian group of order 8 .
(i) Show that $G$ has a unique nonlinear irreducible character $\chi$ over $\mathbb{C}$.
(ii) Show that $\chi(1)=2, \chi(g)=-2$ for $g \in G^{\prime} \backslash\{1\}$ and $\chi(h)=0$ for $h \in G \backslash G^{\prime}$.
(iii) Show that in case $G \cong Q_{8}$ the character $\operatorname{det}_{\chi}$ from the previous exercise is the trivial character of $G$ whereas in case $G \cong D_{8}$ it is not.

Note that $D_{8}$ and $Q_{8}$ are examples of nonisomorphic groups with identical character tables.
31. Let $G$ and $H$ be groups. Determine the character table of the direct product $G \times H$ in terms of the character tables of $G$ and $H$.
32. Let $G$ be a finite group and $K$ a field with $\operatorname{char}(K)=0$.
(i) Let $G$ act on a finite set $\Omega$. Show that the character $\pi$ of the permutation representation of $G$ on $V=\left\langle v_{\omega} \mid \omega \in \Omega\right\rangle$ is given by $\pi(g)=\mid$ Fix $_{\Omega}(g) \mid$ where $\operatorname{Fix}_{\Omega}(g)=\{\omega \in \Omega \mid \omega g=\omega\}$.
(ii) $G$ acts on itself by conjugation. Determine the character of the corresponding permutation representation in purely group theoretic terms.
(iii) Show that each sum over a row in the character table of $G$ is a non-negative integer. (Hint: Use the bilinear form on class functions and part (ii).)
33. Let $\chi$ be a non-trivial character of a group $G$ and suppose that all character values $\chi(g)$ are non-negative real numbers. Show that $\chi$ is reducible.
34. Let $g_{1}, \ldots, g_{r} \in G$ be representatives of the conjugacy classes of $G$ and let $\mathcal{C}=$ $\left(\chi_{i}\left(g_{j}\right)\right)_{i, j=1}^{r}$ be the character table of $G$. Show that $|\operatorname{det}(\mathcal{C})|^{2}=\prod_{j=1}^{r}\left|C_{G}\left(g_{j}\right)\right|$. (Hint: The orthogonality relations say that $\mathcal{C}$ is almost a unitary matrix.)
35. Determine the conjugacy classes, the irreducible representations over $\mathbb{C}$ and the character table of the dihedral groups $D_{2 n}$. (Hint: Consider the action of $D_{2 n}$ on a regular $n$-gon.)
36. Let $\chi$ be a character of $G$ over a field $K$ with $\operatorname{char}(K)=0$ and let $\chi=\sum_{i=1}^{r} a_{i} \chi_{i}$ be the decomposition of $\chi$ into irreducible characters.
(i) Show that $\operatorname{ker}(\chi)=\cap\left\{\operatorname{ker}\left(\chi_{i}\right) \mid a_{i}>0\right\}$.
(ii) Show that $\cap_{i=1}^{r} \operatorname{ker}\left(\chi_{i}\right)=\{1\}$.
(iii) Prove that every normal subgroup $N \unlhd G$ can be 'read off' the character table as the intersection of some of the $\operatorname{ker}\left(\chi_{i}\right)$. (Note: Every normal subgroup is a union of conjugacy classes and a normal subgroup is assumed to be 'known' when the classes it consists of are known.)
37. A character $\chi$ is called faithful if $\operatorname{ker}(\chi)=\{1\}$.
(i) Show that the centre $Z(G)$ is cyclic if $G$ has a faithful irreducible representation over $\mathbb{C}$.
(ii) Assume that $G$ is a $p$-group and that $Z(G)$ is cyclic. Prove that $G$ has a faithful irreducible representation over $\mathbb{C}$. (Hint: Every normal subgroup of $G$ intersects $Z(G)$ and if $Z(G)$ is cyclic it contains a unique subgroup of order p.)
38. Let $G$ be a finite group, $K$ a splitting field with $\operatorname{char}(K)=0$ and let $\chi_{i}, 1 \leq i \leq r$ be the irreducible characters of $G$. Recall that the structure constants $a_{i j k}$ are defined by $C_{i}^{+} C_{j}^{+}=\sum_{k=1}^{r} a_{i j k} C_{k}^{+}$, where $C_{1}^{+}, \ldots, C_{r}^{+}$are the class sums.
(i) Show that

$$
a_{i j k}=\frac{\left|C_{i}\right|\left|C_{j}\right|}{|G|} \sum_{l=1}^{r} \frac{\chi_{l}\left(g_{i}\right) \chi_{l}\left(g_{j}\right) \chi_{l}\left(g_{k}^{-1}\right)}{\chi_{l}(1)}
$$

where $g_{i}$ is a representative of the conjugacy class with class sum $C_{i}^{+}$.
(ii) Conclude that $a_{i j k}\left|C_{k}\right|=a_{i^{\prime} k j}\left|C_{j}\right|$, where $i^{\prime}$ is the index of the conjugacy class of $g_{i}^{-1}$.
39. In the Dixon-Schneider algorithm we use the fact that the irreducible characters are row-eigenvectors of the structure constant matrices $A^{(i)}=\left(a_{i j k}\right)_{1 \leq j, k \leq r}$ with eigenvalues $\omega\left(C_{i^{\prime}}^{+}\right)=\frac{\left|C_{i}\right| \chi\left(g_{i}^{-1}\right)}{\chi(1)}$. Show that no two irreducible characters have the same eigenvalues for all $A^{(i)}$.
Give an iterative method which splits the space of class functions into 1-dimensional subspaces each containing one irreducible character.
40. Use the Dixon-Schneider algorithm to determine the central characters $\omega_{i}$ and the character table of the dihedral group $D_{10}$ of order 10 .
41. Determine the character table of the simple group $G L_{3}(2)$ of order 168. (Hint: The conjugacy classes are parametrized by the characteristic polynomials of the matrices. Use symmetrized tensor products and permutation characters.)
42. Let $\chi, \psi, \theta$ be irreducible characters of the finite group $G$. Show that $(\chi \psi, \theta) \leq \theta(1)$.
43. Let $G$ be a group and let $\chi$ be the character of a $\mathbb{C}$-irreducible representation of $G$. Show that if $\nu_{2}(\chi)=-1$, then $\chi(1)$ is even. Deduce that $\nu_{2}(\chi)=1$ for $\chi$ with $\chi=\bar{\chi}$ and $\chi(1)$ odd.
44. Let $\Delta$ be an irreducible representation of degree 2 of $G$ and let $\chi$ be the character of $\Delta$. Show that $\chi^{[1,1]}(g)=\operatorname{det}(\Delta(g))$ for all $g \in G$. Conclude that $\nu_{2}(\chi)=-1$ if and only if $\operatorname{det}(\Delta(g))=1$ for all $g \in G$.
45. Let $G=\left\langle g, h \mid g^{5}=h^{2}=1, h g h=g^{-1}\right\rangle$ be the dihedral group $D_{10}$ of order 10 .
(i) Show that

$$
\Delta(g):=\left(\begin{array}{cc}
\zeta_{5} & 0 \\
0 & \zeta_{5}^{-1}
\end{array}\right), \quad \Delta(h):=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

defines a faithful irreducible representation of $D_{10}$ over $\mathbb{C}$.
(ii) Compute the Frobenius-Schur indicator $\nu_{2}(\chi)$ of the character $\chi$ of $\Delta$. Is $\Delta$ equivalent with a representation that can be realized over $\mathbb{R}$ ? If so, determine such a real representation.
(iii) Determine $\chi^{[2]}$ and $\chi^{[1,1]}$. Compute a $G$-invariant bilinear form for $\Delta(G)$.
(iv) Decompose $\chi^{2}$ and $\chi^{3}$ into irreducible characters.

## Chapter 4

## Induced representations

It is clear that a $K G$-module can be regarded as a $K H$-module for a subgroup $H \leq G$ by restricting the action to $H$. In this chapter we will deal with the opposite situation, i.e. a module for a subgroup $H$ is known and we want to construct a module for the full group from this.

### 4.1 Induction

4.1.1 Definition Let $H \leq G$ be a subgroup and let $V$ be a $K G$-module. Then by restricting the action to $K H, V$ becomes a $K H$-module which is denoted by $V_{\mid H}$ or $\operatorname{res}_{H}^{G}(V)$.
4.1.2 Theorem Let $H \leq G$ be a subgroup and let $W$ be a $K H$-module. Let $I \leq W \otimes K G$ be defined by $I:=\langle w \otimes h g-w h \otimes g \mid w \in W, h \in H, g \in G\rangle$. Then the quotient space $(W \otimes K G) / I$ becomes a $K G$-module via $(w \otimes g) g^{\prime}:=w \otimes\left(g g^{\prime}\right)$. This $K G$-module is denoted by $W^{G}$.
If $g_{1}, \ldots, g_{m}$ is a transversal for $H$ in $G$ (i.e. $G=\dot{\cup}_{i=1}^{m} H g_{i}$ ), then $W^{G} \cong$ $\bigoplus_{i=1}^{m} W \otimes g_{i}$ and this decomposition is independent of the choice of the transversal. In particular $\operatorname{dim}_{K}\left(W^{G}\right)=[G: H] \operatorname{dim}_{K}(W)$.

Proof: If we forget the action of $H$ on $W$ and regard $W$ as a $K G$-module with trivial $G$-action, the given action $(w \otimes g) g^{\prime}=w \otimes\left(g g^{\prime}\right)$ is the usual tensor product action on $W \otimes K G$. Moreover, since $(w \otimes h g) x-(w h \otimes g) x=w \otimes$ $h(g x)-w h \otimes(g x)$, we see that $I$ is a $K G$-submodule of $W \otimes K G$ and hence $W^{G}$ is a $K G$-module.

Now let $g_{1}, \ldots, g_{m}$ be a transversal for $H$ in $G$ and define

$$
\varphi: w \otimes g=w \otimes h g_{i} \mapsto w h \otimes g_{i}
$$

Then linearly extending $\varphi$ gives a mapping $\varphi: W \otimes K G \rightarrow \bigoplus_{i=1}^{m} W \otimes g_{i}$ which is clearly a surjective homomorphism of vector spaces. To determine the kernel of $\varphi$ note that a general element $v \in W \otimes K G$ is of the form $v=$ $\sum_{g \in G} w_{g} \otimes g=\sum_{i=1}^{m} \sum_{h \in H} w_{h g_{i}} \otimes h g_{i}$. Since $v \varphi=\left(\ldots, \sum_{h \in H} w_{h g_{i}} h \otimes g_{i}, \ldots\right)$ we have $v \in \operatorname{ker}(\varphi)$ if and only if $\sum_{h \in H} w_{h g_{i}} h=0$ for all $i$. It is therefore clear that $I \subseteq \operatorname{ker}(\varphi)$. On the other hand, an element $\sum_{h \in H} w_{h g_{i}} \otimes h g_{i} \in \operatorname{ker}(\varphi)$ can be
written as $\sum_{h \in H} w_{h g_{i}} \otimes h g_{i}=\sum_{h \in H}\left(w_{h g_{i}} \otimes h g_{i}-w_{h g_{i}} h \otimes g_{i}\right)+\sum_{h \in H} w_{h g_{i}} h \otimes g_{i}$ and thus lies in $I$, since $\sum_{h \in H} w_{h g_{i}} h=0$. This isomorphism induced by $\varphi$ implies that $\operatorname{dim}_{K}\left(W^{G}\right)=[G: H] \operatorname{dim}_{K}(W)$.

Finally, it is clear that $w \otimes g \in W \otimes g_{i}$ if and only if $g \in H g_{i}$ and in this case $W \otimes g=W \otimes g_{i}$. This shows that the decomposition $W^{G} \cong \bigoplus_{i=1}^{m} W \otimes g_{i}$ is independent of the choice of the transversal.
4.1.3 Remark The above construction of $W^{G}=(W \otimes K G) / I$ is often denoted by $W \otimes_{K H} K G$, indicating that elements of $K H$ are allowed to commute with the tensor product sign. This is consistent with our earlier notation $V \otimes_{K} W$ for the tensor product of $K$-vector spaces.
4.1.4 Definition Let $H \leq G$ be a subgroup, let $W$ be a $K H$-module, and let $g_{1}, \ldots, g_{m}$ be a transversal for $H$ in $G$.
(i) The $K G$-module $W^{G}:=\operatorname{ind}_{H}^{G}(W):=W \otimes_{K H} K G=\left\{\sum_{i=1}^{m} w_{i} \otimes g_{i} \mid w_{i} \in\right.$ $W\}$ with action $(w \otimes g) g^{\prime}=w \otimes\left(g g^{\prime}\right)$ is called the induced module of $W$.
(ii) If $\Delta$ is the representation of $H$ on $W$ then the representation of $G$ on $W^{G}$ is denoted by $\Delta^{G}$ or and is called the induced representation.
(iii) If $\chi$ is the character of $\Delta$ then the character of $\Delta^{G}$ is denoted by $\chi^{G}$ and is called the induced character.
4.1.5 Theorem Let $H \leq G$ be a subgroup with transversal $g_{1}, \ldots, g_{m}$ and let $\left(w_{1}, \ldots, w_{n}\right)$ be a basis of the $K H$-module $W$ with representation $\Delta$ and character $\chi$. Then $B=\left(w_{1} \otimes g_{1}, \ldots, w_{n} \otimes g_{1}, w_{1} \otimes g_{2}, \ldots w_{n} \otimes g_{m}\right)$ is a basis of $W^{G}$.
(i) The representation $\Delta^{G}$ with respect to $B$ is given by

$$
\Delta^{G}(g)=\left(\begin{array}{ccc}
\dot{\Delta}\left(g_{1} g g_{1}^{-1}\right) & \cdots & \dot{\Delta}\left(g_{1} g g_{m}^{-1}\right) \\
\vdots & & \vdots \\
\dot{\Delta}\left(g_{m} g g_{1}^{-1}\right) & \cdots & \dot{\Delta}\left(g_{m} g g_{m}^{-1}\right)
\end{array}\right)
$$

where $\dot{\Delta}(h)=\Delta(h)$ if $h \in H$ and 0 otherwise.
(ii) The character $\chi^{G}$ of $\Delta^{G}$ is given by $\chi^{G}(g)=\sum_{i=1}^{m} \dot{\chi}\left(g_{i} g g_{i}^{-1}\right)$ where $\dot{\chi}(h)=\chi(h)$ if $h \in H$ and 0 otherwise.
(iii) If $\operatorname{char}(K) \nmid|H|$ then $\chi^{G}(g)=\frac{1}{|H|} \sum_{g^{\prime} \in G} \dot{\chi}\left(g^{\prime} g g^{\prime-1}\right)$.

Proof: (i)+(ii): Multiplication by $g \in G$ induces a permutation of the cosets $H g_{i}$, thus $g_{i} g=h g_{j}$ for some $h \in H$. Thus, $\left(w_{k} \otimes g_{i}\right) g=w_{k} \otimes\left(h g_{j}\right)=\left(w_{k} h\right) \otimes g_{j}$ where $g_{j}$ is the unique element in the transversal such that $g_{i} g g_{j}^{-1} \in H$.
(iii): We have $\sum_{g^{\prime} \in G} \dot{\chi}\left(g^{\prime} g g^{\prime-1}\right)=\sum_{i=1}^{m} \sum_{h \in H} \dot{\chi}\left(\left(h g_{i}\right) g\left(h g_{i}\right)^{-1}\right)$
$=\sum_{i=1}^{m} \sum_{h \in H} \dot{\chi}\left(g_{i} g g_{i}^{-1}\right)=|H| \sum_{i=1}^{m} \dot{\chi}\left(g_{i} g g_{i}^{-1}\right)=|H| \chi^{G}(g)$.
4.1.6 Remark Writing $\chi^{G}(g)$ as $\chi^{G}(g)=\frac{1}{|H|} \sum_{g^{\prime} \in G} \dot{\chi}\left(g^{\prime} g g^{\prime-1}\right)$ again shows that the definition of the induced module is independent of the choice of the transversal, since the right hand side does not depend on the transversal and the character determines the representation.
4.1.7 Corollary Let $H \leq G$ be a subgroup.
(i) If $\Delta$ is the trivial representation of $H$ then $\Delta^{G}$ is the permutation representation of $G$ on $G / H$ and the permutation character $1_{H}^{G}(g)$ gives the number of fixed points of $g$ on $G / H$.
More generally, representations induced from 1-dimensional representations of a subgroup are called monomial representations.
(ii) If $\Delta$ is the regular representation of $H$, then $\Delta^{G}$ is the regular representation of $G$.

Proof: (i): Note that $\Delta^{G}(g)_{i j}=1$ if $g_{i} g g_{j}^{-1} \in H$ and 0 else. Thus, $\Delta^{G}(g)_{i j}=$ $1 \Leftrightarrow H g_{i} g=H g_{j}$ and therefore $\Delta^{G}$ is the permutation character on the cosets in $G / H$.
(ii): This follows, since for a transversal $g_{1}, \ldots, g_{m}$ of $H$ in $G$ the basis $\left\{h \otimes g_{i} \mid\right.$ $h \in H, 1 \leq i \leq m\}$ is the same as $\{1 \otimes g \mid g \in G\}$.
4.1.8 Theorem (Frobenius reciprocity)

Let $H \leq G$ be a subgroup, let $\chi$ and $\varphi$ be a characters of $G$ and $H$, respectively, over $K$ with $\operatorname{char}(K) \nmid|G|$. Then

$$
\left(\chi, \varphi^{G}\right)_{G}=\left(\chi_{\mid H}, \varphi\right)_{H}
$$

Proof: We have $\left(\varphi^{G}, \chi\right)=\frac{1}{|G|} \sum_{i=1}^{m} \sum_{g \in G} \chi\left(g^{-1}\right) \dot{\varphi}\left(g_{i} g g_{i}^{-1}\right)$
$=\frac{1}{|G|} \sum_{i=1}^{m} \sum_{g \in g_{i}^{-1} H g_{i}} \chi\left(g^{-1}\right) \dot{\varphi}\left(g_{i} g g_{i}^{-1}\right)=\frac{1}{|G|} \sum_{i=1}^{m} \sum_{h \in H} \chi\left(g_{i}^{-1} h^{-1} g_{i}\right) \varphi(h)$
$=\frac{[G: H]}{|G|} \sum_{h \in H} \chi\left(h^{-1}\right) \varphi(h)=\left(\varphi, \chi_{\mid H}\right)_{H}$.
4.1.9 Example Let $G=S_{4}$ and $H=S_{3} \leq S_{4}$. Assume first that we know the character tables of $G$ and $H$ :

| $C_{G}\left(g_{i}\right)$ | 24 | 8 | 3 | 4 | 4 |  | $\left\|C_{G}\left(g_{i}\right)\right\|$ | 6 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mid$ | 2 |  |  |  |  |  |  |  |  |
| $\left\|C_{i}\right\|$ | 1 | 3 | 8 | 6 | 6 |  | $\left\|C_{i}\right\|$ | 1 | 2 |
| 3 |  |  |  |  |  |  |  |  |  |
| $g_{i}$ | 1 | $(1,2)(3,4)$ | $(1,2,3)$ | $(1,2)$ | $(1,2,3,4)$ | $g_{i}$ | 1 | $(1,2,3)$ | $(1,2)$ |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 |  | $\varphi_{1}$ | 1 | 1 |
|  | 1 |  |  |  |  |  |  |  |  |
| $\chi_{2}$ | 1 | 1 | 1 | -1 | -1 |  | $\varphi_{2}$ | 1 | 1 |
| $\chi_{3}$ | 2 | 2 | -1 | 0 | 0 |  | $\varphi_{3}$ | 2 | -1 |
| $\chi_{4}$ | 3 | -1 | 0 | 1 | -1 |  | 0 |  |  |
| $\chi_{5}$ | 3 | -1 | 0 | -1 | 1 |  |  |  |  |

We get the restrictions of the characters of $S_{4}$ to $S_{3}$ as $\chi_{1 \mid H}=\varphi_{1}, \chi_{2 \mid H}=\varphi_{2}$, $\chi_{3 \mid H}=\varphi_{3}, \chi_{4 \mid H}=\varphi_{1}+\varphi_{3}, \chi_{5 \mid H}=\varphi_{2}+\varphi_{3}$. We can write these restrictions into an induction-restriction table as follows: The rows are indexed by the
irreducible characters of $G$, the columns by the irreducible characters of $H$ and the $(i, j)$-entry is $a_{j}$ if $\chi_{i \mid H}=\sum_{j=1}^{r} a_{j} \varphi_{j}$. In the example, the table is

|  | $\varphi_{1}$ | $\varphi_{2}$ | $\varphi_{3}$ |
| :---: | :---: | :---: | :---: |
| $\chi_{1}$ | 1 | 0 | 0 |
| $\chi_{2}$ | 0 | 1 | 0 |
| $\chi_{3}$ | 0 | 0 | 1 |
| $\chi_{4}$ | 1 | 0 | 1 |
| $\chi_{5}$ | 0 | 1 | 1 |

The rows of the induction-restriction table express the restrictions from $G$ to $H$ as linear combinations of the irreducible characters of $H$ and by Frobenius reciprocity the columns express the characters induced from $H$ to $G$ as linear combinations of the irreducible characters of $G$. Thus we have $\varphi_{1}^{G}=\chi_{1}+\chi_{4}$, $\varphi_{2}^{G}=\chi_{2}+\chi_{5}$ and $\varphi_{3}^{G}=\chi_{3}+\chi_{4}+\chi_{5}$.
The induction-restriction table shows that we can construct the irreducible characters of $S_{4}$ just from the characters of $S_{3}$ and the linear characters $\chi_{1}, \chi_{2}$ of $S_{4}$ : We have $\chi_{4}=\varphi_{1}^{G}-\chi_{1}, \chi_{5}=\varphi_{2}^{G}-\chi_{2}$ and finally $\chi_{3}=\varphi_{3}^{G}-\chi_{4}-\chi_{5}$.
4.1.10 Example Let $G$ be a non-abelian group of order $p q$ where $p>q$ are different primes. Then the Sylow- $p$ subgroup $P$ of $G$ is normal and every element of order $q$ acts as an automorphism of $C_{p}$, thus $p-1=k q$. Since $\operatorname{Aut}\left(C_{p}\right) \cong C_{p-1}$ is cyclic, there is a unique subgroup of order $q$ of $\operatorname{Aut}\left(C_{p}\right)$, hence the isomorphism type of $G$ is determined uniquely.

The commutator group of $G$ is $P$, therefore $G$ has $q$ linear characters $\chi_{1}, \ldots, \chi_{q}$, namely the characters of $C_{q}$, having $P$ in the kernel. Since the character degrees divide the group order, the nonlinear characters of $G$ have degrees $p$ or $q$. But from $p q=q \cdot 1^{2}+l \cdot p^{2}+m \cdot q^{2}$ we conclude that $l=0$, hence there are $m$ characters of degree $q$ where $m=\frac{p-1}{q}=k$.

To determine the conjugacy classes of $G$, let $G=\langle a, b\rangle$ where $\langle a\rangle=P$ and $b$ generates a Sylow- $q$-subgroup. Then the powers of $a$ fall into $k$ conjugacy classes under the action of $b$, since every orbit has length $q$. Moreover, if $b a b^{-1}=a^{s}$ we see that $a^{-1} b a=a^{s-1} b$, hence the powers of $b$ are representatives of different conjugacy classes. We thus have $k$ classes of elements of order $p$ and $q-1$ classes of elements of order $q$ and of course the class consisting of the identity element.

We will now determine the $k$ characters of degree $q$ by inducing linear characters of $P$ to $G$. The non-trivial linear characters of $P$ are given by $\lambda_{i}(a)=\zeta_{p}^{i}$, where $\zeta_{p}$ is a primitive $p$-th root of unity and $1 \leq i<p$. Since $1, b, b^{2}, \ldots, b^{q-1}$ is a transversal of $P$ in $G$, we have $\lambda_{i}^{G}\left(b^{l}\right)=\sum_{j=0}^{q-1} \dot{\lambda}_{i}\left(b^{j} b^{l} b^{-j}\right)=\sum_{j=0}^{q-1} \dot{\lambda}_{i}\left(b^{l}\right)=0$, since $b^{l} \notin P$. This could also have been concluded from the fact that the elements of order $q$ have no fixed points on $G / P$. Since $P \unlhd G$ we furthermore have $\lambda_{i}^{G}(a)=\sum_{j=0}^{q-1} \lambda_{i}\left(b^{j} a b^{-j}\right)=\sum_{j=0}^{q-1} \lambda_{i}\left(a^{j s}\right)=\sum_{j=0}^{q-1}\left(\zeta_{p}^{i}\right)^{j s}=\sum_{j=0}^{q-1} \zeta_{p}^{l_{j}}$ where $a^{l_{0}}, \ldots, a^{l_{q-1}}$ is a conjugacy class of elements of order $p$. This shows that the induced characters $\lambda_{i}^{G}$ and $\lambda_{i^{\prime}}^{G}$ are different if and only if $a^{i}$ and $a^{i^{\prime}}$ represent different conjugacy classes. Thus we obtain $k$ different induced characters $\lambda_{i_{j}}^{G}$. To see that these characters are irreducible, we only have to check that they do not
have a linear character as a constituent, since the irreducible characters have degrees 1 or $q$. But by Frobenius reciprocity we have $\left(\lambda_{i}^{G}, \chi_{j}\right)_{G}=\left(\lambda_{i}, \chi_{j \mid P}\right)_{P}=0$, since $\lambda_{i}$ is a non-trivial linear character and $\chi_{j \mid H}$ is the trivial character. We therefore conclude that the $k$ induced characters are the distinct irreducible characters of degree $q$ of $G$.

As an explicit example, let $p=7, q=3$, then $G=\langle a, b\rangle \cong C_{7} \rtimes C_{3}$. We have $b a b^{-1}=a^{2}$ and the orbits of $b$ on the powers of $a$ are $\left(a, a^{2}, a^{4}\right),\left(a^{3}, a^{5}, a^{6}\right)$. We get the character table of $G$ as

| $C_{G}\left(g_{i}\right)$ | 21 | 7 | 7 | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|C_{i}\right\|$ | 1 | 3 | 3 | 7 | 7 |
| $g_{i}$ | 1 | $a$ | $a^{3}$ | $b$ | $b^{2}$ |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ | 1 | 1 | 1 | $\zeta_{3}$ | $\zeta_{3}^{2}$ |
| $\chi_{3}$ | 1 | 1 | 1 | $\zeta_{3}^{2}$ | $\zeta_{3}$ |
| $\lambda_{1}^{G}$ | 3 | $\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}$ | $\zeta_{7}^{3}+\zeta_{7}^{5}+\zeta_{7}^{6}$ | 0 | 0 |
| $\lambda_{3}^{G}$ | 3 | $\zeta_{7}^{3}+\zeta_{7}^{5}+\zeta_{7}^{6}$ | $\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}$ | 0 | 0 |

4.1.11 Remark If $\chi$ and $\psi$ are characters for representations on $K G$-modules $V$ and $W$, then $(\chi, \psi)_{G}=\operatorname{dim} \operatorname{Hom}_{K G}(V, W)$. Thus, Frobenius reciprocity implies $\operatorname{dim} \operatorname{Hom}_{K G}\left(W^{G}, V\right)=\operatorname{dim} \operatorname{Hom}_{K H}\left(W, V_{\mid H}\right)$ and $\operatorname{dim} \operatorname{Hom}_{K G}\left(V, W^{G}\right)=$ $\operatorname{dim} \operatorname{Hom}_{K H}\left(V_{\mid H}, W\right)$. But a much stronger result holds, namely the FrobeniusNakayama reciprocity.
4.1.12 Theorem (Frobenius-Nakayama reciprocity)

Let $H \leq G$ be a subgroup, let $V$ be a $K G$-module and $W$ a $K H$-module. Then $\operatorname{Hom}_{K G}\left(W^{G}, V\right) \cong \operatorname{Hom}_{K H}\left(W, V_{\mid H}\right)$ and $\operatorname{Hom}_{K G}\left(V, W^{G}\right) \cong \operatorname{Hom}_{K H}\left(V_{\mid H}, W\right)$ as $K$-modules.

Proof: Let $\varphi \in \operatorname{Hom}_{K G}\left(W^{G}, V\right)$, i.e. $\varphi: W \otimes_{K H} K G \rightarrow V$. We now define $\varphi^{\prime}: W \rightarrow V$ by $w \varphi^{\prime}:=(w \otimes 1) \varphi$. It is clear that $\varphi^{\prime}$ is a $K H$-module homomorphism, since by the definition of $W \otimes_{K H} K G$ we have $\left(w \varphi^{\prime}\right) h=(w \otimes$ 1) $\varphi h=(w \otimes h) \varphi=(w h \otimes 1) \varphi$. We therefore have $\varphi^{\prime} \in \operatorname{Hom}_{K H}\left(W, V_{\mid H}\right)$. Moreover, the mapping $\Gamma: \varphi \rightarrow \varphi^{\prime}$ is clearly $K$-linear and it is injective, since $\varphi^{\prime}=0$ implies $(w \otimes 1) \varphi=0$ for all $w \in W$ and thus $\varphi=0$.
To show that $\Gamma$ is surjective, let $\varphi^{\prime} \in \operatorname{Hom}_{K H}\left(W, V_{\mid H}\right)$ and let $T=\left\{g_{1}, \ldots, g_{m}\right\}$ be a transversal for $H$ in $G$. We now define $\left(w \otimes h g_{i}\right) \varphi:=\left(w \varphi^{\prime}\right) h g_{i}=(w h) \varphi^{\prime} g_{i}$, then $\varphi$ is a well-defined $K$-homomorphism from $W^{G}$ to $V$. Moreover, for $g \in G$ and $g_{i} \in T$ let $g_{i} g=h^{\prime} g_{j}$, then we have $\left(w \otimes h g_{i}\right) \varphi g=(w h) \varphi^{\prime} g_{i} g=(w h) \varphi^{\prime} h^{\prime} g_{j}=$ $(w h) h^{\prime} \varphi^{\prime} g_{j}=\left(w \otimes h h^{\prime} g_{j}\right) \varphi=\left(w \otimes h g_{i}\right) g \varphi$. This shows that $\varphi$ is $G$-invariant and thus $\varphi \in \operatorname{Hom}_{K G}\left(W^{G}, V\right)$. Since $\Gamma(\varphi)=\varphi^{\prime}$ this establishes that $\Gamma$ is bijective.

The second isomorphism is left as an exercise.

### 4.2 Permutation characters

4.2.1 Lemma Let $G$ act transitively on $\Omega$, let $\alpha \in \Omega$ and let $H:=G_{\alpha}:=$ $\operatorname{Stab}_{G}(\alpha)$. Then the permutation character $\pi$ of the action of $G$ on $\Omega$ is given as $\pi=\left(1_{H}\right)^{G}$.

Proof: Let $T=\left\{g_{1}, \ldots, g_{n}\right\}$ be a transversal of $H$ in $G$, then $n=|\Omega|$ and $\Omega=\left\{\alpha g_{i} \mid 1 \leq i \leq n\right\}$. For $g \in G$ we have $\pi(g)=|\{\omega \in \Omega \mid \omega g=g\}|=\mid\left\{g_{i} \in\right.$ $\left.G \mid \alpha g_{i} g=\alpha g_{i}\right\}\left|=\left|\left\{g_{i} \in G \mid g_{i} g g_{i}^{-1} \in H\right\}\right|=\left(1_{H}\right)^{G}(g)\right.$ by the definition of the induced character.
4.2.2 Proposition Let $G$ act on $\Omega$ and let $\pi$ be the permutation character of this action. Then $\left(\pi, 1_{G}\right)_{G}=\frac{1}{|G|} \sum_{g \in G}\left|f i x_{\Omega}(g)\right|$ equals the number of orbits of $G$ on $\Omega$.

Proof: By the definition of the inner product of class functions we have $\left(\pi, 1_{G}\right)_{G}=\frac{1}{|G|} \sum_{g \in G} \pi(g)$ and since $\pi$ is the permutation character on $\Omega$ we have $\pi(g)=\mid$ fix $x_{\Omega}(g) \mid$. Now let $\Omega=\dot{\cup}_{i=1}^{r} \Omega_{i}$ be the decomposition of $\Omega$ into orbits under the action of $G$ and denote by $\pi_{i}$ the permutation character of the action of $G$ on $\Omega_{i}$, then $\pi=\sum_{i=1}^{r} \pi_{i}$. If we select a point $\alpha_{i} \in \Omega_{i}$ from each orbit and define $H_{i}:=\operatorname{Stab}_{G}\left(\alpha_{i}\right)$, we have $\pi_{i}=\left(1_{H_{i}}\right)^{G}$ and by Frobenius reciprocity we get $\left(\pi_{i}, 1_{G}\right)_{G}=\left(1_{H_{i}}, 1_{H_{i}}\right)_{H_{i}}=1$. From this we conclude that $\left(\pi, 1_{G}\right)_{G}=\sum_{i=1}^{r}\left(\pi_{1}, 1_{G}\right)_{G}=r$.

Note: This is the famous Cauchy-Frobenius fixed point theorem also known as Burnside fixed point theorem.
4.2.3 Proposition Let $G$ act on $\Omega_{1}$ and $\Omega_{2}$ with permutation characters $\pi_{1}$ and $\pi_{2}$, respectively. Then $\left(\pi_{1}, \pi_{2}\right)_{G}$ is the number of orbits of $G$ on $\Omega_{1} \times \Omega_{2}$. (Here, the action of $G$ on $\Omega_{1} \times \Omega_{2}$ is given by $(\alpha, \beta) g:=(\alpha g, \beta g)$.

Proof: Since the number of fixed points of $g$ and $g^{-1}$ coincide we have $\left.\left(\pi_{1}, \pi_{2}\right)=\frac{1}{|G|} \sum_{g \in G} \right\rvert\,$ fix $_{\Omega_{1}}(g)| |$ fix $_{\Omega_{2}}(g)\left|=\frac{1}{|G|} \sum_{g \in G}\right|$ fix $x_{\Omega_{1} \times \Omega_{2}}(g) \mid$ and this is the number of orbits of $G$ on $\Omega_{1} \times \Omega_{2}$.
4.2.4 Corollary Let $G$ act transitively on $\Omega$ with permutation character $\pi$, let $\alpha \in \Omega$ and let $H:=\operatorname{Stab}_{G}(\alpha)$. Assume that $H$ has $r$ orbits on $\Omega$, then $(\pi, \pi)_{G}=r$, i.e. the number of orbits of $H$ on $\Omega$ equals the number of orbits of $G$ on $\Omega \times \Omega$. The number $r=(\pi, \pi)_{G}$ is called the rank of the transitive action of $G$.

Proof: By Frobenius reciprocity we have $r=\left(\pi_{\mid H}, 1_{H}\right)_{H}=\left(\pi,\left(1_{H}\right)^{G}\right)_{G}=$ $(\pi, \pi)_{G}$.
4.2.5 Definition A transitive action of a group $G$ on a set $\Omega$ is called doubly transitive if the stabilizer of a point $\alpha \in \Omega$ acts transitively on $\Omega \backslash\{\alpha\}$. Analogously, the action is called $k$-transitive, if the pointwise stabilizer of $(k-1)$ points acts transitively on the remaining $|\Omega|-(k-1)$ points. For example, the natural actions of $S_{n}$ and $A_{n}$ are $n$-transitive and ( $n-2$ )-transitive, respectively.
4.2.6 Corollary Let $G$ act transitively on $\Omega$ with permutation character $\pi$, The action is doubly transitive if and only if $\pi=1_{G}+\chi$ for an irreducible character $\chi$ of $G$.

Proof: The action of $G$ is doubly transitive if and only if $(\pi, \pi)=2$ and since $\left(\pi, 1_{G}\right)=1$ this equivalent with $\pi=1_{G}+\chi$ for an irreducible character $\chi$ of $G$.
4.2.7 Example Let $G=G L_{2}(q)$ be the group of invertible $2 \times 2$-matrices over the field $\mathbb{F}_{q}$ of $q$ elements. Then $G$ acts doubly transitive on the set $\Omega$ of 1-dimensional subspaces of $\mathbb{F}_{q}^{2}$ :
The 1-dimensional subspaces of $\mathbb{F}_{q}^{2}$ are represented by the vectors $v_{a}=(1, a)$ with $a \in \mathbb{F}_{q}$ and $v_{\infty}=(0,1)$, hence $|\Omega|=q+1$. The action on $\Omega$ is transitive, since any of the vectors $v_{x}$ can be chosen as the first row of an element of $G$, hence all $\alpha \in \Omega$ lie in the orbit of $\alpha_{0}=\langle(1,0)\rangle$. Now let $H:=\operatorname{Stab}_{G}\left(\alpha_{0}\right)$, then $H$ consists of the matrices of the form $\left(\begin{array}{ll}1 & 0 \\ b & c\end{array}\right)$ with $c \neq 0$. In particular, we find any $v_{x}$ except for $v_{0}$ as the second row of an element in $H$, hence all the elements of $\Omega \backslash \alpha_{0}$ lie in the orbit of $\alpha_{\infty}=\langle(0,1)\rangle$.
We can therefore conclude that the permutation character $\pi$ of the action of $G$ on $\Omega$ is of the form $\pi=1_{G}+\chi$ where $\chi$ is a $q$-dimensional irreducible rational character of $G$.
4.2.8 Theorem Let $H \leq G$ be a subgroup and let $\pi=\left(1_{H}\right)^{G}$ be the permutation character of the action of $G$ on $G / H$. Then the following hold:
(i) $\pi(1)||G|$,
(ii) $\pi(g) \in \mathbb{Z}_{\geq 0}$,
(iii) $\pi\left(g^{n}\right) \geq \pi(g)$ for all $n \in \mathbb{N}$,
(iv) $\left(\pi, 1_{G}\right)_{G}=1$,
(v) $(\pi, \chi)_{G} \leq \chi(1)$ for every character $\chi$ of $G$,
(vi) $|\langle g\rangle| \nmid \frac{|G|}{\pi(1)} \Rightarrow \pi(g)=0$,
(vii) $\frac{\pi(g)}{\pi(1)}\left|g^{G}\right| \in \mathbb{Z}$, where $g^{G}$ denotes the conjugacy class of $g$ in $G$.

Proof: Claim (i) holds for any character, (ii) follows from the interpretation of $\pi(g)$ as the number of fixed points of $g$, (iii) follows, since every fixed point of $g$ is also a fixed point of $g^{n}$ and (iv) holds, since the action of $G$ on $G / H$ is transitive.
(v): Write $\pi=\left(1_{H}\right)^{G}$, then by Frobenius reciprocity we have $(\pi, \chi)_{G}=$ $\left(1_{H}, \chi_{\mid H}\right)_{H}$ and the multiplicity of any constituent of $\chi_{\mid H}$ can not exceed the degree $\chi(1)$.
(vi): Let $m=\langle | g| \rangle$ be the order of $g$, then every conjugate $x g x^{-1}$ of $g$ also has order $m$ and therefore can not be contained in $H$. This shows that $\pi(g)=$ $\frac{1}{|H|} \sum_{x \in G}\left(1_{H}\right)\left(x g x^{-1}\right)=0$.
(vii): Let $\Omega:=G / H$ and define $X$ to be the set $X:=\{(\omega, x) \mid \omega \in \Omega, x \in$ $\left.g^{G}, \omega x=\omega\right\}$. We count the number of elements in $X$ in two different manners:

On the one hand, for a fixed $g \in g^{G}$ the number of pairs $(\omega, g) \in X$ is $\pi(g)$, hence $|X|=\left|g^{G}\right| \pi(g)$. On the other hand, for a fixed element $\omega \in \Omega$ the number of $(\omega, x) \in X$ is $\left|\operatorname{Stab}_{G}(\omega) \cap g^{G}\right|$. But since $G$ acts transitively on $\Omega$, all stabilizers $\operatorname{Stab}_{G}(\omega)$ are conjugate and since $g^{G}$ is closed under conjugation, the cardinality $c=\left|\operatorname{Stab}_{G}(\omega) \cap g^{G}\right|$ is independent of $\omega$. Hence, $|X|=|\Omega| c=\pi(1) c$ and we conclude that $\frac{\pi(g)}{\pi(1)}\left|g^{G}\right|=c \in \mathbb{Z}$.
4.2.9 Remark Theorem 4.2.8 gives a number of necessary conditions which a permutation character has to fulfill. However, they are by now means sufficient.
4.2.10 Example We determine the candidates of transitive permutation characters for the symmetric group $S_{4}$. The character table of $S_{4}$ looks as follows:

| $\left\|\left\langle g_{i}\right\rangle\right\|$ | 1 | 2 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|g_{i}^{G}\right\|$ | 1 | 3 | 6 | 8 | 6 |
| $g_{i}$ | 1 | $(1,2)(3,4)$ | $(1,2)$ | $(1,2,3)$ | $(1,2,3,4)$ |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ | 1 | 1 | -1 | 1 | -1 |
| $\chi_{3}$ | 2 | 2 | 0 | -1 | 0 |
| $\chi_{4}$ | 3 | -1 | 1 | 0 | -1 |
| $\chi_{5}$ | 3 | -1 | -1 | 0 | 1 |

Now let $\pi=\sum_{i=1}^{5} a_{i} \chi_{i}$, then from condition (v) of Theorem 4.2.8 we know that $a_{i} \leq \chi_{i}(1)$ and $a_{1}=1$ due to condition (iv). Furthermore, the fact that $\pi(g) \geq 0$ gives us a linear inequality for each of the conjugacy classes, i.e. we get the system of linear inequalities

$$
\begin{aligned}
& 0 \leq a_{2} \leq 1, \quad 1+a_{2}+2 a_{3}-a_{4}-a_{5} \geq 0 \\
& 0 \leq a_{3} \leq 2, \quad 1-a_{2}+a_{4}-a_{5} \geq 0 \\
& 0 \leq a_{4} \leq 3, \quad 1+a_{2}-a_{3} \geq 0 \\
& 0 \leq a_{5} \leq 3, \quad 1-a_{2}-a_{4}+a_{5} \geq 0
\end{aligned}
$$

If we further restrict the integral solutions of this system to solutions with $\pi(1) \mid 24$ we get the following 14 candidates for permutation characters:

$$
\begin{array}{ll}
\pi_{1}=\chi_{1} & =(1,1,1,1,1) \\
\pi_{2}=\chi_{1}+\chi_{2} & =(2,2,0,2,0) \\
\pi_{3}=\chi_{1}+\chi_{3} & =(3,3,1,0,1) \\
\pi_{4}=\chi_{1}+\chi_{4} & =(4,0,2,1,0) \\
\pi_{5}=\chi_{1}+\chi_{5} & =(4,0,0,1,2) \\
\pi_{6}=\chi_{1}+\chi_{2}+\chi_{3} & =(4,4,0,1,0) \\
\pi_{7}=\chi_{1}+\chi_{3}+\chi_{4} & =(6,2,2,0,0) \\
\pi_{8}=\chi_{1}+\chi_{3}+\chi_{5} & =(6,2,0,0,2) \\
\pi_{9}=\chi_{1}+\chi_{2}+2 \chi_{3} & =(6,6,0,0,0) \\
\pi_{10}=\chi_{1}+\chi_{2}+\chi_{4}+\chi_{5} & =(8,0,0,2,0) \\
\pi_{11}=\chi_{1}+\chi_{2}+2 \chi_{3}+\chi_{4}+\chi_{5} & =(12,4,0,0,0) \\
\pi_{12}=\chi_{1}+\chi_{3}+2 \chi_{4}+\chi_{5} & =(12,0,2,0,0) \\
\pi_{13}=\chi_{1}+\chi_{3}+\chi_{4}+2 \chi_{5} & =(12,0,0,0,2) \\
\pi_{14}=\chi_{1}+\chi_{2}+2 \chi_{3}+3 \chi_{4}+3 \chi_{5} & =(24,0,0,0,0)
\end{array}
$$

So far, we have not used conditions (iii), (vi) and (vii) of Theorem 4.2.8. Since $(1,2,3,4)^{2}=(1,3)(2,4)$ we require that the second component of $\pi_{i}$ is not smaller than the last component. This rules out the candidates $\pi_{5}$ and $\pi_{13}$. The remaining characters now also fulfill the other conditions of the theorem and we therefore proceed to identifying the true permutation characters. We know that conjugate subgroups yield the same permutation character, hence it is sufficient to look at the actions of $G$ on $G / H$ where $H$ runs over representatives of the conjugacy classes of subgroups of $G$ :
$\pi_{1}$ is the action of $S_{4}$ on $S_{4} / S_{4}$,
$\pi_{2}$ is the action of $S_{4}$ on $S_{4} / A_{4}$,
$\pi_{3}$ is the action of $S_{4}$ on $S_{4} / D_{8}$,
$\pi_{4}$ is the action of $S_{4}$ on $S_{4} / S_{3}$,
$\pi_{7}$ is the action of $S_{4}$ on $S_{4} /\langle(1,2),(3,4)\rangle$,
$\pi_{8}$ is the action of $S_{4}$ on $S_{4} / C_{4}$,
$\pi_{9}$ is the action of $S_{4}$ on $S_{4} /\langle(1,2)(3,4),(1,3)(2,4)\rangle$,
$\pi_{10}$ is the action of $S_{4}$ on $S_{4} / C_{3}$,
$\pi_{11}$ is the action of $S_{4}$ on $S_{4} /\langle(1,2)(3,4)\rangle$,
$\pi_{12}$ is the action of $S_{4}$ on $S_{4} /\langle(1,2)\rangle$,
$\pi_{14}$ is the action of $S_{4}$ on $S_{4} /\{1\}$, i.e. the regular character.
The only character not found is $\pi_{6}$. To rule out this character we need some additional argument: Assume that $\pi_{6}=\left(1_{H}\right)^{G}$, then $\left(\pi_{6}, \chi_{2}\right)=\left(1_{H}, \chi_{2 \mid H}\right)$, and since $\chi_{2}(1)=1$ we have $\chi_{2 \mid H}=1_{H}$. This means that the signum-character restricted to $H$ gives the trivial character, hence $H \leq A_{4}$. But $A_{4}$ has no subgroup of order 6 , hence $\pi_{6}$ is not a permutation character.
4.2.11 Remark Note that we can read off the maximal subgroups from the transitive permutation characters of $G$ : If $H \leq U \leq G$ we have $\left(1_{H}\right)^{G}=$ $\left(\left(1_{H}\right)^{U}\right)^{G}$, where $\left(1_{H}\right)^{U}=1_{U}+\psi$ for some character $\psi$ of $U$, since $U$ acts transitively on $U / H$. Therefore, $\left(1_{H}\right)^{G}=\left(1_{U}\right)^{G}+\psi^{G}$, which shows that the permutation character on $G / U$ is completely contained in the permutation character on $G / H$. We therefore can identify the permutation characters corresponding to maximal subgroups as the permutation characters not containing any other permutation character.

We will finish this section by constructing certain irreducible characters of $S_{n}$. Note that the conjugacy classes of $S_{n}$ are characterized by the cycle structures of the elements, hence there is a $1-1$ correspondence between conjugacy classes of $S_{n}$ and partitions of $n$. (Recall that a partition $\left(n_{1}, \ldots, n_{s}\right) \vdash n$ of $n$ is a sequence $\left(n_{1}, \ldots, n_{s}\right)$ with $n_{i} \geq 0, n_{i} \geq n_{i+1}$ and $\sum_{i=1}^{s} n_{i}=n$.) Since we know that there are as many irreducible representations as conjugacy classes it would be most convenient if we could associate an irreducible representation of $S_{n}$ to each partition of $n$. This is actually possible by some clever combinatorial constructions and we will demonstrate here the case of 2-partitions, i.e. partitions of the form $(n-k, k)$.

Let $I_{k}:=\{I \subseteq\{1, \ldots, n\}| | I \mid=k\}$ be the set of $k$-element subsets of $\{1, \ldots, n\}$. Then $S_{n}$ acts transitively on $I_{k}$ via $\left\{i_{1}, \ldots, i_{k}\right\} g:=\left\{i_{1} g, \ldots, i_{k} g\right\}$. The permutation character $\pi_{k}$ of this action of $S_{n}$ on $I_{k}$ has degree $\pi_{k}(1)=\binom{n}{k}$.
4.2.12 Proposition With the above notation let $\pi_{l}$ and $\pi_{k}$ be the permutation characters of the action of $S_{n}$ on $I_{l}$ and $I_{k}$, respectively. Assume that $1 \leq l \leq$ $k \leq \frac{n}{2}$. Then $\left(\pi_{k}, \pi_{l}\right)_{S_{n}}=l+1$.

Proof: We know that $\left(\pi_{k}, \pi_{l}\right)$ is the number of orbits of $S_{n}$ on $I_{k} \times I_{l}$. We now claim that the orbits of $S_{n}$ on $I_{k} \times I_{l}$ are $J_{0}, J_{1}, \ldots, J_{l}$, where $J_{s}=$ $\left\{(A, B)\left|A \in I_{k}, B \in I_{k},|A \cap B|=s\right\}\right.$. It is clear that pairs from different $J_{s}$ can not lie in one orbit, since the size of the intersection is invariant under the action of $G$. Moreover, none of the $J_{s}$ is empty, since $l \leq k \leq \frac{n}{2}$. Now let $(A, B) \in J_{s}$, let $A \backslash B=\left\{i_{1}, \ldots, i_{k-s}\right\}, A \cap B=\left\{i_{k-s+1}, \ldots, i_{k}\right\}$ and $B \backslash A=$ $\left\{i_{k+1}, \ldots, i_{k+l-s}\right\}$. Then we can map $(A, B)$ to $\left(A_{0}, B_{0}\right)$ with $A_{0}=\{1, \ldots, k\}$, $B_{0}=\{k-s, \ldots, k+l-s\}$ by $g \in S_{n}$ mapping $i_{j}$ to $j$ for $1 \leq j \leq k+l-s$. Here we require the property of $S_{n}$ that we can choose the images of all points independently. This now shows that $J_{s}$ is a single orbit under the action of $G$, hence the claim follows.
4.2.13 Theorem Let $\pi_{k}$ be the permutation character of the action of $S_{n}$ on $I_{k}$ and assume that $k \leq \frac{n}{2}$. Then $\pi_{k}=\chi^{(n)}+\chi^{(n-1,1)}+\ldots+\chi^{(n-k, k)}$, where $\chi^{(n)}=1_{S_{n}}$ and the $\chi^{(n-i, i)}$ are distinct irreducible characters of $S_{n}$. In particular, one has $\chi^{(n-k, k)}=\pi_{k}-\pi_{k-1}$ and thus $\chi^{(n-k, k)}(1)=\binom{n}{k}-\binom{n}{k-1}$.

Proof: The proof is by induction on $k$ : For $k=1$ we already know that $\pi_{1}=1_{S_{n}}+\chi$ with $\chi$ irreducible, since $S_{n}$ acts doubly transitive. We set $\chi^{(n-1,1)}:=\chi$. Now let $k>1$. From the above proposition we know that $\left(\pi_{k}, \pi_{k-1}\right)=k$ and $\left(\pi_{k}, \pi_{k}\right)=k+1$. By induction, $\pi_{k-1}$ is a sum of $k$ irreducible characters, hence it is completely contained in $\pi_{k}$, i.e. $\pi_{k}=\pi_{k-1}+\chi$ for a character $\chi$ of $S_{n}$. From $\left(\pi_{k}, \pi_{k}\right)=k+1$ we conclude that $\left(\pi_{k-1}, \chi\right)+(\chi, \chi)=1$, which shows that $\chi$ is an irreducible character distinct from the constituents of $\pi_{k-1}$. The claim now follows by defining $\chi^{(n-k, k)}:=\chi$.

### 4.3 Normal subgroups

4.3.1 Definition Let $H \unlhd G$ be a normal subgroup, let $W$ be $K H$-module with representation $\Delta$ and character $\varphi$.
(i) The module $W^{g}:=W \otimes g \leq W^{G}$ is a $K H$-module which is conjugate to $W$. The corresponding representation $\Delta^{g}$ of $H$ is given by $\Delta^{g}(h)=$ $\Delta\left(g h g^{-1}\right)$, the corresponding character $\varphi^{g}$ by $\varphi^{g}(h)=\varphi\left(g h g^{-1}\right)$, since $(w \otimes g) h=w \otimes\left(g h g^{-1}\right) g=w\left(g h g^{-1}\right) \otimes g$.
(ii) The group $T:=I_{G}(\varphi):=\left\{g \in G \mid \varphi^{g}(h)=\varphi(h)\right.$ for all $\left.h \in H\right\}$ is called the inertia group of $\varphi$ in $G$. This is the group of elements $g \in G$ such that $W^{g} \cong_{K H} W$.
4.3.2 Theorem (Clifford's theorem)

Let $H \unlhd G$ be a normal subgroup, let $\chi$ be an irreducible character of $G$ and let $\varphi$ be an irreducible constituent of $\chi_{\mid H}$. Let $T:=I_{G}(\varphi)$ be the inertia group of $\varphi$ in $G$. Then $\chi_{\mid H}=e\left(\sum_{i=1}^{m} \varphi_{i}\right)$ where $m=[G: T]$ and $\varphi_{i}=\varphi^{g_{i}}$ for a
transversal $g_{1}, \ldots, g_{m}$ of $T$ in $G$ (with $g_{1}=1$ ). Thus, the $\varphi_{i}$ are the different conjugates of $\varphi$ under the action of $G$ and $e=\left(\chi_{\mid H}, \varphi\right)$.

Proof: We first show that $\left(\chi_{\mid H}, \varphi_{i}\right)$ is independent of $i$. Note that since $\chi$ is a character of $G$, we have $\chi_{\mid H}^{g}=\chi_{\mid H}$ for all $g \in G$. But $\left(\theta^{g}, \varphi^{g}\right)=(\theta, \varphi)$ for any characters $\theta, \varphi$ of $H$, since with $h$ also $g h g^{-1}$ runs over $H$. This shows that $\left(\chi_{\mid H}, \varphi^{g}\right)=\left(\chi_{\mid H}^{g}, \varphi^{g}\right)=\left(\chi_{\mid H}, \varphi\right)$ for all $g \in G$ and hence $\left(\chi_{\mid H}, \varphi_{i}\right)=\left(\chi_{\mid H}, \varphi\right)=$ $e$ for all $i$.
Next, for the induced character $\varphi^{G}$ we have $\varphi^{G}(h)=\frac{1}{|H|} \sum_{g \in G} \dot{\varphi}\left(g h g^{-1}\right)=$ $\frac{1}{|H|} \sum_{g \in G} \varphi^{g}(h)$ for $h \in H$. This shows that the $\varphi_{i}$ are all the irreducible constituents of $\varphi_{\mid H}^{G}$. Now let $\theta$ be an irreducible character of $H$ distinct from the $\varphi_{i}$, then we have $\left(\varphi_{\mid H}^{G}, \theta\right)=0$ and by Frobenius reciprocity this means that $\left(\varphi^{G}, \theta^{G}\right)=0$. On the other hand we have $\left(\chi_{\mid H}, \varphi\right) \neq 0$, hence $\left(\chi, \varphi^{G}\right) \neq 0$, and since $\chi$ is irreducible this shows that $\left(\chi, \theta^{G}\right)=0$. From this we conclude that $\left(\chi_{\mid H}, \theta\right)=0$, hence the $\varphi_{i}$ are all the irreducible constituents of $\chi_{\mid H}$.
4.3.3 Theorem Let $H \unlhd G$, let $\varphi$ be an irreducible character of $H$ and let $T:=I_{G}(\varphi)$. Define $\mathcal{A}:=\left\{\psi\right.$ irreducible character of $\left.T \mid\left(\psi_{\mid H}, \varphi\right) \neq 0\right\}$ and $\mathcal{B}:=\left\{\chi\right.$ irreducible character of $\left.G \mid\left(\chi_{\mid H}, \varphi\right) \neq 0\right\}$. Then the following hold:
(i) If $\psi \in \mathcal{A}$, then $\psi^{G}$ is irreducible.
(ii) If $\psi^{G}=\chi$ with $\psi \in \mathcal{A}$, then $\left(\psi_{\mid H}, \varphi\right)=\left(\chi_{\mid H}, \varphi\right)$.
(iii) If $\psi^{G}=\chi$ with $\psi \in \mathcal{A}$, then $\psi$ is the unique irreducible constituent of $\chi_{\mid T}$ that lies in $\mathcal{A}$.
(iv) The mapping $\psi \rightarrow \psi^{G}$ is a bijection of $\mathcal{A}$ onto $\mathcal{B}$.

Proof: Let $\varphi_{1}=\varphi, \varphi_{2}, \ldots, \varphi_{m}$ be the distinct conjugates of $\varphi$ in $G$, thus $[G: T]=m$. Let $\psi \in \mathcal{A}$ and let $\chi$ be an irreducible constituent of $\psi^{G}$. By Frobenius reciprocity we know that $\psi$ is a constituent of $\chi_{\mid T}$ and $\varphi$ is a constituent of $\psi_{\mid H}$, hence $\varphi$ is also a constituent of $\chi_{\mid H}$ and thus $\chi \in \mathcal{B}$. Furthermore, by Clifford's theorem we have $\chi_{\mid H}=e\left(\sum_{i=1}^{m} \varphi_{i}\right)$ and $\psi_{\mid H}=f \varphi$, since $T=I_{G}(\varphi)=I_{T}(\varphi)$. As $\psi$ is a constituent of $\chi_{\mid T}$ we know that $f \leq e$.
(i): We have $e m \varphi(1)=\chi(1) \leq \psi^{G}(1)=m \psi(1)=f m \varphi(1) \leq e m \varphi(1)$, hence in particular we have $\chi(1)=\psi^{G}(1)$ and hence $\psi^{G}=\chi$ is irreducible.
(ii): From the above equation it also follows that $e=f$, hence $\left(\chi_{\mid H}, \varphi\right)=e=$ $f=\left(\psi_{\mid H}, \varphi\right)$.
(iii): If $\psi, \psi_{1} \in \mathcal{A}$ are distinct constituents of $\chi_{\mid T}$, we have $\left(\chi_{\mid H}, \varphi\right) \geq((\psi+$ $\left.\left.\psi_{1}\right)_{\mid H}, \varphi\right)=\left(\psi_{\mid H}, \varphi\right)+\left(\left(\psi_{1}\right)_{\mid H}, \varphi\right)>\left(\psi_{\mid H}, \varphi\right)$ which contradicts (ii).
(iv): The mapping $\psi \rightarrow \psi^{G}$ is well-defined by (i), its image lies in $\mathcal{B}$ by (ii) and it is injective by (iii). To show that it is also surjective, let $\chi \in \mathcal{B}$. Then $\varphi$ is a constituent of $\chi_{\mid H}=\left(\chi_{\mid T}\right)_{\mid H}$, hence there exists an irreducible constituent $\psi$ of $\chi_{\mid T}$ with $\left(\psi_{\mid H}, \varphi\right) \neq 0$. We then have $\psi \in \mathcal{A}$ and by Frobenius reciprocity $\chi$ is a constituent of $\psi^{G}$. But by (i), $\psi^{G}$ is irreducible, hence $\chi=\psi^{G}$ as required.
4.3.4 Corollary Let $H \unlhd G$ be a normal subgroup, $\varphi$ an irreducible character of $H$ with inertia group $I_{G}(\varphi)=H$. Then $\varphi^{G}$ is an irreducible character of $G$.
4.3.5 Example Let $G$ be a non-abelian group of order $p q$ where $p>q$ are different primes. Then the Sylow- $p$ subgroup of $G$ is normal and the Sylow- $q$ subgroup acts as automorphisms on it, hence $G$ is isomorphic to the semidirect product $C_{p} \rtimes C_{q}$. If we take $C_{p}=\langle a\rangle$ and let $\lambda\left(a^{i}\right)=\zeta_{p}^{i}$ be a non-trivial irreducible character of $C_{p}$, then the inertia group $I_{G}(\lambda)=C_{p}$, since $\lambda^{b^{j}}(a)=$ $\lambda\left(a^{j}\right)=\zeta_{p}^{j}$ for a generator $b$ of the Sylow- $q$ subgroup. This shows that $\lambda^{G}$ is an irreducible character of degree $q$ of $G$. The other irreducible characters of degree $q$ are obtained in the same manner by inducing different linear characters of $C_{p}$.
4.3.6 Proposition Let $K$ be a splitting field of $G$ and let $\chi$ be an irreducible character of $G$. Then $\chi(1) \mid[G: Z(G)]$.

Proof: We use induction on $|G|$. If $\chi$ is not faithful, let $N:=\operatorname{ker}(\chi)$, then $\chi$ is a faithful irreducible character of $G / N$. We have $Z(G / N) \geq(Z(G) \cdot N) / N$ and hence by induction $\chi(1)|[G / N: Z(G / N)]|[G / N:(Z(G) \cdot N) / N]=[G:$ $(Z(G) \cdot N)] \mid[G: Z(G)]$. We therefore now assume that $\chi$ is faithful.
The elements $z \in Z(G)$ act on the set of conjugacy classes by right multiplication, since $\left(x g x^{-1}\right) z=x(g z) x^{-1}$. Now assume that $g$ and $g z$ are conjugate for $1 \neq z \in Z(G)$, then $\chi(g)=0$, since $\chi(g z)=\chi(g) \zeta$ where $\zeta$ is a non-trivial root of unity such that $\chi(z)=\zeta \cdot \chi(1)$. Therefore, on the conjugacy classes with $\chi(g) \neq 0$ the orbits of $Z(G)$ have length $|Z(G)|$. Let $C_{1}, \ldots, C_{k}$ be representatives of the orbits of $Z(G)$ on the conjugacy classes with $\chi\left(g_{i}\right) \neq 0$. Then we have: $|G|=\sum_{g \in G} \chi(g) \overline{\chi(g)}=\sum_{i=1}^{k} \sum_{z \in Z(G)}\left|C_{i}\right| \chi\left(g_{i} z\right) \overline{\chi\left(g_{i} z\right)}=$ $\sum_{i=1}^{k}\left|C_{i}\right||Z(G)| \chi\left(g_{i}\right) \overline{\chi\left(g_{i}\right)}$. This implies that

$$
\frac{|G|}{|Z(G)| \chi(1)}=\sum_{i=1}^{k} \frac{\left|C_{i}\right| \chi\left(g_{i}\right)}{\chi(1)} \overline{\chi\left(g_{i}\right)} \in \mathbb{Z}
$$

since both $\frac{\left|C_{i}\right| \chi\left(g_{i}\right)}{\chi(1)}=\omega\left(C_{i}^{+}\right)$and $\overline{\chi\left(g_{i}\right)}$ are algebraic integers.

### 4.3.7 Theorem (Ito)

Let $K$ be a splitting field of $G$, assume that $\operatorname{char}(K) \nmid|G|$ and let $\chi$ be an irreducible character of $G$. If $A \unlhd G$ is an abelian normal subgroup, then $\chi(1) \mid$ $[G: A]$.

Proof: We use induction on $|G|$. Let $\lambda$ be an irreducible constituent of $\chi_{\mid A}$ and let $T:=I_{G}(\lambda)$ be the inertia group of $\lambda$ in $G$.
If $T \neq G$ there is an irreducible character $\psi$ of $T$ such that $\chi=\psi^{G}$. By induction we have $\psi(1) \mid[T: A]$ and since $\chi(1)=[G: T] \psi(1)$ we have $\chi(1) \mid$ $[G: T][T: A]=[G: A]$.
Now assume that $T=G$. Since $A$ is abelian, $\lambda(1)=1$ and hence restricting the representation $\Delta$ affording $\chi$ to $A$ gives $\Delta(a)=\lambda(a) I_{n}$ with $n=\chi(1)$. In particular we have $\Delta(A) \leq Z(\Delta(G))$. Now let $N:=\operatorname{ker}(\Delta)$, then $\Delta$ can be
regarded as a faithful representation of $G / N$ and we have $(A \cdot N) / N \leq Z(G / N)$. By Proposition 4.3.6 we have $\chi(1)|[G / N: Z(G / N)]|[G / N:(A \cdot N) / N]=$ $[G:(A \cdot N)] \mid[G: A]$.
4.3.8 Theorem Let $K$ be algebraically closed, $H \unlhd G$ with $G / H$ cyclic. Let $\varphi$ be an irreducible character of $H$ which is $G$-invariant, i.e. $I_{G}(\varphi)=G$.
(i) There exists an irreducible character $\chi$ of $G$ with $\chi_{\mid H}=\varphi$.
(ii) If $\psi$ is any irreducible character of $G$ with $\left(\psi_{\mid H}, \varphi\right)_{H}>0$, then $\left(\psi_{\mid H}, \varphi\right)_{H}=$ 1 and $\psi=\lambda \cdot \chi$ where $\lambda$ is an irreducible (and thus linear) character of $G / H$.

Proof: (i): Let $\Delta$ be the representation of $H$ with character $\varphi$ and let $W$ be the corresponding $K H$-module. Let $g \in G$ such that $H g$ is a generator of $G / H$, then $G=H\langle g\rangle$. By assumption we have $\Delta^{g} \sim \Delta$, hence there exists $T \in G L(W)$ with $\Delta\left(g h g^{-1}\right)=T \Delta(h) T^{-1}$ for all $h \in H$. For $n=[G: H]$ we have $g^{n} \in H$ and therefore $T^{n} \Delta(h) T^{-n}=\Delta\left(g^{n} h g^{-n}\right)=\Delta\left(g^{n}\right) \Delta(h) \Delta\left(g^{-n}\right)$ for all $h \in H$. Thus, $\Delta\left(g^{-n}\right) T^{n} \in \operatorname{End}_{K H}(W)=K \cdot i d_{W}$ by Schur's lemma. We choose $c \in K$ such that $\Delta\left(g^{-n}\right) T^{n}=c^{n} \cdot i d_{W}$ and define $\Delta(g):=c^{-1} T$.
It now remains to check that this extends $\Delta$ to a representation of $G$, i.e. that $\Delta\left(h g^{i}\right):=\Delta(h) c^{-i} T^{i}$ defines a homomorphism $G \rightarrow G L(W):$ We have

$$
\begin{gathered}
\Delta\left(h g^{i} \cdot h^{\prime} g^{j}\right)=\Delta\left(\left(h g^{i} h^{\prime} g^{-i}\right) g^{i+j}\right)=\Delta(h) \Delta\left(g^{i} h^{\prime} g^{-i}\right) c^{-i-j} T^{i+j} \\
=\Delta(h) T^{i} \Delta\left(h^{\prime}\right) T^{-i} c^{-i-j} T^{i+j}=\left(\Delta(h) c^{-i} T^{i}\right)\left(\Delta\left(h^{\prime}\right) c^{-j} T^{-i} T^{i+j}\right) \\
=\Delta\left(h g^{i}\right) \Delta\left(h^{\prime} g^{j}\right)
\end{gathered}
$$

(ii): Let $\lambda_{1}, \ldots, \lambda_{n}$ be the irreducible (linear) characters of $G / H \cong C_{n}$, then $\psi_{i}:=\lambda_{i} \cdot \chi$ are irreducible characters of $G$. Moreover, $\psi_{i \mid H}=\chi_{\mid H}$, hence $\left(\psi_{i \mid H}, \varphi\right)>0$. We obtain $\psi_{i}$ as the character of the representation extending $\Delta$ by defining $\Delta(g):=c^{-1} \zeta_{n}^{i} T$. Since $W$ is an irreducible $K H$-module, we have $E n d_{K H}(W)=K$ by Schur's lemma, hence two representations extending $\Delta$ can only be equivalent if they are equal and therefore the $\psi_{i}$ are characters of non-equivalent representations. By Frobenius reciprocity we now see that $\left(\psi_{i}, \varphi^{G}\right)>0$ for all $i$. But $\varphi^{G}(1)=n \cdot \chi(1)$, hence we have $\varphi^{G}=\sum_{i=1}^{n} \psi_{i}$.
4.3.9 Corollary If $H \unlhd G$ such that $[G: H]=p$ is a prime number and let $\varphi$ be an irreducible character of $H$. Then one of the following holds:
(i) $I_{G}(\varphi)=H$, then $\varphi^{G}$ is irreducible and $H$ has $p$ characters which are conjugate with $\varphi$. The character values for $\varphi^{G}$ are $\varphi^{G}(g)=0$ if $g \in G \backslash H$.
(ii) $I_{G}(\varphi)=G$, then $\varphi$ can be extended to an irreducible character $\chi$ of $G$. If $\operatorname{char}(K) \neq p$ there are $p$ such extensions, if $\operatorname{char}(K)=p$ there is one. $T$ wo extensions of $\varphi$ differ by a linear character of $G / H \cong C_{p}$.
4.3.10 Remark For a soluble group $G$ the above theorems allow us to explicitly construct all irreducible representations by climbing up a composition series: Let $G=G_{0} \unrhd G_{1} \unrhd \ldots \unrhd G_{n}=\{1\}$ with $G_{i-1} / G_{i} \cong C_{p_{i}}$ for primes $p_{i}$. First assume that $\operatorname{char}(K) \nmid|G|$. If we have already constructed the irreducible representations $\Delta_{j}$ of $G_{i}$, then the irreducible representation of $G_{i-1}$ are obtained by either extending $\Delta_{j}$ in $p_{i}$ ways or by inducing $\Delta_{j}$ to $G_{i-1}$, thereby joining $p_{i}$ representations of $G_{i}$ into one of $G_{i-1}$.
If $\operatorname{char}(K)=p_{i}$ in some step, the situation is even simpler: We either induce or we have a unique extension, since $C_{p_{i}}$ has the trivial module as its only simple module in characteristic $p_{i}$.
Note that both ways of moving up in the composition series are constructive: Induction was already described in an earlier section and extending a representation requires solving the system of linear equations $\Delta\left(g h g^{-1}\right) T=T \Delta(h)$ for $T$ and finding an $n$-th root of the scalar $a$ with $\Delta\left(g^{-n}\right) T^{n}=a \cdot I_{n}$. The last step is the source of some complications in practice, since it requires to deal with algebraic extensions of growing degrees.
4.3.11 Example Let $G:=G L_{2}(3)$ be the group of invertible $2 \times 2$-matrices over $\mathbb{F}_{3}$, then $|G|=48$ and $G$ has a composition series $G=G L_{2}(3) \unrhd S L_{2}(3) \unrhd$ $Q_{8} \unrhd C_{4} \unrhd C_{2} \unrhd\{1\}$ with cyclic quotients of orders $2,3,2,2,2$. The following figure shows the character degrees of $G$ over a splitting field of characteristic $\operatorname{char}(K) \neq 2,3, \operatorname{char}(K)=2$ and $\operatorname{char}(K)=3$, respectively.

$$
\operatorname{char}(K) \neq 2,3
$$

$\operatorname{char}(K)=2$

$$
\operatorname{char}(K)=3
$$



Note that the trivial character can always be extended and that a nonabelian group must have a nonlinear character. If the number of characters of a fixed degree on a certain level is not a multiple of $p_{i}$, then at least one of them can be extended.
$\operatorname{char}(K) \neq 2,3$ : It is clear that $C_{4}$ has 4 linear characters. Not all of them can extend to $Q_{8}$, hence a pair induces to a 2 -dimensional character. On the next level, $S L_{2}(3) / C_{2} \cong A_{4}$ is not abelian, hence three of the 1-dimensional characters induce to an irreducible character of $S L_{2}(3)$. The only character of degree 2 has to be extendible. Finally, $G L_{2}(3) / Q_{8} \cong S_{3}$ is not abelian, hence not all 1-dimensional characters can be extendible. The only character of degree 3 and
one of the 2-dimensional characters have to be extendible. The fact that the other two 2-dimensional characters induce to an irreducible character has to be concluded from the action of $G L_{2}(3)$ on the corresponding characters.
$\operatorname{char}(K)=2$ : It is clear that $Q_{8}$ is in the kernel of every irreducible representation and since $G L_{2}(3) / Q_{8} \cong S_{3}$ is not abelian, not all the characters of $S L_{2}(3)$ can be extendible to $G L_{2}(3)$.
$\operatorname{char}(K)=3$ : The same arguments as in the case $\operatorname{char}(K) \neq 2,3$ hold, with the exception that the trivial character and the 2-dimensional character of $Q_{8}$ extend only to a single character of $S L_{2}(3)$.
4.3.12 Example We compute the character table of $S_{5}$ from the character table of $A_{5}$. The characters $\varphi_{1}, \varphi_{2}$ and $\varphi_{3}$ of $A_{5}$ of degrees 1,4 and 5 are $S_{5}$-invariant and therefore have two extensions to $S_{5}$, differing by a factor of -1 on the classes outside $A_{5}$. From this we obtain the trivial character $\chi_{1}$ and the signum-character $\chi_{1}^{\prime}$. Furthermore, since we know that $\pi-\chi_{1}$ is an irreducible character, where $\pi$ is the natural permutation character of $S_{5}$, we can also determine the extensions $\chi_{2}$ and $\chi_{2}^{\prime}$ of $\varphi_{2}$. The two characters $\varphi_{4}, \varphi_{5}$ of degree 3 have $A_{5}$ as their inertia group and their induction to $S_{5}$ gives the same irreducible character $\chi_{4,5}$ with values 0 outside $A_{5}$. We thus obtain the following partial character table:

| $C_{G}\left(g_{i}\right)$ | 120 | 8 | 6 | 5 | 12 | 4 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|C_{i}\right\|$ | 1 | 15 | 20 | 24 | 10 | 30 | 20 |
| $g_{i}$ | 1 | $(1,2)(3,4)$ | $(1,2,3)$ | $(1,2,3,4,5)$ | $(1,2)$ | $(1,2,3,4)$ | $(1,2)(3,4,5)$ |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\chi_{1}^{\prime}$ | 1 | 1 | 1 | 1 | -1 | -1 | -1 |
| $\chi_{2}$ | 4 | 0 | 1 | -1 | 2 | 0 | -1 |
| $\chi_{2}^{\prime}$ | 4 | 0 | 1 | -1 | -2 | 0 | 1 |
| $\chi_{3}$ | 5 | 1 | -1 | 0 | $a$ | $b$ | $c$ |
| $\chi_{3}^{\prime}$ | 5 | 1 | -1 | 0 | $-a$ | $-b$ | $-c$ |
| $\chi_{4,5}$ | 6 | -2 | 0 | 1 | 0 | 0 | 0 |

From the second orthogonality relations it follows that $|a|=|b|=|c|=1$ and that $a b=-1$ and $a c=1$, thus if we choose $a=1$ we conclude that $b=-1$ and $c=1$.

## Exercises

46. Prove the transitivity of induction: Let $H \leq U \leq G$ be subgroups and let $W$ be a $K H$-module with character $\varphi$. Show that $\left(\varphi^{U}\right)^{G}=\varphi^{G}$.
47. Let $H \leq G$ be a subgroup and let $\chi$ be a character of $G$ and $\varphi$ a character of $H$.
(i) Show that $\left(\varphi \cdot \chi_{\mid H}\right)^{G}=\varphi^{G} \cdot \chi$.
(ii) Show that $\operatorname{ker}\left(\varphi^{G}\right)=\bigcap_{g \in G} g \operatorname{ker}(\varphi) g^{-1}$.
(iii) Let $N \unlhd G$ be a normal subgroup of $G$ and let $\chi$ be an irreducible character of $G$ with $\left(\chi_{\mid N}, 1_{N}\right)_{N} \neq 0$. Prove that $N \leq \operatorname{ker}(\chi)$.
48. Let $H \leq G$ be a subgroup, let $V$ be a $K G$-module and $W$ a $K H$-module. Show that $\operatorname{Hom}_{K G}\left(V, W^{G}\right) \cong \operatorname{Hom}_{K H}\left(V_{\mid H}, W\right)$ as $K$-modules. (Hint: For a homomorphism $\varphi \in \operatorname{Hom}_{K H}\left(V_{\mid H}, W\right)$ consider the map $\left.\varphi^{\prime}: V \rightarrow W^{G}: v \mapsto \sum_{i=1}^{m}\left(v g_{i}^{-1}\right) \varphi \otimes g_{i}.\right)$
49. Let $H \leq G$ be a subgroup, let $\varphi$ be an irreducible character of $H$ and let $\varphi^{G}=$ $\sum_{i=1}^{r} a_{i} \chi_{i}$ be the decomposition of $\varphi^{G}$ into irreducible characters of $G$. Show that $\sum_{i=1}^{r=1} a_{i}^{2} \leq[G: H]$.
50. Compute the induction-restriction table between the alternating groups $A_{5}$ and $A_{4}$.
51. Let $H \leq G$ be a subgroup.
(i) Let $\chi$ be an irreducible character of $G$ with $H \cdot \operatorname{ker}(\chi)=G$. Show that $\chi_{\mid H}$ is an irreducible character of $H$.
(ii) Assume that $H$ is a maximal subgroup of $G$ and let $\chi \neq 1_{G}$ be a non-trivial constituent of $\pi:=\left(1_{H}\right)^{G}$, i.e. $(\chi, \pi) \neq 0$. Show that $\operatorname{ker}(\chi)=\operatorname{ker}(\pi)$.
52. Let $G$ act transitively on $\Omega$ with $|\Omega|>1$. Show that $G$ contains a fixed-point free element $g$, i.e. an element $g$ such that $\left|f i x_{\Omega}(g)\right|=0$.
53. Let $G$ act doubly transitive on $\Omega$ and let $H \leq G$ with $[G: H]<|\Omega|$. Show that $H$ acts transitively on $\Omega$.
54. Determine all candidates of transitive permutation characters of the alternating group $A_{5}$ from the character table of $A_{5}$. Which of the so obtained characters are in fact permutation characters?
55. Let $H \unlhd G$ and let $\varphi$ be an irreducible character of $H$ such that $\varphi^{G}$ is irreducible. Show that $\varphi^{G}(g)=0$ for all $g \in G \backslash H$.
56. Let $H \unlhd G$, let $\chi$ be an irreducible character of $G$ and let $\varphi$ be an irreducible character of $H$ such that $\left(\chi_{\mid H}, \varphi\right) \neq 0$. Show that $\varphi(1) \mid \chi(1)$.
57. Suppose that $G$ has exactly one nonlinear irreducible character. Prove that the derived subgroup $G^{\prime}$ is an elementary abelian group. (Hint: Consider the action of $G$ on the irreducible characters of $G^{\prime}$ and use the fact that the restriction of an irreducible character of $G$ to $G^{\prime}$ is the sum of irreducible characters of $G^{\prime}$ lying in one orbit.)
58. Let $G$ be a finite group, $p$ a prime and suppose that $\chi(1)$ is a power of $p$ for every irreducible character of $G$. Show that $G$ has a normal abelian $p$-complement, i.e. a subgroup $H \leq G$ with $p \nmid|H|$ and $[G: H]=p^{a}$. (Hint: Show that $p$ divides $\left[G: G^{\prime}\right]$ and use induction on $|G|$.)
59. Let $H \unlhd G$, then $G$ acts on the conjugacy classes of $H$ by conjugation and on the irreducible characters of $H$ by $\chi^{g}(h)=\chi\left(g h g^{-1}\right)$. Show that the number of fixed points for these two actions coincide and that the number of orbits for these two actions are also the same. (Hint: Regard the two actions as actions on the columns and rows of the character table of $H$ which is an invertible matrix.)
60. Let $A \unlhd G$ be an abelian normal subgroup of $G$ and let $\varphi$ be an irreducible character of $A$ with $I_{G}(\varphi)=G$. Show that $\varphi$ can be extended to $G$ if $A$ has a complement in $G$, i.e. if there is a subgroup $H \leq G$ with $H \cdot A=G$ and $H \cap A=\{1\}$.
Give an example that demonstrates that the conclusion is not necessarily true if $A$ does not have a complement in $G$.
