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Preface

These lecture notes are written for the course “Ordinary Differential Equations” (NWI-WB104) at
Radboud University, Nijmegen (second year, 6EC). The course covers the basic theory of ordinary
differential equations. Further details, applications and many additional topics can be found in,
e.g. the monographs by M. Braun [1], J. J. Duistermaat and W. Eckhaus [2] and W. Walter [6]. To
follow the course a solid understanding of analysis, calculus and linear algebra is required.

We discuss several classes of ordinary differential equations that can be solved explicitly. We
investigate the existence and uniqueness of solutions of ordinary differential equations and their
stability with respect to perturbations. Moreover, we analyze the qualitative behavior of solutions
of linear and nonlinear ordinary differential equations, including the stability of equilibria and
the large time behavior of solutions. Several concrete applications will be considered, including
models in mechanics and population dynamics.
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Chapter 1

Introduction and explicit solutions

1.1 ODEs and initial value problems

An ordinary differential equation (ODE) is an equation that relates values of an unknown func-
tion u : I → Rn, n ∈ N, I ⊂ R an interval, with values of its derivatives. The order of the highest
derivative in the equation determines the order of an ODE.

We use the following notation

u′(t) =
du
dt

(t), u′′(t) =
d2u
dt2 (t), . . . , u(m)(t) =

dmu
dtm (t), t ∈ I, m ∈ N,

and when we write A ⊂ Rn then either A ( Rn or A = Rn. Moreover, we always assume that the
interval I is proper, i.e. I , ∅ and I is not a singleton set. It can be open, closed, right-open and
left-closed or right-closed and left-open.

Example. The equation
u′(t) = 2tu(t), t ∈ R,

is an ODE of first order, where u : R → R is the unknown function. We can easily verify that
u(t) = cet2 , t ∈ R, satisfies the ODE for any constant c ∈ R.

Another example is the equation

u′′(t) =
2
t2 u(t) + u′(t), t > 0.

It is an ODE of second order. We can verify that for any c ∈ R the function u(t) = ct2et, t > 0,
satisfies this ODE.

We will first analyze explicit ODEs of first order,

u′(t) = f (t, u(t)), (1.1)

where f : D → Rn, n ∈ N, is a function defined on a set D ⊂ R × Rn. Equations of higher order
we will address later.
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If n = 1, the ODE (1.1) is a scalar equation; otherwise, if n > 1, it is a system of ODEs. In the
latter case, the ODE (1.1) is a short notation for the system of n ODEs

u′1(t) = f1(t, u1(t), . . . , un(t)),

u′2(t) = f2(t, u1(t), . . . , un(t)),
...

u′n(t) = fn(t, u1(t), . . . , un(t)).

In ODE models, the independent variable t often represents the time, but it can also denote a
location, distance or displacement. In those cases, it is typically denoted by x.

If the function f in (1.1) does not explicitly depend on time, i.e.

u′(t) = f (u(t)),

the ODE is called autonomous; otherwise, it is called non-autonomous. In case of autonomous
equations, the rate of change u′(t) only depends on the “state” u(t) itself and not on external factors.

Definition 1.1. Let I ⊂ R be an interval. The function u : I → Rn is called a solution of the ODE
(1.1) on I if

• u is differentiable in I,

• (t, u(t)) ∈ D ∀t ∈ I,

• u′(t) = f (t, u(t)) ∀t ∈ I.

If the interval I is closed or half-closed, we consider one-sided derivatives.
A special solution is a steady state or equilibrium solution which is a constant solution of

the ODE, i.e.
u(t) = u∗ ∀t ∈ I,

for some u∗ ∈ Rn.

We observe that

u(t) = u∗ ∀t ∈ I ⇐⇒ f (t, u∗) = 0 ∀t ∈ I.

In particular, for autonomous ODEs the equilibria correspond to the zeros of the function f .

Example 1.2. One of the simplest ODEs is

u′(t) = λu(t), t ∈ R, (1.2)

for some λ ∈ R. Here, D = R2 and f : D → R is defined as f (t, u) = f (u) = λu, i.e. the ODE is
autonomous.

The solutions are given by u(t) = ceλt, t ∈ R, where c ∈ R is an arbitrary constant. The
solutions are plotted below for the cases λ > 0 and λ < 0.
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If λ , 0 then u∗ = 0 is the only steady state of the ODE (1.2). Moreover, we observe that for
λ < 0 all solutions converge to the steady state u∗ = 0 as t → ∞. On the other hand, for λ > 0 all
non-zero solutions tend to +∞ or −∞ as t → ∞.

The ODE (1.2) is used as a simplistic model for the growth of populations. Let u(t) denote the
density of a population at time t ≥ 0, e.g. bacteria in a Petri dish where nutrients are abundantly
available. Then, the growth of the population can be described by the ODE

u′(t) = αu(t) − βu(t),

where α > 0 denotes the growth rate and β > 0 the death rate of the population. Hence, this
corresponds to the ODE (1.2) with λ = α − β.

In this context, u describes the density of a population and hence, we should only consider non-
negative solutions. Then, the only possible scenarios are that the population dies out (if β > α)
or that the population shows exponential growth (if α > β). Bacterial populations that initially
show exponential growth are commonly observed. However, their growth rate tends to decrease
as the population size increases since resources eventually become limited. Therefore, this simple
growth model can be considered a good approximation for a short time period, but it is unrealistic
for longer time periods.

Example 1.3. We aim to improve the growth model in the previous example in the case of growth,
i.e. α > β. We assume that the death rate is not constant, but it increases as the population size
increases. Let us suppose it increases linearly in u and it is given by β + γu, for some constants
β, γ > 0. Then, we obtain the ODE

u′(t) = (α − β − γu(t))u(t) = λu(t)(1 − µu(t)),

where λ = α − β > 0 and µ =
γ
λ > 0.

The steady states are u∗1 = 0 and u∗2 = 1
µ .As we will see later, this ODE can be solved explicitly

and the non-zero solutions are of the form

u(t) =
eλt

c + µ(eλt − 1)
, t ≥ 0,

where c ∈ R is an arbitrary constant. We observe that for c > 0 solutions exist for all t ≥ 0, while
for c < 0 the solutions only exist for a finite time (as c + µ(eλt − 1) can become zero). If c < 0 the
solutions take negative values while they are strictly positive if c > 0. Several solutions are plotted
below where the blue curves are the steady state solutions.
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Since we aim to describe population growth we limit ourselves to non-negative solutions which
corresponds to the case c ≥ 0. We observe that every strictly positive solution tends to the positive
steady state 1

µ as t → ∞. Solutions starting from a value larger than 1
µ are decreasing, while

solutions starting from a positive value below 1
µ are increasing.

We will later look at more interesting models for population dynamics involving several dif-
ferent species that interact with each other. They are formulated as systems of ODEs.

We observed in the examples that solutions are not uniquely determined by the ODE itself.
However, if we specify an initial value for the solution, the solutions in the considered examples
are unique. Moreover, we observed in Example 1.3 that solutions may only exists for a certain
finite time interval and this interval of existence can depend on the initial value.

Definition 1.4. An initial value problem (IVP) for an explicit first order ODE is of the form

u′(t) = f (t, u(t)), (1.3)

u(t0) = u0, (1.4)

where f : D→ Rn, D ⊂ R × Rn, is a given function and (t0, u0) ∈ D a given point.
Let I ⊂ R be an interval with t0 ∈ I. A solution of the IVP is a function u : I → Rn such that

• u is a solution of the ODE (1.3);

• u(t0) = u0.

The maximal interval on which the solution of an IVP exists is called the maximal interval of
existence.

Questions we will address in this course include the following:

• Existence: Does an IVP
u′(t) = f (t, u(t)), u(t0) = u0

have a solution?

• Uniqueness: Is there only one solution of an IVP?

• Explicit solutions: Can we find an explicit formula for the solution?

This is possible for few particular classes of ODEs, but in general, we cannot expect to solve
an ODE explicitly.
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• Qualitative behavior of solutions: If we at least know that a unique solution exists which
properties does it have?

For instance, we will investigate maximal intervals of existence, non-negativity and bound-
edness of solutions, their asymptotic behavior as t → ∞, steady states and their stability,
existence of periodic solutions, . . . .

As the classes of ODEs that can be solved explicitly are very limited we need to develop a
general theory that ensures the existence and uniqueness of solutions of IVPs. This is important
as, once we know that a unique solution exists, we can study qualitative properties of solutions
(analytically) and we can also apply numerical schemes to approximate and simulate the solutions.
This is particularly important in applications if we want to analyze and validate models based on
experimental data. In this course we focus on the analysis, numerical methods will not be covered.

Before we develop a general existence and uniqueness theory we discuss several classes of
ODEs that can be solved explicitly.

1.2 Separable equations

A scalar ODE of the form

u′(t) = g(t)h(u(t)), (1.5)

where g : I → R and h : J → R are continuous functions defined on the intervals I, J ⊂ R,
is called separable. In this case, the function f is a product of two functions f (t, u) = g(t)h(u),
where g only depends on t and h only depends on u.

We can formally solve separable ODEs according to the following “recipe”:

• Write the ODE as
du
dt

= g(t)h(u) ⇒
du

h(u)
= g(t)dt.

Now, the variables u and t are separated, i.e. the left hand side only depends on u, the right
hand side only on t.

• Integrating both sides we obtain∫ u(t) 1
h(v)

dv =

∫ t
g(s)ds,

which is an equation that implicitly defines the solution u.

• Finally, we try to find an explicit expression for the solution u by solving the integral equa-
tion.

Example 1.5. Consider the ODE
u′(t) = 2tu(t),

so g(t) = 2t and h(u) = u.
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First, we separate the variables and write

du
u

= 2t dt.

Then, we integrate which leads to ∫ u(t) 1
v

dv =

∫ t
2sds.

Hence, we obtain

ln |u(t)| + c1 = t2 + c2, for some integration constants c1, c2 ∈ R,

⇒ ln |u(t)| = t2 + c2 − c1.

Finally, we take the exponential and obtain the explicit solution

u(t) = et2ec2−c1 = aet2 , for some constant a ∈ R.

While this recipe often works in practice and allows us to explicitly compute solutions, the
steps are not mathematically rigorous and need to be justified. In fact, we made the following
mistakes:

• We cannot separate du and dt in du
dt .

• The integral
∫ u 1

v dv has a singularity for v = 0.

We can make this derivation rigorous and prove that the method indeed leads to the unique
solution of an IVP for a separable ODE, if the function h has suitable properties.

Theorem 1.6. Let I, J ⊂ R be intervals, g : I → R and h : J → R be continuous functions and
t0 ∈ I, u0 ∈ J.

We assume that u0 is an interior point of J and h(u0) , 0. Then, there exists a unique local
solution of the IVP (1.5) with u(t0) = u0 which is determined by∫ u(t)

u0

1
h(v)

dv =

∫ t

t0
g(s)ds. (1.6)

Otherwise, if h(u0) = 0, then u ≡ u0, i.e. u : I → R, is a steady state solution of the ODE.

Proof. If h(u0) = 0, then u ≡ u0 is a constant solution. In fact, we have

0 =
d
dt

u0 = u′(t) = g(t)h(u(t)) = g(t)h(u0) = 0 ∀t ∈ I.

Otherwise, if h(u0) , 0 we define

H(u) :=
∫ u

u0

1
h(v)

dv, G(t) =

∫ t

t0
g(s)ds.

By assumption, h(u0) , 0 and hence, h(u) , 0 for u in an open interval J0 ⊂ J around u0.
For u ∈ J0, the function H is well-defined, continuously differentiable and H′(u) = 1

h(u) , 0.
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Therefore, the inverse function theorem implies that the inverse function of H exists which we
denote by H−1 : H(J0)→ J0. Moreover, H−1 is continuously differentiable and(

H−1
)′

(u) =
1

H′(H−1(u))
, u ∈ H(J0).

We now define
u(t) := H−1(G(t))

which corresponds to applying H−1 to (1.6). We observe that H(u0) = 0 = G(t0), and therefore,
G(t0) = 0 ∈ H(J0). Therefore, if we take a sufficiently small interval I0 such that t0 ∈ I0 and I0 ⊂ I
open, then G(I0) ⊂ H(J0), i.e. u(t) = H−1(G(t)) is well-defined for t ∈ I0.

We aim to show that this function u is a solution of the IVP on I0. In fact, u is continuously
differentiable, and by the chain rule, it follows that

u′(t) =
d
dt

(
H−1(G(t))

)
=

(
H−1

)′
(G(t))G′(t) =

1
H′(H−1(G(t)))

g(t)

= h
(
H−1(G(t))

)
g(t) = h(u(t))g(t),

where we used that H′(u) = 1
h(u) and u(t) = H−1(G(t)). This shows that u satisfies the ODE on I0.

Moreover, we observe that u(t0) = H−1(G(t0)) = H−1(0) = u0, i.e. u is a local solution of the IVP.
Finally, we show that the solution is unique. Let us assume that v is another solution of the

IVP. Then, as long as h(v) , 0 (which certainly holds in a sufficiently small interval around u0) we
have

v′(t)
h(v(t))

= g(t).

Integrating the equation from t0 to t yields∫ t

t0
g(s)ds =

∫ t

t0

v′(s)
h(v(s))

ds =

∫ v(t)

u0

1
h(w)

dw,

where we used the substitution w = v(s) in the last step. By the definition of G and H, this implies
that G(t) = H(v(t)), and applying the inverse function H−1 on both sides we obtain

v(t) = H−1(G(t)) = u(t),

i.e. u ≡ v in an interval around t0. �

Remark. We remark that every scalar autonomous ODE, u′(t) = f (u(t)), is separable and hence,
Theorem 1.6 applies.

If h(u0) , 0, the theorem only guarantees the local existence and uniqueness of solutions,
i.e. the existence and uniqueness of a solution on a small time interval around t0. However, the
solution may not exists or be unique on the entire interval I where g is defined. For instance,
the logistic equation in Example 1.3 is separable and we can calculate the solution of the IVP by
solving the integral equation (1.6). However, in the case c < 0 the solution only exist on a finite
time interval [0,T ),T > 0, and blows up as t → T , i.e. limt→T u(t) = ∞.

In the case that h(u0) = 0 we can immediately conclude that u ≡ u0 is a steady state solution.
However, there might exist other solutions, i.e., the solutions of the IVP might not be unique in
this case.
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Example 1.7. Consider the IVP for a separable ODE

u′(t) = 3u
2
3 (t), u(0) = 0,

i.e. g ≡ 1 and h(u) = 3u
2
3 with h(u0) = h(0) = 0. Then, u ≡ 0 is s steady state solution and solves

the IVP.
However, following the ”recipe” for separable ODEs to compute solutions we obtain∫ t

0
1ds = t =

1
3

∫ u(t)

0
v−

2
3 dv = u

1
3 (t),

and consequently, u(t) = t3. This is another solution of the IVP.
This IVP has even infinitely many solutions. In fact, for arbitrary a < 0 < b, the functions

ua,b(t) =


(t − a)3 t ≤ a
0 t ∈ (a, b)
(t − b)3 t ≥ b

satisfy the ODE and the initial value ua,b(0) = 0.

In Chapter 3 we will formulate general conditions on the function f that ensure the local
existence and uniqueness of solutions of IVPs for explicit first order ODEs (1.3)-(1.4).

1.3 First order linear equations

A scalar first order ODE of the form

u′(t) = a(t)u(t) + b(t), (1.7)

where a : I → R and b : I → R are continuous functions, I ⊂ R an interval, is called linear.
Moreover, if b ≡ 0, the equation is called homogeneous, and inhomogeneous otherwise.

The ODE is called linear since the right hand side of the equation, f (t, u) = a(t)u + b(t), is a
linear function of u (even though the functions a and b might be nonlinear).

To find a solution formula we first consider the homogeneous problem, i.e. f (t, u) = a(t)u
and b ≡ 0. In this case the ODE is separable. Moreover, we observe that u ≡ 0 is a steady state
solution. To find nontrivial solutions let t0 ∈ I, u0 ∈ R and assume that u(t0) = u0 , 0. Using the
notation in (1.5) we have g(t) = a(t), h(u) = u. As h(u0) = u0 , 0 we can apply Theorem 1.6. In
fact, we conclude that there exists a unique local solution of the IVP and it is determined by the
integral equation ∫ u(t)

u0

1
v

dv =

∫ t

t0
a(s)ds.

Without loss of generality we assume that u0 > 0, and hence, u > 0 in a sufficiently small interval
around t0 (otherwise we consider w = −u). Then, we obtain

ln(u(t)) − ln u0 =

∫ u(t)

u0

1
v

dv =

∫ t

t0
a(s)ds,
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and taking the exponential we find the explicit solution formula

u(t) = u0e
∫ t

t0
a(s)ds

.

Moreover, we observe that the solution u exists for all t ∈ I.

Proposition 1.8. Let I ⊂ R be an interval, a : I → R be continuous, u0 ∈ R and t0 ∈ I. Then, there
exists a unique solution u : I → R of the homogeneous IVP u′(t) = a(t)u(t) with u(t0) = u0, and it
is given by

u(t) = u0e
∫ t

t0
a(s)ds

, t ∈ I.

Proof. The function u is well-defined for all t ∈ I and continuously differentiable (as a is continu-
ous). Moreover, by the chain rule it follows that

u′(t) = u0e
∫ t

t0
a(s)dsa(t) = a(t)u(t), t ∈ I,

and u(t0) = u0. This shows that u is a solution of the IVP.
To prove the uniqueness of solutions let us assume that v is another solution of the IVP. We

define ϕ(t) := v(t)e−
∫ t

t0
a(s)ds. Then, we obtain

ϕ′(t) = v′(t)e−
∫ t

t0
a(s)ds

+ v(t)(−a(t))e−
∫ t

t0
a(s)ds

= a(t)v(t)e−
∫ t

t0
a(s)ds

− a(t)v(t)e−
∫ t

t0
a(s)ds

= 0,

where we used that v′(t) = a(t)v(t). Consequently, ϕ ≡ c, for some c ∈ R. We observe that
c = ϕ(t0) = v(t0) = u0, which implies that

v(t) = ϕ(t)e
∫ t

t0
a(s)ds

= u0e
∫ t

t0
a(s)ds

= u(t),

i.e. u ≡ v on I. �

To find a solution formula for the inhomogeneous IVP we use an ansatz called variation of
constants. Namely, we replace the constant in the solution formula for the homogeneous equation
by a function and consider

u(t) = c(t)e
∫ t

t0
a(s)ds

= c(t)uh(t), t ∈ I,

where uh(t) = e
∫ t

t0
a(s)ds is a solution of the homogeneous equation. Then, we obtain

u′(t) = c′(t)uh(t) + c(t)u′h(t) = c′(t)uh(t) + c(t)a(t)uh(t) = c′(t)e
∫ t

t0
a(s)ds

+ a(t)u(t).

Hence, u solves the ODE (1.7) with the initial value u(t0) = u0 if and only if c satisfies

c′(t) = e−
∫ t

t0
a(s)dsb(t), c(t0) = u0,

which implies that

c(t) =

∫ t

t0
e−

∫ s
t0

a(r)drb(s)ds + u0.
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Finally, using that u = cuh we conclude that

u(t) = u0e
∫ t

t0
a(s)ds

+

∫ t

t0
b(s)e

∫ t
s a(r)drds, t ∈ I,

solves the ODE (1.7) with initial value u(t0) = u0.
We observe that as in case of homogeneous IVP the solution is defined for all t ∈ I. The

following theorem summarizes the results.

Theorem 1.9. Let I ⊂ R be an interval, a, b : I → R be continuous, u0 ∈ R and t0 ∈ I. Then, there
exists a unique solution u : I → R of the IVP (1.7) with u(t0) = u0, and it is given by

u(t) = u0e
∫ t

t0
a(s)ds

+

∫ t

t0
b(s)e

∫ t
s a(r)drds, t ∈ I.

This formula is known as the variation of constants formula.

Proof. The function u is well-defined for t ∈ I and continuously differentiable (as a and b are
continuous). To verify that u satisfies the ODE we apply the Leibniz rule,

u′(t) = u0e
∫ t

t0
a(s)dsa(t) +

∫ t

t0
b(s)e

∫ t
s a(r)dra(t)ds + b(t)

= a(t)u(t) + b(t).

Moreover, u(t0) = u0 which proves that u is a solution of the IVP.
To show uniqueness of solutions we assume that v is another solution of the IVP. Then, the

difference w := u − v satisfies

w′(t) = u′(t) − v′(t) = a(t)u(t) + b(t) − (a(t)v(t) + b(t)) = a(t)w(t),

and w(t0) = u(t0) − v(t0) = 0. Consequently, Proposition 1.8 implies that

w(t) = w(t0)e
∫ t

t0
a(s)ds

= 0,

i.e. u ≡ v on I. �

Remark. We recall the Leibniz integral rule: Consider open intervals (t0, t1) and (α, β) and as-
sume that the functions a, b : (t0, t1) → (α, β) and f : (t0, t1) × (α, β) → R, (t, x) 7→ f (t, x), are
continuously differentiable. Then, the function

F(t) =

∫ b(t)

a(t)
f (t, x)dx, t ∈ (t0, t1),

is continuously differentiable and

F′(t) = f (t, b(t))b′(t) − f (t, a(t))a′(t) +

∫ b(t)

a(t)

∂

∂t
f (t, x)dx.

Example 1.10. If a ≡ a0 ∈ R is constant, the variation of constants formula becomes

u(t) = ea0(t−t0)u0 +

∫ t

t0
ea0(t−s)b(s)ds.

If b ≡ b0 ∈ R is also constant and a0 , 0 we obtain

u(t) = ea0(t−t0)u0 +
b0

a0

(
ea0(t−t0) − 1

)
.
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1.4 Change of variables

Several classes of ODEs that have a particular structure can be transformed into separable or linear
ODEs by a suitable substitution (change of variables). Below we discuss three examples.

Homogeneous equations

Let J ⊂ R be an interval and f : J → R be a continuous function. An ODE of the form

u′(t) = f
(
u(t)

t

)
, t , 0,

is called homogeneous. Note that the term homogeneous has a different meaning here than for
linear ODEs.

Setting v(t) =
u(t)

t leads to the ODE

v′(t) =
1
t

( f (v(t)) − v(t)),

which is separable. Hence, the theory in Section 1.2 applies and we can, in principle, solve the
ODE for v (if f has suitable properties). Transforming back, u(t) = tv(t), yields the solution of the
original equation (see Exercises E1.3 and E1.4).

ODEs of the form u′ = f(at + bu + c)

Let J ⊂ R be an interval and f : J → R be a continuous function. We consider an ODE of the
form

u′(t) = f (at + bu(t) + c), (1.8)

where a, b, c ∈ R and b , 0. Let v(t) = at +bu(t)+c. Then, if u is a solution of (1.8) then v satisfies

v′(t) = a + bu′(t) = a + b f (v(t)),

which is separable. Hence, we can apply the method for separable ODEs to compute the solution
v (if possible) and transforming back, u(t) = 1

b (v(t)− at − c), we obtain the solution of the original
ODE (1.8).

Example 1.11. We consider the ODE

u′(t) = (t + u(t))2.

Then, v(t) = t + u(t) satisfies the ODE

v′(t) = v2(t) + 1,

which we can solve explicitly. In particular, the function h(v) = v2 + 1 satisfies h(v) , 0 ∀v ∈ R
and hence, by Theorem 1.6 all solutions are given by

v(t) = tan(t + c),

for some c ∈ R. Finally, transforming back we obtain the solutions of the original ODE, u(t) =

tan(t + c) − t.
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Bernoulli equations

Let J ⊂ R be an interval and a, b : J → R be continuous functions. Bernoulli equations are ODEs
of the form

u′(t) = a(t)u(t) + b(t)uα(t),

where α ∈ R \ {0, 1}. Non-negative solutions u ≥ 0 can be found by introducing the function
v(t) = uβ(t), for some β ∈ R. Choosing a suitable exponent β, the ODE for v becomes linear
and we can apply Theorem 1.9. Finally, we transform back and obtain the solution of the original
ODE, u(t) = v

1
β (t) (see Exercise E1.7).

1.5 Exact equations

Let I ⊂ R be an interval, D ⊂ R2 be open and connected, ψ : D→ R be continuously differentiable
and u : I → R be continuously differentiable with (t, u(t)) ∈ D. Assume that u satisfies the implicit
equation

ψ(t, u(t)) = c, c ∈ R. (1.9)

Then, the chain rule implies that

0 =
d
dt
ψ(t, u(t)) = ∂tψ(t, u(t)) + ∂uψ(t, u(t))u′(t),

i.e. u is a solution of the ODE

a(t, u(t)) + b(t, u(t))u′(t) = 0,

where
a(t, u) = ∂tψ(t, u), b(t, u) = ∂uψ(t, u), (t, u) ∈ D.

Conversely, assume that a, b : D→ R are continuous functions. Then, an ODE of the form

a(t, u(t)) + b(t, u(t))u′(t) = 0 (1.10)

is called exact if there exists a continuously differentiable function ψ : D→ R such that

a(t, u) = ∂tψ(t, u), b(t, u) = ∂uψ(t, u), (t, u) ∈ D.

Then, the solutions are determined by (1.9) and the contour lines of ψ, i.e.

ψ(t, u) = c, c ∈ R,

are the graphs of the solution curves of the ODE (1.10).
It is important to be able to recognize whether an ODE is exact and to find the corresponding

function ψ. The following theorem yields a criterion that allows us to check whether an ODE is
exact.

Theorem 1.12. Let D = (α, β) × (γ, δ) ⊂ R2, where α < β and γ < δ, and let a, b : D → R be
continuously differentiable. Then, the following statements are equivalent:

12



(i) There exists a continuously differentiable function ψ : D→ R such that

∂tψ(t, u) = a(t, u), ∂uψ(t, u) = b(t, u) ∀(t, u) ∈ D.

(ii) The integrability condition,

∂ua(t, u) = ∂tb(t, u) ∀(t, u) ∈ D,

holds.

Proof. (i)⇒ (ii): Since the second partial derivatives of ψ exist and are continuous, it follows from
Schwarz’ Theorem and the relations in (i) that

∂ua(t, u) = ∂u∂tψ(t, u) = ∂t∂uψ(t, u) = ∂tb(t, u).

(ii)⇒ (i): Let (t, u) ∈ D and let ψ be defined by

ψ(t, u) =

∫ t
a(s, u)ds +

∫ u (
b(t, v) −

∫ t
∂ua(s, v)ds

)
dv.

Then, using the integrability condition (ii) we conclude that

∂tψ(t, u) = a(t, u) +

∫ u
(∂tb(t, v) − ∂ua(t, v)) dv = a(t, u),

∂uψ(t, u) =

∫ t
∂ua(s, u)ds + b(t, u) −

∫ t
∂ua(s, u)ds = b(t, u),

i.e. the ODE is exact. �

Remark. In Theorem 1.12 we assumed that D is rectangular. However, the result remains valid for
open subsets D ⊂ R2 that are simply connected, i.e. they have no holes.

Example 1.13. A separable ODE
u′(t) = h(u(t))g(t),

is not exact (unless h ≡ 1). However, if h , 0 we can rewrite the equation and obtain the exact
ODE

1
h(u(t))

u′(t) = g(t).

Some ODEs that are not exact can be made exact by multiplication with a suitable function.
An example is the separable ODE in Example 1.13. A function µ : D→ R is called an integrating
factor for the ODE

a(t, u(t)) + b(t, u(t))u′(t) = 0,

if the ODE
µ(t, u(t))a(t, u(t)) + µ(t, u(t))b(t, u(t))u′(t) = 0

is exact.
To find such a function µ is typically very difficult. In fact, by Theorem 1.12 µ has to satisfy

∂

∂u
(
µ(t, u)a(t, u)

)
=
∂

∂t
(
µ(t, u)b(t, u)

)
,
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i.e.
∂uµ(t, u)a(t, u) + µ(t, u)∂ua(t, u) = ∂tµ(t, u)b(t, u) + µ(t, u)∂tb(t, u).

This is a partial differential equation (PDE) for µ, i.e. an equation involving partial derivatives
with respect to different independent variables. Solving PDEs is generally much more involved
than solving ODEs. However, in a few special cases, e.g. if µ only depends on u, or if µ only
depends on t, the equation for µ becomes an ODE that can be solved (see Exercise E1.9).

1.6 Exercises

E1.1 ODEs and IVPs

(a) Show that the function u = (u1, u2) : (0,∞)→ R2,

u1(t) = t2 − t ln(t),

u2(t) = ln(t),

is a solution of the IVP

u′1(t) = 2t − u2(t) − 1

u′2(t) =
1
t2 u2(t) +

1
t3 u1(t),

u1(1) = 1, u2(1) = 0.

(b) Show that the function

u(t) = ce1+sin(t) + e1+sin(t)
∫ t

0
e−1−sin(s)ds, t ∈ R,

where c ∈ R is an arbitrary constant, is a solution of the ODE

u′(t) = cos(t)u(t) + 1.

In both cases, specify the function f and the set D in Definitions 1.1 and 1.4.

E1.2 Logistic differential equation

The logistic differential equation is often used to model the growth of populations. If u(t)
denotes the population density at time t ≥ 0, its time evolution can be described by the ODE

u′(t) = λu(t)
(
1 −

u(t)
κ

)
,

where λ > 0 is the growth rate and κ > 0 the carrying capacity of the population.

(a) Determine a formula for the solution of the corresponding IVP with initial value u(0) =

u0 > 0.

Hint: Note that the ODE is separable and use partial fraction decomposition.
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(b) Sketch the graphs of the solutions corresponding to the initial values u0 = 1 and u0 =

20 for λ = 1 and κ = 10.

(c) Determine the limit limt→∞ u(t) for the solution u in (a).

E1.3 Homogeneous equations

An ODE of the form

u′(t) = f
(
u(t)

t

)
is called homogeneous. Apply the substitution v(t) =

u(t)
t and derive an ODE for v. Of what

type is the resulting ODE?

E1.4 IVP for a homogeneous equation

Determine the (local) solution of the IVP

tu2(t)u′(t) = u3(t) − t3,

u(1) = 1.

Hint: Use Problem E1.3.

E1.5 Maximal interval of existence

(a) Solve the IVP

u′(t) = eu(t) sin(t),

u(0) = 0,

and determine the maximal interval of existence of the solution. What is the behavior
of the solution as t tends to the endpoints of this interval?

(b) Find all solutions of the ODE

u′(t) =

(
2t +

1
t2

)
u(t)

and determine their interval of existence.

E1.6 Comparison of solutions

Let u, v : [0,∞)→ R be continuously differentiable, a, b, b̂ : [0,∞)→ R be continuous and

u′(t) + a(t)u(t) = b(t), v′(t) + a(t)v(t) = b̂(t) ≤ b(t).

Show that v(0) ≤ u(0) implies that v(t) ≤ u(t) for all t ≥ 0.

E1.7 Bernoulli equation

Let I ⊂ R be an interval, α ∈ R \ {0, 1} and let a, b : I → R be continuous functions. We
consider the ODE

u′(t) = a(t)u(t) + b(t)uα(t). (1.11)
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(a) Show that one can transform the ODE (1.11) via the ansatz w(t) = uβ(t) with a suitable
exponent β ∈ R into a linear ODE.

(b) Solow’s model describes the growth of an economy. It assumes that a single good
(output Q) is produced using two factors of production, labor L and capital K. It
assumes that

K′(t) = µQ(L(t),K(t)),

where µ > 0, i.e. a constant fraction of Q is saved, and

L′(t) = λL(t),

where λ > 0, i.e. the labor grows exponentially. Moreover, the output is given by the
Cobb-Douglas production function,

Q(L,K) = KαL1−α, α ∈ (0, 1).

Show that the capital-labor fraction κ = K
L satisfies

κ′(t) = −λκ(t) + µκα(t).

Determine the solution corresponding to the initial value κ(0) = κ0 > 0 and determine
the behavior of κ(t) as t → ∞.

E1.8 Exact ODE
Determine the solution of the IVP

3t2u(t) + 8tu2(t) + (t3 + 8t2u(t) + 12u2(t))u′(t) = 0, u(0) = 1.

Remark: You obtain an equation that determines the solution implicitly.

E1.9 Integrating factor
Consider the ODE

(2t2 + 2tu2(t) + 1)u(t) + (3u2(t) + t)u′(t) = 0.

Verify that the equation is not exact. Then, assume that there exists an integrating factor µ
that depends on t but is independent of u. Compute µ and then, use µ to find an implicit
equation that determines the solution u of the original ODE.

E1.10 Bug on a rubber band
A rubber band with initial length L > 0 has one end tied to a wall in x = 0 and the other end
is attached to a car. At t = 0, the car starts driving away from the wall at a constant speed
v > 0 (assume that the rubber band stretches uniformly). At the same time, a bug located at
x = 0 begins to crawl along the rubber band toward the car, with constant speed u relative
to the band.

(a) Argue that the following IVP describes the position x of the bug,

x′(t) =
v

L + vt
x(t) + u, x(0) = 0.

(b) Will the bug reach the car and if so, at what time?
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Chapter 2

Scalar ODEs: some qualitative
properties

2.1 Direction field

First order scalar ODEs can be interpreted geometrically and ”solved” graphically.

Definition 2.1. Let D ⊂ R2. We consider the first order scalar ODE

u′(t) = f (t, u(t)), (2.1)

where f : D→ R is continuous. The direction field v : D→ R2 of the ODE is defined by

v(t, u) =

(
1

f (t, u)

)
, (t, u) ∈ D.

An isocline of the ODE is a curve along which the direction field has a constant value, i.e. f (t, u) =

c, for some c ∈ R.

Assume that u : I → R is a solution of (2.1) on an interval I ⊂ R. Then, the slope u′(t̂) of the
function u at time t̂ ∈ I is u′(t̂) = f (t̂, û), where û = u(t̂). Hence, v is a vector field such that the
vector v(t̂, û) is tangential to the solution curve u : I → R in every point (t̂, û) ∈ D.

By drawing the direction field we can sketch the graph of the solution by following the curves
determined by the vector field. This allows to get an impression of the qualitative behavior of
solutions even if we cannot explicitly solve the ODE.

Example 2.2. We consider the ODE

u′(t) = u(t) − t.

The isoclines correspond to the family of curves

u(t) = c + t, c ∈ R, t ∈ R.

Along these lines the derivative of the solution is constant and equals c. Plotting the direction field
we can sketch the solution curves as illustrated in the figure below.
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2.2 Orthogonal trajectories

In physical applications it is often necessary to find orthogonal trajectories for a given family of
curves, i.e. curves that intersect each member of a family of curves at right angles. For instance, a
charged particle moving through a magnetic field travels along a curve that is perpendicular to the
magnetic field lines.

We consider a family of curves in R2 given by

F(t, u) = c, (t, u) ∈ D, c ∈ R, (2.2)

where D ⊂ R2 is open and F : D→ R is continuously differentiable.
For instance, the family of parabolas with maximum/minimum in (0, 0), including the t-axis,

is given by {
(t, u) ∈ R2 : u = ct2

}
c∈R

.

These curves cover R2 \ ({0}×R) and, in fact, through each point (t, u) ∈ R2 \ ({0}×R) runs exactly
one curve. The curves can be parametrized by uc : R→ R, uc(t) = ct2. Writing the equation as

uc(t)
t2 = c, t , 0,

we observe that uc satisfies the exact ODE

d
dt

(
uc(t)

t2

)
=

u′c(t)
t2 − 2

uc(t)
t3 = 0.

We aim to find orthogonal trajectories for this family.
To this end we consider the general family of curves in (2.2), i.e.

F(t, u) = c, (t, u) ∈ D, c ∈ R.

If t 7→ u(t), t ∈ I, I ⊂ R and interval, is a local parametrization, i.e. F(t, u(t)) = c, then

0 =
d
dt

(F(t, u(t))) = ∂tF(t, u(t)) + ∂uF(t, u(t))u′(t). (2.3)
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Let the orthogonal trajectories be parametrized by t 7→ w(t). If the curves u and w intersect in a
point (t, u) ∈ D, then we have

u = u(t) = w(t),(
1

u′(t)

)
·

(
1

w′(t)

)
= 0.

The last equation reflects that the tangential vectors of u and w at time t are perpendicular and we
conclude that u′(t) = − 1

w′(t) . Inserting these two conditions in (2.3) we obtain

0 = ∂tF(t,w(t)) + ∂uF(t,w(t))
(−1)
w′(t)

,

i.e. w satisfies the ODE
∂tF(t,w(t))w′(t) = ∂uF(t,w(t)).

Example 2.3. We consider again the family of parabolas{
(t, u) ∈ R2 : u = ct2

}
c∈R

.

Then, F(t, u) = u
t2 , and hence, the orthogonal trajectories satisfy the ODE

−2
w(t)
t3 w′(t) =

1
t2 .

The equation can be rewritten as

w′(t) = −
1
2

t
w(t)

.

The ODE is separable and can be solved explicitly. In fact, the (local) solutions are determined by

w2(t) =
1
2

(−t2 + d2), for some d ∈ R.

Thus, the family of ellipses are the orthogonal trajectories to the family of parabolas.
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2.3 Regularity of solutions

When we speak about the regularity of solutions of ODEs we mean how often the solutions are
(continuously) differentiable.

We show that the higher the regularity of the function f on the right hand side of an ODE is,
the higher is the regularity of the solution.

Proposition 2.4. Consider the ODE (2.1) and assume that a solution u exists. If f is continuous,
then u is continuously differentiable.

If f is k times continuously differentiable, then u is k + 1 times continuously differentiable.

Proof. Let f : D → R be continuous and u : I → R, I ⊂ R an interval, be a solution of the ODE.
Then, u is continuous (as u is differentiable) and this implies the continuity of t 7→ f (t, u(t)) (as
the composition of continuous functions is continuous). Consequently, the function t 7→ u′(t) =

f (t, u(t)) is continuous, i.e. u is continuously differentiable.
The second statement can be shown by the same arguments and by induction in k ∈ N. �

In this section we consider autonomous ODEs,

u′(t) = f (u(t)), (2.4)

where f : J → R is continuous on an interval J ⊂ R.
We show that every solution of an autonomous ODE is monotone. Note that in the following

proposition we do not require the uniqueness of solutions.

Proposition 2.5. Let u : I → R be a solution of the autonomous ODE (2.4), then u is monotone.

Proof. By Proposition 2.4 we know that the solution u is continuously differentiable.
We argue by contradiction. Let us assume that u is not monotone. Then, there exist a, b ∈ I

such that u′(a) > 0 and u′(b) < 0. Without loss of generality we assume that a < b. Choose
t̂ ∈ [a, b] such that

u(t̂) = max
t∈[a,b]

{u(t)}.

Then, t̂ ∈ (a, b) and u(t̂) > max{u(a), u(b)}, as u′(a) > 0 and u′(b) < 0.
If u(b) < u(a), let M := {t ∈ (t̂, b] : u(t) = u(a)}. By the intermediate value theorem, M , ∅

and we conclude that b0 = min{M} > t̂. Moreover, since u(t) > u(a) for t ∈ [t̂, b0), it follows that
u′(b0) ≤ 0 < u′(a).

Finally, u(a) = u(b0) and the ODE now imply that

0 < u′(a) = f (u(a)) = f (u(b0)) = u′(b0) ≤ 0,

which is a contradiction.
If u(a) = u(b) we choose b0 = b and obtain the same contradiction.
Otherwise, if u(b) > u(a) let M := {t ∈ [a, t̂) : u(t) = u(b)}. By the intermediate value theorem

M , ∅ and we conclude that a0 = max{M} < t̂. Moreover, since u(t) > u(a0) for t ∈ (a0, t̂], it
follows that u′(a0) ≥ 0 > u′(b). As before, the ODE leads to a contradiction,

0 ≤ u′(a0) = f (u(a0)) = f (u(b)) = u′(b) < 0.

�
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Example 2.6. Consider the IVP

u′(t) = f (u(t)), u(0) = u0,

where u0 ∈ R and f : R→ R is continuous. We assume that f has the following properties:

f (a) = 0, f (b) = 0,

f (u) > 0 if a < u < b,

f (u) < 0 if u < a or u > b,

where a, b ∈ R with a < b.

We observe that u∗1 = a and u∗2 = b are steady states, and Theorem 1.6 implies that the IVP has a
unique solution for every u0 ∈ R \ {a, b}. All non-constant solutions are strictly monotone and the
sign of f determines whether the solution is increasing or decreasing.

In fact, if u0 > b the solution is strictly monotone decreasing and converges to b as t → ∞. If
a < u0 < b the solution is strictly monotone increasing and also converges to b as t → ∞. Finally,
if u0 < a, the solution is strictly monotone decreasing (depending on the behavior of f the solution
may only exist for a finite time). Hence, the qualitative behavior (steady states and monotonicity)
of solutions does not depend on the precise form of f .

As an example the direction field and a few solution curves are plotted below for the function
f (u) = (0.3 − u)(u + 1).

21



2.4 Exercises

E2.1 Asymptotic behavior

(a) Let t0 ∈ R, the function g : [t0,∞)→ R be differentiable and let the limit

lim
t→∞

g′(t) =: a, a ∈ R,

exist. Show that if g is bounded, then a = 0.

(b) Let f : R→ R be continuous, t0, u0 ∈ R and let u : [t0,∞)→ R be a solution of the IVP

u′(t) = f (u(t)),

u(t0) = u0.
(2.5)

Show that if the limit limt→∞ u(t) =: a exists then u ≡ a is a steady state solution of the
IVP (2.5) on I = [t0,∞).

E2.2 Direction field
Sketch the direction field for the ODE

u′(t) = t2 + 4u2(t),

and several isoclines, i.e. curves along which the slope is constant. Without solving the ODE
explicitly, sketch the solution of the IVP with initial value u(0) = 1.

E2.3 An autonomous ODE
Consider the IVP

u′(t) = (eu(t) − 1)(u2(t) − 1), u(0) = u0 ∈ R.

Discuss the qualitative behavior of solutions (steady states and monotonicity) and sketch the
graphs of the solutions for the following cases:

u0 < −1, u0 = −1, u0 ∈ (−1, 0), u0 = 0,

u0 ∈ (0, 1), u0 = 1, u0 > 1.

E2.4 Differential inequality
Let b > a and u : [a, b]→ R be differentiable.

(a) Assume that there exists λ ∈ R such that

u′(t) ≤ λu(t) ∀t ∈ [a, b].

Show that the function g : [a, b]→ R, g(t) = u(t)e−λt, is monotone decreasing.
Conclude that u(a) = 0 implies that u(t) ≤ 0 and u(b) = 0 implies that u(t) ≥ 0 for all
t ∈ [a, b].

(b) Assume that u ≥ 0 in [a, b] and that

|u′(t)| ≤ λu(t) ∀t ∈ [a, b].

Show that if there exists t0 ∈ [a, b] such that u(t0) = 0, then u ≡ 0 in [a, b].
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E2.5 Finite time existence

In the lecture we have seen that solutions may cease to exist as u blows up in finite time.
Solutions can also cease to exist because u′ tends to plus or minus infinity (without u blowing
up). An example is given below.

Determine the solutions of the ODE
u′(t) =

λ

u(t)
,

where λ ∈ R. What is the maximal interval of existence? Sketch the graph of the solutions for
the cases λ > 0 and λ < 0.
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Chapter 3

Existence and uniqueness

Most IVPs cannot be solved explicitly, but we can often study qualitative properties of solutions
or approximate solutions and compute them numerically. However, given an IVP we first need to
show that a solution exists and that the solution is unique.

We aim to specify conditions that ensure the existence and uniqueness of solutions for IVPs
of the form

u′(t) = f (t, u(t)),

u(t0) = u0,
(3.1)

where f : D → Rn is a continuous function defined on D ⊂ R × Rn and (t0, u0) ∈ D. Recall that
u : I → Rn is a solution of the IVP (3.1) if I ⊂ R is an interval containing t0, the function u is
differentiable, (t, u(t)) ∈ D for all t ∈ I, u satisfies the ODE and u(t0) = u0.

In previous examples we have seen that solutions may not be unique (Example 1.7), a solution
may only exist for a finite time as the solution u blows up (Example 1.3) or because the derivative
of the solution u′ blows up (see Problem 2.4). It can also happen that a solution does not exist for
particular initial values, see the example below.

Example. Consider the IVP

u′(t) =
u(t)

t
, u(0) = 1.

The ODE is separable, and the solutions are of the form u(t) = ct, for some constant c ∈ R.
However, there does not exist a solution with u(0) = 1. In fact, the function f (t, u) = u

t is not
continuous and not even defined in t = 0.

We will prove a general existence and uniqueness result for solutions of the IVP (3.1). The
strategy to prove existence is to first derive an equivalent integral representation for the solution.
Using this integral representation we construct a sequence of approximate solutions. We show that
the approximate solutions converge and finally, that the limit is indeed a solution of the IVP.

3.1 Picard iteration

Instead of considering the IVP (3.1) we can also look for solutions of the integral equation

u(t) = u0 +

∫ t

t0
f (s, u(s))ds, t ∈ I. (3.2)

24



In fact, u satisfies the integral equation (3.2) if and only if u is a solution of the IVP (3.1) on I.

Lemma 3.1. Let D ⊂ R × Rn and f : D → Rn be a continuous function. Then, u : I → Rn is a
solution of the IVP (3.1) if and only if u : I → Rn is continuous and satisfies the integral equation
(3.2).

Proof. If u is a solution of the IVP on I ⊂ R and f is continuous, then u is continuously differen-
tiable on I (see Proposition 2.4). Integrating the ODE from t0 to t ∈ I, it follows that u satisfies
(3.2).

On the other hand, if u is continuous and satisfies (3.2), then u is continuously differentiable,
u(t0) = u0 and differentiating the equation it follows that u satisfies the ODE. �

We notice that if u and f are continuous, the right hand side of the integral equation (3.2)
defines a continuously differentiable function. We now use this representation to define a sequence
(uk)k∈N0 of continuous functions by

u0(t) ≡ u0

uk+1(t) = u0 +

∫ t

t0
f (s, uk(s))ds,

(3.3)

for t ∈ [t0,T ], where T > t0. If f has suitable properties this sequence converges to a function
u : [t0,T ] → Rn as k → ∞ that satisfies (3.2). Hence, (uk)k∈N0 approximates the solution of the
IVP (3.1). It is called the sequence of successive iterations or the Picard iteration. Before we state
and prove the main result we introduce a few notions from functional analysis.

3.2 Preliminaries

Let t0 ∈ R, T > t0 and let C0([t0,T ];Rn) denote the space of continuous functions u : [t0,T ]→ Rn.
We define a mapping (called an operator)

T : C0([t0,T ];Rn)→ C0([t0,T ];Rn), u 7→ T u = v,

by

T u(t) = v(t) = u0 +

∫ t

t0
f (s, u(s))ds, t ∈ [t0,T ]. (3.4)

Then, by Lemma 3.1 the function u is a solution of (3.1) on [t0,T ] if and only if u satisfies

T u = u,

i.e. u is a fixed point of the operator T . Hence, showing the existence of a solution of the IVP is
equivalent to showing the existence of a fixed point of the operator T .

Definition 3.2. Let V be a real vector space. A norm ‖ · ‖ is a mapping from V to [0,∞) with the
following properties:

• ‖v‖ = 0 ⇐⇒ v = 0 ∀v ∈ V
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• ‖αv‖ = |α| ‖v‖ ∀α ∈ R, v ∈ V

• ‖u + v‖ ≤ ‖u‖ + ‖v‖ ∀ u, v ∈ V (triangle inequality)

A normed space (V, ‖ · ‖) is a vector space V with a norm ‖ · ‖.

Definition 3.3. Let (V, ‖ · ‖) be a normed space and (vk)k∈N0 be a sequence in V .

• The sequence (vk)k∈N0 is convergent if there exists v ∈ V such that

∀ε > 0 ∃K ∈ N0 : ‖vk − v‖ < ε ∀k ≥ K.

• The sequence (vk)k∈N is a Cauchy sequence if

∀ε > 0 ∃K ∈ N0 : ‖vk − vl‖ < ε ∀k, l ≥ K.

We recall that every convergent sequence is a Cauchy sequence, but in general, not every
Cauchy sequence converges.

Example 3.4. The Euclidean space Rn is a normed space. For instance, we can consider the
following norms in Rn: Let v = (v1, . . . , vn) ∈ Rn.

• Euclidean norm: ‖v‖euc =

√∑n
i=1 v2

i

• Maximum norm: ‖v‖max = maxi=1,...,n{|vi|}

• Manhatten norm: ‖v‖man =
∑n

i=1 |vi|

The Manhatten norm is also called taxicab norm. The name refers to the grid layout of most
streets on the island of Manhattan which causes that the shortest path a taxi can take from
one intersection to another equals the distance of the two intersections in the Manhatten
norm. The distance between two vectors in this norm is the sum of the absolute values of
the differences of the components of the vectors.

Remark 3.5. In Rn all norms are equivalent, i.e. if ‖ · ‖1 and ‖ · ‖2 are two norms, then there exist
constants a, b > 0 such that

a‖v‖1 ≤ ‖v‖2 ≤ b‖v‖1 ∀v ∈ V.

In particular, this implies that the convergence of a sequence in one norm implies the convergence
of the sequence in the other norm. This is generally not the case in other normed spaces.
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Example 3.6. Let t0 ∈ R, T > t0 and let ‖ · ‖ be an arbitrary norm in Rn. The space C0([t0,T ];Rn)
of continuous function on [t0,T ] is a normed space. For instance, we can consider the following
norms: Let u ∈ C0([t0,T ];Rn).

• Maximum norm: ‖u‖max = maxt∈[t0,T ]{‖u(t)‖}

• Exponentially weighted norm: ‖u‖exp = maxt∈[t0,T ]{‖u(t)‖e−λt}, λ > 0

• Integral norm: ‖u‖int =
∫ T

t0
‖u(t)‖dt

The maximum norm and the exponentially weighted norm are equivalent, since

e−λT ‖u‖max ≤ ‖u‖exp ≤ e−λt0‖u‖max ∀u ∈ C0([t0,T ];Rn).

However, the integral norm and the maximum norm are not equivalent as we only have

‖u‖int ≤ (T − t0)‖u‖max ∀u ∈ C0([t0,T ];Rn),

but the second inequality does not hold.

Definition 3.7. A normed space (V, ‖ · ‖) is called a Banach space if it is complete, i.e. if every
Cauchy sequence converges to an element v ∈ V .

The Euclidean space Rn with an arbitrary norm is a Banach space. Another example is the
space of continuous functions C0([t0,T ];Rn) with the maximum norm. Before proving this state-
ment we recall that a sequence of functions fk : [t0,T ] → Rn, k ∈ N0, converges uniformly to
f : [t0,T ]→ Rn if ∀ε > 0 ∃K ∈ N0 such that

‖ fk(t) − f (t)‖ < ε ∀t ∈ [t0,T ], k ≥ K.

Proposition 3.8. Let t0 ∈ R and T > t0. Then, C0([t0,T ];Rn) with the maximum norm ‖ · ‖max is
a Banach space.

Proof. Let (uk)k∈N0 be a Cauchy sequence in C0([t0,T ];Rn) and ε > 0. Then, ∃K ∈ N0 such that

max
t∈[t0,T ]

‖uk(t) − ul(t)‖ <
ε

2
∀k, l ≥ K.

Consequently, for every t ∈ [t0,T ] it follows that

‖uk(t) − ul(t)‖ <
ε

2
∀k, l ≥ K,

i.e. (uk(t))k∈N0 is a Cauchy sequence in Rn. Since Rn is complete, the limit limk→∞ uk(t) = u(t)
exists ∀t ∈ [t0,T ] and defines a function u : [t0,T ] → Rn. Moreover, we observe that for all
t ∈ [t0,T ] and k ≥ K we have

‖u(t) − uk(t)‖ = lim
l→∞
‖ul(t) − uk(t)‖ ≤

ε

2
< ε,

which shows that the sequence uk : [t0,T ]→ Rn, k ∈ N0, converges uniformly.
Finally, from Analysis 1 we know that if uk : [t0,T ]→ R is a sequence of continuous functions

that converges uniformly to a function u : [t0,T ]→ R then u is continuous. This statement can be
easily be generalized for vector-valued functions [t0,T ] → Rn by replacing the absolute value by
a norm in Rn.

Hence, the limit u is continuous, i.e. u ∈ C0([t0,T ];Rn) which concludes the proof. �
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Since the norms ‖ · ‖max and ‖ · ‖exp are equivalent, it follows that C0([t0,T ];Rn) with ‖ · ‖exp is
also a Banach space.

We saw that the IVP (3.1) can be reformulated as the integral equation (3.2), and showing that
a solution of (3.1) exists is equivalent to showing that the operator T in (3.4) has a fixed point.
We will show the latter by applying Banach’s Fixed Point Theorem for contraction mappings. It
provides a sequence of successive approximations that converges to the unique fixed point.

Theorem 3.9 (Banach’s Fixed Point Theorem). Let A ⊂ V be a non-empty, closed subset of a
Banach space (V, ‖ · ‖). We assume that T : A → V is a contraction mapping, i.e. there exists
θ ∈ [0, 1) such that

‖T (u) − T (v)‖ ≤ θ‖u − v‖ ∀u, v ∈ A, (3.5)

and T (A) ⊂ A. Then, there exists a unique fixed point v∗ ∈ A of T , i.e. T (v∗) = v∗.
Moreover, for every v0 ∈ A the sequence (vk)k∈N0 of successive approximations,

vk+1 = T (vk), k ∈ N0,

converges to v∗ as k → ∞. In particular, the following estimate holds,

‖vk − v∗‖ ≤
θk

1 − θ
‖v0 − v1‖ ∀k ∈ N. (3.6)

Proof. By induction it follows that vk ∈ A for all k ∈ N0, as T (A) ⊂ A and v0 ∈ A.
Next, we show by induction that

‖vk+1 − vk‖ ≤ θ
k‖v1 − v0‖ ∀k ∈ N0. (3.7)

For k = 0 it is certainly satisfied. We assume that the inequality has been shown for k ∈ N. Then,
using (3.5) for k + 1 we obtain

‖vk+2 − vk+1‖ = ‖T (vk+1) − T (vk)‖ ≤ θ‖vk+1 − vk‖ ≤ θ
k+1‖v1 − v0‖,

where we used (3.7) in the last step. Consequently, (3.7) holds for k + 1 which concludes the proof
of this estimate.

Let now l > k, then

‖vl − vk‖ =
∥∥∥ l−1∑

i=k

(vi+1 − vi)
∥∥∥ ≤ l−1∑

i=k

‖vi+1 − vi‖
(3.7)
≤ ‖v1 − v0‖

l−1∑
i=k

θi

≤ ‖v1 − v0‖θ
k
∞∑

i=0

θi ≤
θk

1 − θ
‖v1 − v0‖,

(3.8)

where we used the geometric series
∑∞

i=0 θ
i = 1

1−θ . Consequently, (vk)k∈N0 is a Cauchy sequence
and, as V is a Banach space, it converges to an element v∗ ∈ V . Moreover, since vk ∈ A for all
k ∈ N0 and A is closed, it follows that v∗ ∈ A.

Furthermore, since vk+1 = T (vk), taking the limit k → ∞ we conclude that

v∗ = lim
k→∞

vk+1 = lim
k→∞
T (vk) = T (v∗),
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i.e. v∗ is a fixed point of T . Here, we used that limk→∞ T (vk) = T (v∗), which follows from the
estimate ‖T (v∗) − T (vk)‖ ≤ θ‖v∗ − vk‖ and the convergence of (vk)k∈N0 to v∗.

To show (3.6) we observe that for l ≥ 1 we have

‖vl − v∗‖ = ‖vl − lim
k→∞

vk‖ = lim
k→∞
‖vl − vk‖

(3.8)
≤

θl

1 − θ
‖v1 − v0‖.

Finally, to show uniqueness let w∗ be another fixed point. Then, it follows that

‖v∗ − w∗‖ = ‖T (v∗) − T (w∗)‖
(3.6)
≤ θ‖v∗ − w∗‖,

which implies that ‖v∗ − w∗‖ = 0, and consequently, v∗ = w∗. �

3.3 Global existence

Here and in the sequel, ‖ · ‖ denotes an arbitrary norm in Rn. To apply Banach’s Fixed Point
Theorem we need the following lemma.

Lemma 3.10. Let t0 ∈ R,T > t0 and g : [t0,T ]→ Rn be a continuous function. Then,∥∥∥∥∥∥
∫ T

t0
g(s)ds

∥∥∥∥∥∥ ≤
∫ T

t0
‖g(s)‖ds.

Proof. Let ε > 0. We consider an approximation of the integrals by Riemann sums,∫ T

t0
g j(t)dt =

N∑
i=1

(ti − ti−1)g j(ti) + δ j, |δ j| < ε, j = 1, . . . , n, (3.9)

where ti = t0 + i T−t0
N , i = 1, . . . ,N.

Similarly, as ‖g‖ : [t0,T ]→ R is continuous, we have∫ T

t0
‖g(t)‖dt =

N∑
i=1

(ti − ti−1)‖g(ti)‖ + µ, |µ| < ε. (3.10)
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Let δ = (δ1, . . . , δn) ∈ Rn. Then, the triangle inequality and the approximations above imply that∥∥∥∥∥∥
∫ T

t0
g(t)dt

∥∥∥∥∥∥ (3.9)
≤ ‖d‖ +

N∑
i=1

(ti − ti−1)‖g(ti)‖
(3.10)
≤

∫ T

t0
‖g(t)‖dt + ‖δ‖ + |µ|.

Finally, since ‖δ‖ and |µ| can be arbitrarily small, the inequality follows. �

We aim to apply Banach’s Fixed Point Theorem to show that the operator T in (3.4) has a
unique fixed point. The following Lipschitz condition for f will imply that T is a contraction.

Definition 3.11. Let D ⊂ Rn+1 and f : D→ Rn be continuous. We say that f satisfies a Lipschitz
condition in D if there exists L > 0 such that

‖ f (t, u) − f (t, v)‖ ≤ L‖u − v‖ ∀(t, u), (t, v) ∈ D. (3.11)

The constant L > 0 is called the Lipschitz constant of f .

Theorem 3.12. Let t0 ∈ R,T > t0 and u0 ∈ R
n. We assume that the function f : [t0,T ]×Rn → Rn

is continuous and satisfies the Lipschitz condition (3.11) in D = [t0,T ] × Rn. Then, there exist a
unique solution u : [t0,T ]→ Rn of the IVP (3.1),

u′(t) = f (t, u(t)),

u(t0) = u0.

Moreover, the sequence of successive approximations (uk)k∈N0 defined in (3.3),

uk+1(t) = u0 +

∫ t

t0
f (s, uk(s))ds, t ∈ [t0,T ], k ∈ N0,

converges uniformly to u on [t0,T ].

Proof. We consider the Banach space of continuous functions C0([t0,T ];Rn) with the exponen-
tially weighted norm ‖u‖exp = maxt∈[t0,T ]{‖u(t)‖e−2Lt}. We could equally work with the maximum
norm, but using the exponentially weighted norm turns out to be more convenient.

We aim to apply Banach’s fixed point theorem (Theorem 3.9) to show that the mapping T :
C0([t0,T ];Rn)→ C0([t0,T ];Rn) defined in (3.2),

T (u)(t) = u0 +

∫ t

t0
f (s, u(s))ds, u ∈ C0([t0,T ];Rn),

has a unique fixed point. To show that T is a contraction in (C0([t0,T ];Rn), ‖ · ‖exp) let u, v ∈
C0([t0,T ];Rn). Then, Lemma 3.10 and the Lipschitz condition imply that

‖T (u)(t) − T (v)(t)‖ =

∥∥∥∥∥∥
∫ t

t0
f (s, u(s)) − f (s, v(s))ds

∥∥∥∥∥∥
≤

∫ t

t0
‖ f (s, u(s)) − f (s, v(s))‖ds ≤

∫ t

t0
L‖u(s) − v(s)‖ds

= L
∫ t

t0

∥∥∥(u(s) − v(s))e−2Ls
∥∥∥ e2Lsds,
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for all t ∈ [t0,T ]. Using the fact that ‖(u(s) − v(s))e−2Ls‖ ≤ ‖u − v‖exp for all s ∈ [t0,T ] it follows
that

‖T (u)(t) − T (v)(t)‖ ≤ ‖u − v‖expL
∫ t

t0
e2Lsds ≤

1
2
‖u − v‖expe2Lt ∀t ∈ [t0,T ].

We conclude that
‖T (u)(t) − T (v)(t)‖e−2Lt ≤

1
2
‖u − v‖exp,

and taking the maximum over all t ∈ [t0,T ] yields

‖T (u) − T (v)‖exp ≤
1
2
‖u − v‖exp,

i.e. T is a contraction in the Banach space (C0([t0,T ];Rn), ‖ · ‖exp).
Hence, by Theorem 3.9 there exists a unique fixed point u∗ of T ,

u∗(t) = u0 +

∫ t

t0
f (s, u∗(s))ds,

and the sequence of successive approximations (3.3) converges uniformly to u∗ on [t0,T ]. In fact,
(un)n∈N0 converges to u with respect to the exponentially weighted norm and this is equivalent to
the convergence with respect to the maximum norm. Moreover, the convergence with respect to
the maximum norm implies the uniform convergence (see the proof of Proposition 3.8).

Finally, by Lemma 3.1, the fixed point u∗ is the unique solution of the IVP (3.1) on the interval
[t0,T ]. �

The proof of Theorem 3.12 is constructive, i.e. we can explicitly compute the sequence of
successive approximations and obtain the solution of the IVP by passing to the limit. However,
only in simple cases this method allows us to find an explicit solution (see exercises). For nu-
merical approximations, the Picard iteration is not very suitable and there are other approximation
schemes that are easier to implement and that require less computer memory.

The global Lipschitz condition for f in the previous theorem is a restrictive assumption that
excludes many nonlinear ODEs. In the next section we relax this hypothesis and prove a local
existence and uniqueness result for more general functions f .

3.4 Local existence

We prove the general local existence and uniqueness result in two steps. First, we show local
existence for functions f that are Lipschitz continuous in particular subsets.

Theorem 3.13. Let t0 ∈ R, t̂ > t0 and u0 ∈ R
n. Moreover, let D = [t0, t̂] × B, where B = {u ∈ Rn :

‖u − u0‖ ≤ r} for some r > 0. We assume that f : D→ Rn is continuous and satisfies the Lipschitz
condition (3.11) in D.

Then, there exist a unique local solution u of the IVP

u′(t) = f (t, u(t)),

u(t0) = u0.
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The solution exists on [t0,T ], where T = t̂ or

T =
r

max(t,u)∈D ‖ f (t, u)‖
.

Proof. First, we construct a function f̃ : [t0, t̂] ×Rn → Rn that coincides with f on D and satisfies
the global Lipschitz condition (3.11). To this end let

f̃ (t, u) =

 f (t, u) (t, u) ∈ D,
f
(
t, u0 + r u−u0

‖u−u0‖

)
(t, u) ∈ [t0, t̂] × (Rn \ B).

Note that if u < B then ū = u0 + r u−u0
‖u−u0‖

satisfies ‖ū − u0‖ = r.

If u, v ∈ B the Lipschitz continuity of f in D immediately implies that

‖ f̃ (t, u) − f̃ (t, v)‖ ≤ L‖u − v‖.

Next, we assume that u, v < B. Then, the Lipschitz continuity of f in D implies that

‖ f̃ (t, u) − f̃ (t, v)‖ ≤ L
∥∥∥∥∥u0 + r

u − u0

‖u − u0‖
− u0 − r

v − u0

‖v − u0‖

∥∥∥∥∥
≤ Lr

∥∥∥∥∥ u − u0

‖u − u0‖
−

v − u0

‖u − u0‖
+

v − u0

‖u − u0‖
−

v − u0

‖v − u0‖

∥∥∥∥∥
≤ Lr

(
‖u − v‖
‖u − u0‖

+ ‖v − v0‖
| ‖v − u0‖ − ‖u − u0‖ |

‖v − u0‖ ‖u − u0‖

)
≤ Lr

2‖u − v‖
‖u − u0‖

≤ 2L‖u − v‖,

where we used that ‖u − u0‖ > r and | ‖v − u0‖ − ‖u − u0‖ | ≤ ‖u − v‖.
Finally, we assume that u ∈ B and v < B. Then, the Lipschitz continuity of f in D implies that

‖ f̃ (t, u) − f̃ (t, v)‖ ≤ L
∥∥∥∥∥u − u0 − r

v − u0

‖v − u0‖

∥∥∥∥∥ = L
∥∥∥∥∥u − v + v − u0 − r

v − u0

‖v − u0‖

∥∥∥∥∥
≤ L

(
‖u − v‖ +

∥∥∥∥∥v − u0 − r
v − u0

‖v − u0‖

∥∥∥∥∥) ≤ L
(
‖u − v‖ +

‖(v − u0)(‖v − u0‖ − r)‖
‖v − u0‖

)
= L (‖u − v‖ + ‖v − v̄‖) ≤ 2L‖u − v‖,
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where we used that u ∈ B and dist(v, B) = ‖v − v̄‖ in the last step.
Therefore, combining all cases it follows that f̃ is satisfies the Lipschitz condition on D̃ =

[t0, t̂] × Rn and hence, by Theorem 3.12 there exists a unique solution of the IVP

ũ′(t) = f̃ (t, ũ(t)),

ũ(t0) = u0,
(3.12)

on [t0, t̂]. Moreover, ũ satisfies the integral equation (3.2), and consequently,

‖ũ(t) − u0‖
(3.10)
≤

∫ t

t0
‖ f̃ (s, ũ(s))‖ds ≤ sup

(t,u)∈[t0,t̂]×Rn

{
‖ f̃ (t, u)‖

}
(t − t0)

≤ max
(t,u)∈D

{
‖ f (t, u)‖

}
(t − t0),

(3.13)

for all t ∈ [t0, t̂].

Let T > t0 be the largest number such that ũ(t) ∈ D for all t ∈ [t0,T ]. Then, the above estimate
implies that

T = t̂ or T ≥ t0 +
r

max(t,u)∈D{‖ f (t, u)‖}
.

Since f = f̃ on D this implies that ũ is a solution of the original IVP on [t0,T ]. Conversely,
every solution u of the original IVP satisfies the auxiliary problem (3.12) as long as u(t) ∈ D and
hence, it must coincide with ũ on the interval [t0,T ]. �

We now use this theorem to prove the main result. In particular, we show that a local Lips-
chitz condition of f implies the local existence of a solution, i.e. the existence of a solution in a
sufficiently small time interval around t0.

Definition 3.14. Let D ⊂ Rn+1 and the function f : D → Rn be continuous. We say that f
satisfies a local Lipschitz condition in D if for every (t̂, û) ∈ D there exist a neighborhood U ={
(t, u) ∈ Rn+1 : |t − t̂| ≤ ρ, ‖u − û‖ ≤ ρ

}
, for some ρ > 0, such that

‖ f (t, u) − f (t, v)‖ ≤ L‖u − v‖ ∀(t, u), (t, v) ∈ U ∩ D.

In this case, the Lipschitz constant L can depend on the neighborhood U.
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The local Lipschitz condition is typically not easy to verify directly. However, there is a
property that is easy to check and that implies the local Lipschitz condition.

Let D ⊂ Rm be open. We recall that a function g : D→ Rn is continuously differentiable if all
partial derivatives ∂y jgi, j = 1, . . . ,m, i = 1, . . . , n, exist and are continuous on D. In this case, we
denote by g′(y),Dg(y) or Jg(y) the Jacobian matrix of g in y ∈ D, i.e.

g′(y) = Dg(y) = Jg(y) =


∂y1g1(y) · · · ∂ymg1(y)

...
. . .

...

∂y1gn(y) · · · ∂ymgn(y)

 .
Proposition 3.15. Let D ⊂ Rn+1 be open and f : D → Rn, (t, u) 7→ f (t, u), be continuous and
continuously differentiable with respect to u in D, i.e. the partial derivatives ∂u j fi, i, j = 1, . . . , n,
exist and are continuous in D. Then, f satisfies a local Lipschitz condition in D.

Proof. Let (t0, u0) ∈ D. Since D is open, there exists ρ > 0 such that

D0 = {(t, u) ∈ Rn+1 : |t − t0| ≤ ρ, ‖u − u0‖ ≤ ρ} ⊂ D.

Moreover, as f is continuously differentiable with respect to u we obtain

f (t, u) − f (t, v) =

∫ 1

0

d
dθ

( f (t, v + θ(u − v))) dθ

=

∫ 1

0
Du f (t, v + θ(u − v))(u − v)dθ,

for all (t, u), (t, v) ∈ D0. Here, Du f (y) denotes the Jacobian matrix of f with respect to u in y.
Taking the maximum norm in Rn and using Lemma 3.10 it follows that

‖ f (t, u) − f (t, v)‖max ≤

∫ 1

0
‖Du f (t, v + θ(u − v))(u − v)‖maxdθ.

Moreover, for all i = 1, . . . , n we have∣∣∣ n∑
j=1

∂u j fi(t, v + θ(u − v))(u j − v j)
∣∣∣ ≤ max

i, j=1,...,n

{
max

(t,w)∈D0
|∂u j fi(t,w)|

} n∑
j=1

|u j − v j|

≤ nC‖u − v‖max,

where

C = max
i, j=1,...,n

{
max

(t,w)∈D0
|∂u j fi(t,w)|

}
.

Here, we used the continuity of the functions ∂u j fi. Indeed, as ∂u j fi is continuous and the set D0
is compact, ∂u j fi attains a maximum on D0, for all i, j = 1, . . . , n. Consequently, it follows that

‖ f (t, u) − f (t, v)‖max ≤

∫ 1

0
nC‖u − v‖maxdθ = nC‖u − v‖max.

This shows that f satisfies a local Lipschitz condition in D0 with respect to the maximum norm.
Since all norms in Rn are equivalent, it follows that f satisfies a local Lipschitz condition with
respect to any norm in Rn. �
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Theorem 3.16 (Picard-Lindelöf). Let D ⊂ Rn+1 be open and f : D → Rn be continuous. If f
satisfies a local Lipschitz condition in D, then for every (t0, u0) ∈ D there exist a unique solution u
of the IVP

u′(t) = f (t, u(t)),

u(t0) = u0,

on an interval [t0 − δ, t0 + δ], for some δ > 0.

Proof. Let (t0, u0) ∈ D. Since D is open and f satisfies a local Lipschitz condition in D, there exist
ρ > 0 such that D0 = {(t, u) : |t − t0| ≤ ρ, ‖u − u0‖ ≤ ρ} ⊂ D and f satisfies the Lipschitz condition
in D0. Consequently, Theorem 3.13 implies that there exists a unique solution u+ of the IVP on an
interval [t0, t0 + δ̂], for some δ̂ > 0.

To obtain a solution for t < t0 we define the functions ū(t) = u(2t0 − t) and f̄ (t, u) = − f (2t0 −
t, u). Then, ū satisfies the IVP

ū′(t) = u′(2t0 − t)(−1) = − f (2t0 − t, u(2t0 − t)) = f̄ (t, ū(t)),

ū(t0) = u0.
(3.14)

Moreover, f̄ satisfies the Lipschitz condition in D0 and hence, by Theorem 3.13, there exists a
unique solution ū of the IVP (3.14) on an interval [t0, t0 + δ̄], for some δ̄ > 0. We conclude that
u−(t) = ū(2t0 − t) is the unique solution of the original IVP on the interval [t0 − δ̄, t0].

Finally, combining the two pieces, i.e. setting u = u+ on [t0, t0 + δ̂] and u = u− on [t0 − δ̄, t0],
we obtain a solution u of the IVP on an interval [t0 − δ, t0 + δ], where δ = min{δ̄, δ̂}. �

Corollary 3.17. Let D ⊂ Rn+1 be open. Moreover, let f : D→ Rn be continuous and continuously
differentiable with respect to u in D. Then, for all (t0, u0) ∈ D there exists a unique solution of the
IVP

u′(t) = f (t, u(t)),

u(t0) = u0,

on an interval [t0 − δ, t0 + δ], for some δ > 0.

Proof. This is an immediate consequence of Proposition 3.15 and Theorem 3.16. �

These results provide the local existence and uniqueness of solutions. The maximal interval
of existence as well as the interval on which the solution is unique may depend on the initial time
t0 and the initial value u0. The following two examples illustrate this.

Example 3.18. Consider the following IVP

u′(t) = t2u2(t), u(t0) = u0,

where t0, u0 ∈ R.

The function f : R2 → R, (t, u) 7→ t2u2, is continuous and continuously differentiable with
respect to u in R2 and hence, by Proposition 3.15, it satisfies a local Lipschitz condition in R2.
Consequently, by Corollary 3.17 there exists a unique solution of the IVP on an interval [t0 −
δ, t0 + δ], for some δ > 0. However, we do not know how large the interval of existence is.
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We remark that f does not satisfy a Lipschitz condition in any subset of the form [t0 − T, t0 +

T ] × R, T > 0. Indeed, we observe that

| f (t, u) − f (t, v)| = t2|u2 − v2| = t2|u + v||u − v| u, v ∈ R, t ∈ [t0 − T, t0 + T ].

Hence, the (global) Lischitz condition (3.11) cannot be satisfied and Theorem 3.12 is not applica-
ble in this case.

We observe that u∗ = 0 is a steady state of the ODE and this constant solution exists for all
t ∈ R. Moreover, if tu(t) , 0, then u′(t) > 0, i.e. u is strictly increasing. The ODE is separable and
we can solve the IVP explicitly. In fact, we obtain

u(t) =
3

α − t3 for

 t3 < α = t3
0 + 3

u0
if u0 > 0,

t3 > α if u0 > 0.

Since local uniqueness holds, these are the only solutions of the IVP. The following figure shows
the slope field and the graphs of several solutions.

Example 3.19. Consider the following IVP

u′(t) = −t
√
|u(t)|, u(t0) = u0,

where t0, u0 ∈ R.

The function f : R2 → R, (t, u) 7→ −t
√
|u| is continuous and continuously differentiable with

respect to u in any point (t0, u0) ∈ R2 with u0 , 0. Hence, if u0 , 0, then by Corollary 3.17,
there exists a unique solution of the IVP on an interval [t0 − δ, t0 + δ], for some δ > 0. However,
if u0 = 0, Corollary 3.17 cannot be applied to conclude the existence and uniqueness of solutions
(and neither Theorem 1.6 for separable ODEs).

We observe that u∗ = 0 is a steady state of the ODE and this constant solution exists for all
t ∈ R. Moreover, the ODE is separable and we can solve the IVP explicitly. In fact, considering
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positive and negative solutions separately, we obtain

u(t) =
1

16
(α − t2)2 for t2 ≤ α = t2

0 + 4
√
|u0|, if u0 > 0,

u(t) = −
1
16

(t2 − β)2 for t2 > α, if u0 < 0.

We consider the case u0 > 0. Then, there exists a unique solution u on the interval [−
√
α,
√
α] and

this solution can be extended for all t ∈ R, but the extension is not unique. In fact, for arbitrary
β1, β2 > α, we can extend u by zero on the intervals [−

√
β1,−

√
α] and [

√
α,
√
β2] and by

u(t) = −
1
16

(t2 − β1)2, t ≤ −
√
β1,

u(t) = −
1
16

(t2 − β2)2, t ≥ −
√
β2.

The following figure shows the graphs of the solutions.

Proposition 3.20. Let D ⊂ Rn+1 be open and f : D → Rn be continuous and satisfy a local
Lipschitz condition in D. Assume that u1 : I → Rn and u2 : J → Rn, I, J ⊂ R intervals, are
solutions of the ODE

u′(t) = f (t, u(t)).

If there exists t̂ ∈ I ∩ J such that u1(t̂) = u2(t̂), then u1 ≡ u2 on I ∩ J.

Proof. Let I0 = I ∩ J, and Ĩ0 = {t ∈ I0 : u1(t) = u2(t)}. Then, Ĩ0 , ∅ as t̂ ∈ Ĩ0. We need to show
that I0 = Ĩ0.

First, we observe that Ĩ0 ⊂ I0 is relatively closed. Indeed, let (tk)k∈N0 be a sequence in Ĩ0 such
that tk → t̃ as k → ∞. Then, as u1 and u2 are continuous, it follows that

u1(t̃) = u1( lim
k→∞

tk) = lim
k→∞

u1(tk) = lim
k→∞

u2(tk) = u2( lim
k→∞

tk) = u2(t̃),

which implies that t̃ ∈ Ĩ0.
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Moreover, Ĩ0 ⊂ I0 is relatively open. Indeed, let t0 ∈ Ĩ0. Then, by Theorem 3.16 there exists a
unique solution u : [t0 − δ, t0 + δ] → Rn, δ > 0, of the IVP with u(t0) = u0 = u1(t0) = u2(t0). By
the uniqueness of solutions, it follows that u1|[t0−δ,t0+δ]∩I0 = u2|[t0−δ,t0+δ]∩I0 .

Consequently, Ĩ0 ⊂ I0 is relatively closed and relatively open and this implies that Ĩ0 = I0. �

Remark. The local Lipschitz condition in Theorem 3.16 is a sufficient condition for the local
existence and uniqueness of solutions, but it is not necessary. There are examples of IVPs for
which a unique local solution exists, but the function f does not satisfy a local Lipschitz condition.

Moreover, the local existence of solutions can already be shown if f is merely continuous on
an open neighborhood around (t0, u0). This result is known as Peano’s Theorem and its proof is
more involved than the proof of Theorem 3.16. Peano’s Theorem, however, does not guarantee
the uniqueness of solutions, as shown, e.g. in Example 3.19.

3.5 Gronwall’s Lemma and perturbation results

The following result is one of several different versions of Gronwall’s Lemma which is important
in many applications. It allows to derive bounds for functions that satisfy an integral inequality.

Lemma 3.21. Let t0 ∈ R,T > t0, the functions g, a, b : [t0,T ] → R be continuous and b ≥ 0 in
[t0,T ]. If g satisfies the inequality

g(t) ≤ a(t) +

∫ t

t0
b(s)g(s)ds ∀t ∈ [t0,T ], (3.15)

then,

g(t) ≤ a(t) +

∫ t

t0
e
∫ t

s b(r)dra(s)b(s)ds ∀t ∈ [t0,T ]. (3.16)

If, in addition, a is continuously differentiable, then

g(t) ≤ a(t0)e
∫ t

t0
b(s)ds

+

∫ t

t0
e
∫ t

s b(r)dra′(s)ds ∀t ∈ [t0,T ]. (3.17)

Proof. We define h(t) :=
∫ t

t0
g(s)b(s)ds and set v(t) = g(t) − h(t). Then, (3.15) is equivalent to the

inequality v(t) ≤ a(t) ∀t ∈ [t0,T ]. Moreover, it follows that

h′(t) = g(t)b(t) = v(t)b(t) + h(t)b(t) ∀t ∈ [t0,T ],

and h(t0) = 0. Hence, h satisfies a linear scalar ODE and Theorem 1.9 implies that

h(t) =

∫ t

t0
e
∫ t

s b(r)drv(s)b(s)ds.

Finally, v(t) ≤ a(t) and b(t) ≥ 0 imply that

g(t) = v(t) + h(t) = v(t) +

∫ t

t0
e
∫ t

s b(r)drv(s)b(s)ds ≤ a(t) +

∫ t

t0
e
∫ t

s b(r)dra(s)b(s)ds,
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for all t ∈ [t0,T ], which proves (3.16).
To show (3.17) we integrate by parts. In fact, we observe that∫ t

t0
e
∫ t

s b(r)dra(s)b(s)ds =

∫ t

t0
−

d
ds

(
e
∫ t

s b(r)dr
)

a(s)ds

= −a(t) + a(t0)e
∫ t

t0
b(s)ds

+

∫ t

t0
e
∫ t

s b(r)dra′(s)ds,

which implies (3.17). �

We now apply Gronwall’s Lemma to show a perturbation result. This is important in appli-
cations as we expect that if we perturb the function f or the initial value u0 slightly, then the
difference between the solutions of the original problem and the perturbed problem should be
small.

For simplicity we formulate the results assuming that the function f satisfies the (global)
Lipschitz condition (3.11). However, similar results hold if we assume a local Lipschitz condition
for f .

Theorem 3.22. Let t0 ∈ R,T > t0 and u0, ũ0 ∈ R
n. We assume that the functions f , f̃ : [t0,T ] ×

Rn → Rn are continuous and satisfy the Lipschitz condition (3.11) in D = [t0,T ] × Rn.
Then, there exist unique solutions u, ũ : [t0,T ]→ Rn of the IVPs

u′(t) = f (t, u(t)), ũ′(t) = f̃ (t, ũ(t)),

u(t0) = u0, ũ(t0) = ũ0,

and the following estimate holds,

‖u(t) − ũ(t)‖ ≤ eL(t−t0)‖u0 − ũ0‖ +

∫ t

t0
eL(t−s)‖ f (s, ũ(s)) − f̃ (s, ũ(s))‖ds,

for all t ∈ [t0,T ].

Proof. By Theorem 3.13, there exist unique solutions u and ũ of the IVPs and the solutions are
defined on [t0,T ]. By Lemma 3.1 the solutions satisfy the integral equation (3.2) and hence, we
obtain for their difference

u(t) − ũ(t) = u0 − ũ0 +

∫ t

t0
( f (s, u(s)) − f̃ (s, ũ(s)))ds

= u0 − ũ0 +

∫ t

t0
( f (s, u(s)) − f (s, ũ(s)))ds +

∫ t

t0
( f (s, ũ(s)) − f̃ (s, ũ(s)))ds

for all t ∈ [t0,T ]. Furthermore, the triangle inequality and Lemma 3.10 now imply that

‖u(t) − ũ(t)‖

≤ ‖u0 − ũ0‖ +

∫ t

t0
‖ f (s, u(s)) − f (s, ũ(s))‖ds +

∫ t

t0
‖ f (s, ũ(s)) − f̃ (s, ũ(s))‖ds

≤ ‖u0 − ũ0‖ + L
∫ t

t0
‖u(s) − ũ(s)‖ds +

∫ t

t0
‖ f (s, ũ(s)) − f̃ (s, ũ(s))‖ds,
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where we used the Lipschitz condition of f in the last step. Finally, Gronwall’s Lemma (Lemma
3.21) applied to g(t) = ‖u(t) − ũ(t)‖, b ≡ L and

a(t) = ‖u0 − ũ0‖ +

∫ t

t0
‖ f (s, ũ(s)) − f̃ (s, ũ(s))‖ds,

implies the estimate. �

An immediate consequence of the previous theorem is the continuity of solutions with respect
to initial values.

Corollary 3.23. Let t0 ∈ R,T > t0 and u0, ũ0 ∈ R
n. We assume that the function f : [t0,T ]×Rn →

Rn is continuous and satisfies the Lipschitz condition (3.11) in D = [t0,T ]×Rn. Consider the ODE

u′(t) = f (t, u(t))

and let u : [t0,T ]→ Rn denote the unique solution of the IVP with u(t0) = u0 and let ũ : [t0,T ]→
Rn denote the unique solution of the IVP with ũ(t0) = ũ0. Then,

‖u(t) − ũ(t)‖ ≤ eL(t−t0)‖u0 − ũ0‖ ∀t ∈ [t0,T ].

Proof. This is an immediate consequence of Theorem 3.22 with f = f̃ . �

The previous corollary implies the well-posedness of the IVP. J. Hadamard introduced this
notion and called a problem well-posed if a solution exists, the solution is unique and solutions
depend continuously on the initial conditions.

3.6 ODEs of higher order

So far, we only considered ODEs of first order. We now look at ODEs of higher order.
Let D ⊂ Rn+1 and f : D→ R be a continuous function. An equation of the form

u(n)(t) = f (t, u(t), u′(t), . . . , u(n−1)(t)) (3.18)

is called explicit ODE of n-th order, n ∈ N, where u(n) denotes the n-th derivative of u.

Definition 3.24. A solution of (3.18) is a function u : I → R, I ⊂ R an interval, such that

• u is n-times differentiable,

• (t, u(t), u′(t), . . . , u(n−1)(t)) ∈ D for all t ∈ I,

• u(n)(t) = f (t, u(t), u′(t), . . . , u(n−1)(t)) for all t ∈ I.

An ODE of n-th order can be reduced to a system of n first order ODEs. In fact, let v1 =

u, v2 = u′, . . . , vn = u(n−1). Then, v =
(
v1, . . . , vn

)
satisfied the first order system

v′1(t) = v2(t),

v′2(t) = v3(t),
...

v′n(t) = f (t, v1(t), . . . , vn(t)).

(3.19)
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Lemma 3.25. If u : I → R is a solution of (3.18), then the function v : I → Rn defined above is a
solution of (3.19).

If v : I → Rn is a solution of the system (3.19), then u = v1 : I → R is a solution of (3.18).

Proof. Let u : I → R be a solution of (3.18) and the function v : I → Rn be defined as above. If
we define F : D→ Rn by

F(t, v) =



v2
v3
...

vn

f (t, v1, . . . , vn)


,

we observe that v is a solution of (3.19) according to Definition 1.1.
Let now v be a solution of (3.19). Then, by the definition of v and the differentiability of v it

follows that v2 = v′1 = u′, v3 = v′2 = u′′, . . . ,vn = v′n−1 = u(n−1). Therefore, since vn is differentiable,
it follows that u is n-times differentiable and by the last equation in (3.19), it follows that u satisfies
(3.18). �

In the same way, we can reformulate n-th order systems of ODEs as systems of first order.
Therefore, as every n-th order ODE can be reduced to a system of first order ODEs, it suffices to
develop the theory for first order systems.

Example 3.26. Systems of second order ODEs are important in physics. For instance, let x(t)
denote the position of a point mass in R3 at time t ≥ 0. Then, x′(t) denotes the velocity of the point
mass and x′′(t) the acceleration of the point mass at time t.

By Newton’s law we have
mx′′(t) = F(t, x(t), x′(t)),

where m is the mass and F the force depending on time, position and velocity.
This system of three second order ODEs is equivalent to the system of six first order ODEs

x′(t) = v(t),

v′(t) =
1
m

F(t, x(t), x′(t)),

where v(t) = x′(t).

Theorem 3.27. Let D ⊂ Rn+1 be open and let f : D → R, (t, v) 7→ f (t, v), be continuous and
satisfy a local Lipschitz condition in D. Then, for every (t0, u0, u1, . . . , un−1) ∈ D there exists a
unique solution of the IVP

u(n)(t) = f (t, u(t), u′(t), . . . , u(n−1)(t)),

u(t0) = u0, u′(t0) = u1, . . . , u(n−1)(t0) = un−1,

on an interval [t0 − δ, t0 + δ], δ > 0.

Proof. This is an immediate consequence of Lemma 3.25 and Theorem 3.16. �
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3.7 Exercises

E3.1 Banach spaces

Let t0 ∈ R,T > t0 and C1([t0,T ];R) denote the space of all continuously differentiable functions
u : [t0,T ]→ R. We introduce the norm

‖u‖C1([t0,T ];R) := ‖u‖max + ‖u′‖max,

where the maximum norm is defined as ‖u‖max = maxt∈[t0,T ]{|u(t)|}.

Show that ‖ ·‖C1([t0,T ];R) indeed defines a norm and that C1([t0,T ];R) with the norm ‖ ·‖C1([t0,T ];R)
is a Banach space.

E3.2 Banach’s fixed point theorem

Let y0 ∈ R. Use Banach’s fixed point theorem to prove that the iterative sequence (yn)n∈N0

defined by

yn+1 =
1
2

yn + 4, n ∈ N0,

converges and determine the limit of the sequence.

E3.3 Picard iteration

Use the method of successive approximations to determine the solution of the IVP

u′(t) =
2u(t)

t
, u(1) = 1.

To this end, find a formula for the approximations un, n ∈ N0, prove it by induction and then
pass to the limit n→ ∞.

E3.4 Lipschitz continuity

Let f : I → R, I ⊂ R an interval, be continuous. The function f is (globally) Lipschitz
continuous if there exists a constant L > 0 such that

| f (x) − f (y)| ≤ L|x − y| ∀x, y ∈ I.

The function f is locally Lipschitz continuous if for every x0 ∈ I there exists δ > 0 such that

| f (x) − f (y)| ≤ L|x − y| ∀x, y ∈ [x0 − δ, x0 + δ] ∩ I.

(a) Show that if I is open and f is continuously differentiable, then f is locally Lipschitz
continuous.

(b) Give a simple counterexample that shows that Lipschitz continuity does not imply that a
function is continuously differentiable.

(c) Give an example of a function that is locally Lipschitz continuous but not globally Lips-
chitz continuous.
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E3.5 Symmetry
Let f : R2 → R be continuous and satisfy a local Lipschitz condition. Assume that

f (−t, u) = − f (t, u) ∀(t, u) ∈ R2.

Let r > 0. Use the theorem by Picard-Lindelöf to show that if u : [−r, r] → R is a solution of
the ODE

u′(t) = f (t, u(t)),

then, for the reflection of u over the u-axis, i.e. ū(t) = u(−t), it follows that ū = u on [−r, r].

E3.6 Lipschitz condition

(a) Investigate whether the following function f : R2 → R satisfies a local Lipschitz condition
in R2,

f (t, u) = sin(t) 3
√
|u|, (t, u) ∈ R2.

(b) Given an example (that is different from examples in the lecture notes) for an IVP that
possesses more than one solution.

E3.7 Existence and uniqueness
Without solving them, show that there exists a unique local solution of the following IVPs.

(a) The Lotka–Volterra model describes the dynamics of two interacting biological species,
where one is the predator and the other one the prey. The system of ODEs is of the form

u′(t) = αu(t) − βu(t)v(t),

v′(t) = δv(t)u(t) − γv(t),

u(0) = u0, v(0) = v0,

where α, β, γ and δ are positive constants and u0, v0 ≥ 0. Moreover, u denotes the density
of the prey population and v the density of the predator population. We will discuss and
analyze this model later in the course.

(b) The following ODE describes a simple harmonic oscillator, i.e. an oscillator that is neither
driven through an external force nor damped,

u′′(t) = −ω2u(t)

u(0) = u0, u′(0) = u1,

where ω, u0, u1 ∈ R. Moreover, u denotes the displacement from its equilibrium position.
Hint: First, rewrite the IVP as an IVP for a first order system of ODEs. To this end define

v := u′, and consider the ODE system for
(
u
v

)
.

E3.8 Maximal interval of existence
Consider the IVP

u′(t) =
u2

1 + t2

u(t0) = u0, (t0, u0) ∈ R2.
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(a) What can you say about the existence and uniqueness of solutions of the IVP?

(b) Find explicit solutions and sketch the graph of the solutions depending on the initial value.
On which intervals exist the solutions?

(c) Determine the behavior of the solutions as t tends to the endpoints of the maximal intervals
of existence.

E3.9 ODEs of higher order

(a) Reformulate the following ODE as a system of first order ODEs,

u′′′(t) − 2u′(t) + 3u′′(t) − u(t) = 5.

(b) Let (u0, u1) ∈ R2. Show that there exists a unique solution u of the IVP

u′′(t) = t3 sin(u2(t)),

u(0) = u0, u′(0) = u1,

that exists on an interval [−δ, δ], for some δ > 0.

E3.10 Free fall with a parachute

Assuming that the friction force is proportional to the velocity, the motion of a free falling body
of mass 1 under the influence of a constant external force g is described by the IVP

x′′(t) + γx′(t) = g,

x(0) = x0,

x′(0) = x1,

where x0, x1 ∈ R. Solve the IVP with x0 = x1 = 0 and interpret the result.
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Chapter 4

First-order linear systems

4.1 Linear systems

Definition 4.1. A system of first order ODEs of the from

u′(t) = A(t)u(t) + f (t), (4.1)

where A : J → Rn×n and f : J → Rn, J ⊂ R an interval, are continuous functions, is called first
order linear system.

The system (4.1) is a system with constant coefficients if A(t) = A ∈ Rn×n for all t ∈ J.
Moreover, the system is called homogeneous if f ≡ 0, and inhomogeneous otherwise.

Here, we call A = (ai j)1≤i, j≤n : J → Rn×n continuous if all coefficients ai j : J → R, i, j =

1, . . . , n, are continuous. As for vector-valued functions, integrals and derivatives of matrix-valued
functions are defined component-wise.

In case of linear systems, the right hand side in (4.1) is a linear function of the unknown,
vector-valued function u. Written component-wise, the system takes the form

u′1(t) = a11(t)u1(t) + · · · + a1n(t)un(t) + f1(t),
...

u′n(t) = an1(t)u1(t) + · · · + ann(t)un(t) + fn(t).

The linear structure immediately implies the following superposition principle for homoge-
neous systems.

Proposition 4.2. Let u : I → Rn and v : I → Rn be two solutions of the linear homogeneous
system (4.1), i.e. f ≡ 0. Then, w = au + bv, for arbitrary a, b ∈ R, is also a solution.

Proof. Using that u and v satisfy the homogeneous ODE we conclude that

w′(t) = au′(t) + bv′(t) = aA(t)u(t) + bA(t)v(t) = A(t)(au(t) + bv(t)) = A(t)w(t),

for all t ∈ I. �
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Let ‖ · ‖ denote an arbitrary norm in Rn. The induced matrix norm in Rn×n is defined by

‖A‖ = max
x∈Rn, x,0

‖Ax‖
‖x‖

, A ∈ Rn×n.

The induced matrix norm ‖A‖ is the smallest constant c ≥ 0 such that

‖Ax‖ ≤ c‖x‖ ∀x ∈ Rn.

Moreover, it has the following properties,

‖A + B‖ ≤ ‖A‖ + ‖B‖,

‖AB‖ ≤ ‖A‖ ‖B‖,

for all A, B ∈ Rn×n.

Theorem 4.3. Let t0 ∈ R,T > 0 and J = [t0 − T, t0 + T ]. Moreover, we assume that A : J → Rn×n

and f : J → Rn are continuous and u0 ∈ R
n. Then, there exists a unique solution u of the IVP

u′(t) = A(t)u(t) + f (t),

u(t0) = u0,

and the solution exists on the interval J.

Proof. We observe that the function f̃ : J × Rn → Rn, f̃ (t, u) = A(t)u + f (t) is continuous and
satisfies

‖ f̃ (t, u) − f̃ (t, v)‖ = ‖A(t)(u − v)‖ ≤ ‖A(t)‖ ‖u − v‖

≤ max
t∈J
{‖A(t)‖} ‖u − v‖,

for all (t, u), (t, v) ∈ J × Rn. Since A is continuous and the interval J is compact, the maximum is
attained. Therefore, f̃ satisfied the Lipschitz condition in D = J × Rn.

Theorem 3.12 now implies that there exists a unique solution of the IVP on the interval [t0, t0 +

T ]. The unique solution on the interval [t0 − T, t0] can be constructed as in the proof of Theorem
3.16. �

4.2 Systems with constant coefficients

In this section, we analyze systems with constant coefficients. We first consider homogeneous
IVPs, i.e.

u′(t) = Au(t),

u(t0) = u0,
(4.2)

where t0 ∈ R, u0 ∈ R
n and A ∈ Rn×n is a matrix with constant coefficients ai j ∈ R,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 .
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In the case n = 1, we obtain an IVP for a linear homogeneous scalar ODE

u′(t) = au(t),

u(t0) = u0,

where t0 ∈ R, u0 ∈ R and a ∈ R. The solution is given by u(t) = u0ea(t−t0) and exists for all t ∈ R.
Remark 4.4. We recall that the exponential function can be written as a power series,

eat =

∞∑
k=0

(at)k

k!
, t ∈ R,

that is absolutely convergent and the convergence radius of this series is infinity. Moreover, power
series

∑∞
k=0 cktk, ck ∈ R, t ∈ R, are differentiable (within their radius of convergence) and we have ∞∑

k=0

cktk

′ =

∞∑
k=0

(
cktk

)′
=

∞∑
k=1

ckktk−1.

Using the power series representation for the exponential function we now solve the homoge-
neous ODE system (4.2). To this end we introduce matrix exponentials. Here and in the sequel,
we denote the identity matrix and the zero matrix by

Id =



1 0 · · · · · · 0
0 1 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · · · · 0 1


, 0 =



0 0 · · · · · · 0

0
. . . 0

...
. . .

...
...

. . . 0
0 · · · · · · 0 0


.

Definition 4.5. For A ∈ Rn×n we define

exp(A) = eA =

∞∑
k=0

1
k!

Ak,

where A0 = e0 = Id.

Lemma 4.6. For all A ∈ Rn×n the series
∑∞

k=0
1
k! Ak converges in Rn×n, i.e. the matrix exp(A) = eA

is well-defined.

Proof. Let m := max{|ai j| : i, j = 1, . . . , n}. Then, we can estimate the entries of the matrices in
the series by ∣∣∣∣∣∣∣

(
1
k!

Ak
)

i j

∣∣∣∣∣∣∣ ≤
 1

k!


m · · · m
...

. . .
...

m · · · m


k

i j

=
nk−1mk

k!
.

Since the series
∞∑

k=0

nk−1mk

k!
=

1
n

enm

converges and is an upper bound for
∣∣∣∣∣( 1

k! Ak
)
i j

∣∣∣∣∣, for all i, j = 1, . . . , n, it follows the convergence of

the series
∑∞

k=0
1
k! Ak in Rn×n. �
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Theorem 4.7. Let A ∈ Rn×n, t0 ∈ R and u0 ∈ R
n. Then, there exists a unique solution of the

homogeneous IVP (4.2) namely,

u(t) = e(t−t0)Au0 ∀t ∈ R.

In particular, we have
d
dt

etA = AetA ∀t ∈ R.

Proof. Without loss of generality we can assume that t0 = 0. By Lemma 4.8, each component(
etA

)
i j

is a power series that converges for all t ∈ R.Moreover, since power series are differentiable,
we obtain

u′(t) =
(
etAu0

)′
=

d
dt

 ∞∑
k=0

1
k!

(tA)ku0

 =

∞∑
k=0

d
dt

(
1
k!

(tA)ku0

)

=

∞∑
k=1

(
1

(k − 1)!
tk−1Aku0

)
= A

∞∑
k=0

(
1
k!

(tA)ku0

)
= AetAu0 = Au(t),

and e0Au0 = Idu0 = u0. Finally, the solution exists for all t ∈ R and the uniqueness of solutions
follows from Theorem 4.3. �

Next, we derive some properties of the function etA that we will need to solve the inhomoge-
neous problem.

Lemma 4.8. Let A, B ∈ Rn×n. Then, the following properties hold:

(i) If A and B commute, i.e. AB = BA, then

et(A+B) = etAetB.

(ii)
(
etA)−1

= e−tA for all t ∈ R.

Proof. By induction, it follows that AkB = BAk for all k ∈ N0, and consequently, we have

m∑
k=0

tk

k!
AkB =

m∑
k=0

tk

k!
BAk = B

m∑
k=0

tk

k!
Ak.

Taking the limit m→ ∞ is follows that

etAB = lim
m→∞

m∑
k=0

tk

k!
AkB = B lim

m→∞

m∑
k=0

tk

k!
Ak = BetA.

Moreover, we observe that for u0 ∈ R
n the function u(t) = etAetBu0 satisfies

u′(t) =

(
d
dt

etA
)

etBu0 + etA
(

d
dt

etB
)

u0

= AetAetBu0 + etABetBu0 = (A + B)etAetBu0 = (A + B)u(t),
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where we used the property above and Theorem 4.7. Consequently, u is the unique solution of the
IVP u′(t) = (A + B)u(t), u(0) = u0. By Theorem 4.7, it follows that u(t) = et(A+B)u0, which implies
the statement.

The property (ii) now follows from (i) by taking B = −A. Indeed, we obtain

etAe−tA − Id = 0,

which implies (ii). �

Note that the statement (i) in Lemma 4.8 implies that

etAesA = e(t+s)A for all t, s ∈ R.

We now consider inhomogeneous IVPs,

u′(t) = Au(t) + f (t),

u(t0) = u0,
(4.3)

where A ∈ Rn×n and u0 ∈ R
n. Moreover, f : J → Rn is continuous, J ⊂ R is an interval and

t0 ∈ J. The inhomogeneous IVP can be solved very similarly to the scalar case using a variation
of constants formula.

Theorem 4.9. Let A ∈ Rn×n, J ⊂ R be an interval, f : J → Rn be continuous, t0 ∈ J and u0 ∈ R
n.

Then, there exists a unique solution u : J → Rn of the IVP (4.3), and it is given by

u(t) = e(t−t0)Au0 +

∫ t

t0
e(t−s)A f (s)ds, t ∈ J. (4.4)

Proof. We observe that u(t0) = e0Au0 = u0. Moreover, using Lemma 4.8 we can rewrite the
integral equation as

u(t) = etAe−t0Au0 +

∫ t

t0
etAe−sA f (s)ds

= etA
(
e−t0Au0 +

∫ t

t0
e−sA f (s)ds

)
.

Differentiating the equation we obtain

u′(t) = AetA
(
e−t0Au0 +

∫ t

t0
e−sA f (s)ds

)
+ etA

(
e−tA f (t)

)
= A

(
e(t−t0)Au0 +

∫ t

t0
e(t−s)A f (s)ds

)
+ f (t) = Au(t) + f (t),

where we used Theorem 4.7 and Lemma 4.8.
Finally, the solution exists for all t ∈ J and the uniqueness of solutions follows from Theorem

4.3. �
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4.3 Computing matrix exponentials

We found a solution formula for linear systems with constant coefficients. The representation
formula involves matrix exponentials. We now discuss methods that allow us to compute them.

The results in the previous sections of this chapter remain true if we consider complex matrices
and complex-valued solutions. Hence, we formulate the following properties for the more general
case of complex matrices.

Lemma 4.10. Let A, B ∈ Cn×n and t ∈ R.

(i) If there exists S ∈ Cn×n invertible such that A = S BS −1, then

etA = S etBS −1.

(ii) If A is a block diagonal matrix of the form A =

(
A1 0
0 A2

)
with A1 ∈ C

k×k and A2 ∈

C(n−k)×(n−k), then

etA =

(
etA1 0
0 etA2

)
.

(iii) For diagonal matrices we have

A =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

 =⇒ etA =


eλ1t 0 · · · 0

0 eλ2t . . .
...

...
. . .

. . . 0
0 · · · 0 eλnt

 ,
where λ1, . . . , λn ∈ C.

(iv) If A is a Jordan block, i.e.

A =



λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . λ 1
0 · · · · · · 0 λ


,

for some λ ∈ C, then we have

etA =



eλt teλt t2
2! e

λt · · · tn−1

(n−1)! e
λt

0 eλt teλt . . .
...

...
. . .

. . .
. . . t2

2! e
λt

...
. . . eλt teλt

0 · · · · · · 0 eλt


.
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Proof. (i) We observe that (S BS −1)k = S BkS −1 for all k ∈ N0 (proof by induction). Hence, the
statement immediately follows from Definition 4.5 by observing that

etA = lim
m→∞

m∑
k=0

tk

k!
(S BS −1)k = S lim

m→∞

 m∑
k=0

tk

k!
Bk

 S −1 = S etAS −1.

(ii) We observe that

Ak =

(
B 0
0 C

)k

=

(
Bk 0
0 Ck

)
∀k ∈ N0,

and hence, the statement follows from Definition 4.5 similarly as in (ii).

(iii) This property follows by iteration from (ii).

(iv) We write

E =



0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . 0 1
0 · · · · · · 0 0


and observe that A = λId + E. By Lemma 4.8(i) and (iii), it follows that

etA = etλId+tE = etλIdetE = etλetE .

Moreover, we note that Ek, k ≤ n − 1, has entries equal to 1 on the k-th upper diagonal and
zeros otherwise, and Ek = 0 for all k ≥ n (see tutorials). Hence, we conclude that

etE =

∞∑
k=0

1
k!

(tE)k = Id + tE +
t2

2
E2 + · · · +

tn−1

(n − 1)!
En−1

=



1 t t2
2! · · · tn−1

(n−1)!

0 1 t
. . .

...
...

. . .
. . .

. . . t2
2!

...
. . . 1 t

0 · · · · · · 0 1


,

and the statement follows.
�

By Lemma 4.10, we can now compute the matrix exponentials etA, A ∈ Cn×n, as follows:

• If A ∈ Cn×n possesses n linearly independent eigenvectors, then it is diagonizable, i.e. there
exists an invertible matrix S ∈ Cn×n and a diagonal matrix

B =


λ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · λn

 ∈ C
n×n,
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such that A = S BS −1. Here, λ j, j = 1, . . . , n, are the eigenvalues of A, and the j-th column
of S is the corresponding eigenvector. By Lemma 4.10, the matrix exponential is then given
by

etA = S


eλ1t 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 eλnt

 S −1.

• Not all matrices are diagonizable, but from Linear Algebra we know that for every matrix
A ∈ Cn×n there exists a Jordan normal form J, i.e. it can be written as A = S JS −1, where
S ∈ Cn×n is invertible and J ∈ Cn×n is of the form

J =


J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jm

 , Jk =


λk 1 0

0 λk
. . .

...
. . .

. . . 1
0 · · · 0 λk

 ∈ C
nk×nk ,

with n1 + · · · + nm = n and λ1, . . . , λm are the eigenvalues of A. The same eigenvalue λk

can appear in several Jordan blocks Jk. If all Jordan blocks have dimension one, the matrix
is diagonizable. However, if there exists a block with dimension nk ≥ 2, then A is not
diagonizable and called defective.

By Lemma 4.10, the matrix exponential is given by

etA = S etJS −1, etJ =


etJ1 0 · · · 0

0 etJ2
. . .

...
...

. . .
. . . 0

0 · · · 0 etJm

 ,
where

etJk =



eλkt teλkt t2
2! e

λkt · · · tn−1

(n−1)! e
λkt

0 eλkt teλt . . .
...

...
. . .

. . .
. . . t2

2! e
λkt

...
. . . eλkt teλkt

0 · · · · · · 0 eλkt


, k = 1, . . . ,m.

Remark. We mention a few facts about the Jordan decomposition, for further details we refer to
standard textbooks on Linear Algebra.

We recall that the algebraic multiplicity m(λ) of an eigenvalue is the multiplicity of λ as zero
of the characteristic polynomial det(A−λId). It equals the number of times the eigenvalue λ occurs
in the diagonal of the Jordan normal form J of a matrix.

The geometric multiplicity mg(λ) of an eigenvalue is the dimension of the corresponding
eigenspace. It equals the number of linearly independent eigenvectors corresponding to the eigen-
value λ. It holds that mg(λ) ≤ m(λ) ≤ n. If m(λ) = mg(λ), the eigenvalue is called half-simple. In
this case, the corresponding Jordan block is a diagonal matrix.
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Once we found the diagonalization or Jordan normal form of a matrix, we can compute the
matrix exponentials and use it in the solution formula for linear systems with constant coefficients.

Example 4.11. Consider the matrix

A =

(
2 1
4 −1

)
.

The characteristic polynomial is det(A−λId) = (λ−3)(λ+2) and hence, the eigenvalues are λ1 = 3
and λ2 = −2. Moreover, the corresponding eigenvectors are

v1 =

(
1
1

)
, v2 =

(
1
−4

)
,

and they are linearly independent. Consequently, we have

S =

(
1 1
1 −4

)
, S −1 =

( 4
5

1
5

1
5 − 1

5

)
, D =

(
3 0
0 −2

)
,

and we obtain

etA = S etDS −1 =

(
1 1
1 −4

) (
e3t 0
0 e−2t

) (4
5

1
5

1
5 − 1

5

)
=

( 4
5 e3t + 1

5 e−2t 1
5 e3t − 1

5 e−2t

4
5 e3t − 4

5 e−2t 1
5 e3t + 4

5 e−2t

)
.

Example 4.12. Consider the matrix

A =

(
1 1
−1 1

)
.

Then, the IVP

u′(t) = Au(t), u(0) =

(
1
2

)
,

has a unique solution, namely,

u(t) = etA
(
1
2

)
=

(
et cos t + 2et sin t
−et sin t + 2et cos t

)
, t ∈ R.

Indeed, the characteristic polynomial is det(A−λId) = λ2−2λ+ 2 = 0, and hence, the eigenvalues
are λ1 = 1 − i and λ2 = 1 + i. The corresponding eigenvectors are

v1 =

(
1
−i

)
, v2 =

(
1
i

)
,

and we obtain

S =

(
1 1
−i i

)
D =

(
1 − i 0

0 1 + i

)
, S −1 =

(1
2

1
2 i

1
2 − 1

2 i

)
.

Therefore,

etA = S etDS −1 =

(
1 1
−i i

) (
e(1−i)t 0

0 e(1+i)t

) (1
2

1
2 i

1
2 − 1

2 i

)
=

(
et cos t et sin t
−et sin t et cos t

)
,

where we used that eit = cos t + i sin t. Theorem 4.7 now implies the statement.
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Example 4.13. We consider the matrix

A =

(
1 −1
4 −3

)
.

The characteristic polynomial is det(A − λId) = (λ + 1)2 and hence, there exists one eigenvalue

λ = −1 with multiplicity two. Moreover, the corresponding eigenvector is v =

(
1
2

)
. We find the

Jordan normal form

A = S JS −1 =

(
1 0
2 −1

) (
−1 1
0 −1

) (
1 0
2 −1

)
,

and hence, the matrix exponential is

etA = S etJS −1 =

(
1 0
2 −1

) (
e−t te−t

0 e−t

) (
1 0
2 −1

)
=

(
e−t + 2te−t −te−t

4te−t e−t − 2te−t

)
.

Remark 4.14. Let A ∈ Cn×n and A = S JS −1 be its Jordan decomposition.

• The matrix exponential is then given by etA = S etJS −1 and taking the induced matrix norm
we conclude that ‖etA‖ ≤ ‖S ‖ ‖etJ‖ ‖S −1‖. Consequently, we have

1
c
‖etJ‖ ≤ ‖etA‖ ≤ c‖etJ‖, (4.5)

where c = ‖S ‖ ‖S −1‖.

• If J is a Jordan matrix we can compute the induced matrix norm corresponding to the max-
imum norm as follows,

‖etJ‖max = max
1≤k≤m

‖etJk‖max = max
1≤k≤m

|etλk |

nk−1∑
j=0

|t| j

j!
, (4.6)

where J =


J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jm

 .

4.4 General theory

We now consider IVPs for linear systems with variable coefficients such as introduced in Section
4.1,

u′(t) = A(t)u(t) + f (t),

u(t0) = u0,
(4.7)

where u0 ∈ R
n, A : J → Rn×n and f : J → Rn are continuous functions and J ⊂ R is an interval

such that t0 ∈ J. As for systems with constant coefficients, we first solve the homogeneous problem

u′(t) = A(t)u(t), (4.8)
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and afterwards the inhomogeneous problem by deriving a suitable variation of constants formula.
By Theorem 4.3, for every u0 ∈ R

n there exists a unique solution u : J → Rn of the IVP (4.7).
Moreover, for homogeneous problems the superposition principle holds (Proposition 4.2).

Theorem 4.15. Let A : J → Rn×n be continuous. Then, the solutions u : J → Rn of the homoge-
neous problem (4.8) form an n-dimensional real vector space L. In particular, the mapping

u0 7→ u(t; t0, u0)

where u( · ; t0, u0) denotes the unique solution of the IVP (4.8) with u(t0) = u0, defines a linear
isomorphism between Rn and the vector space of solutions L.

Proof. Consider the set of solutions L = {u ∈ C1(J;Rn) : u solution of (4.8)} of the homogeneous
system. By the superposition principle (Proposition 4.2), they form a linear subspace of the space
of continuously differentiable functions C1(J;Rn).

We define the mapping Φt0 : L → Rn by Φt0(u) := u(t0), which is certainly linear. Next, we
show that it is bijective. By Theorem 4.3, for every u0 ∈ R

n there exists a unique solution of the
IVP

u′(t) = A(t)u(t), u(t0) = u0.

Since Φt0(u) = u(t0) = u0, it follows that Φt0 is surjective.
Furthermore, let u ∈ L be such that Φt0 = u(t0) = 0 and consider v ≡ 0. Then, u and v are both

solutions of the IVP
u′(t) = A(t)u(t), u(t0) = 0,

and by the uniqueness of solutions, it follows that u ≡ v ≡ 0 on J. This shows that the kernel of
Φt0 is zero and consequently, Φt0 is injective.

This proves that Φt0 is an isomorphism. In particular, the dimension of the subspace L equals
the dimension of Rn. �

An immediate consequence is the following property.

Corollary 4.16. Let the assumptions of Theorem 4.15 be satisfied. If u is a solution of (4.8) with
u(t̂) = 0 for some t̂ ∈ J, then u ≡ 0 in J.

Proof. We observe that v ≡ 0 is a solution of the ODE. Therefore, u : J → Rn and v : J → Rn are
both solutions of the ODE that satisfy u(t̂) = v(t̂) = 0. By Proposition 3.20, they must coincide on
J, i.e. u ≡ v ≡ 0. �

Our aim is to find a basis of the solution space L = {u ∈ C1(J;Rn) : u solution of (4.8)}. We
call k solutions u1, . . . , uk of the ODE (4.8) linearly dependent, if there exists c1, . . . , ck ∈ R with
|c1| + · · · + |ck| > 0 such that

c1u1 + · · · + ckuk = 0. (4.9)

Otherwise, the solutions u1, . . . , uk are called linearly independent.
Note that by Corollary 4.16, the equation (4.9) holds in one point t̂ ∈ J if and only if it holds

in the entire interval J.
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Definition 4.17. The functions u1, . . . , un ∈ L form a fundamental system for the homogeneous
system (4.8) if {u1, . . . , un} is a basis of L.

A matrix function U : J → Rn×n is called fundamental matrix for the homogeneous system
(4.8) if the columns of U form a fundamental system for (4.8).

Proposition 4.18. (i) Let U be a fundamental matrix for the homogeneous system (4.8). Then,
every solution of the homogeneous system is of the form u(t) = U(t)c, for some c ∈ Rn.

(ii) The matrix U : J → Rn×n is a fundamental matrix for (4.8) if and only if U satisfies the
matrix differential equation

U′(t) = A(t)U(t) ∀t ∈ J,

and there exists t̂ ∈ J such that the matrix U(t̂) is regular (i.e. invertible).

Proof. (i) If U = (u1 · · · un) is a fundamental matrix, then {u1, . . . , un} is a basis of L. Conse-
quently, if u is a solution of (4.8), then there exist c1, . . . , cn ∈ R such that

u(t) = c1u1(t) + · · · + cnun(t) = (u1(t) · · · un(t))


c1
...

cn

 = U(t)c,

for some c ∈ Rn.
(ii)⇒: Let U(t) = (u1(t) · · · un(t)) be a fundamental matrix. Then, u1, . . . , un is a fundamental

system for the homogeneous system (4.8). Consequently,

U′(t) = (u′1(t) · · · u′n(t)) = (A(t)u1(t) · · · A(t)un(t))

= A(t)(u1(t) · · · un(t)) = A(t)U(t).

Moreover, u1, . . . , un are linearly independent in L, which implies that u1(t̂), . . . , un(t̂) are linearly
independent in Rn, for all t̂ ∈ J. This implies that the matrix U(t̂) = (u1(t̂) · · · un(t̂)) is regular.
⇐: If U = (u1 · · · un) satisfies the matrix differential equation, then the i-th column ui satisfies

the ODE u′i(t) = A(t)ui(t), i = 1, . . . , n. Moreover, u1(t̂), . . . , un(t̂) are linearly independent in Rn if
and only if u1, . . . , un are linearly independent in L by Corollary 4.16. Consequently, u1, . . . , un

form a fundamental system for (4.8), which implies that U = (u1 · · · un) is a fundamental matrix.
�

Example 4.19. Let A ∈ Rn×n be diagonizable, λ1, . . . λn ∈ R be its eigenvalues and v1, . . . , vn be
the corresponding eigenvectors, i.e.

A = S DS −1 = S


λ1 0

. . .

0 λn

 S −1, S = (v1 · · · vn).

Then, U(t) = S etD = S


eλ1t 0

. . .

0 eλnt

 is a fundamental matrix for the homogeneous system

with constant coefficients u′(t) = Au(t). In particular, every solution is of the form

u(t) = c1eλ1tv1 + · · · + cneλntvn, c1, . . . , cn ∈ R.
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Indeed, we observe that

U′(t) = S DetD = S DS −1S etD = AS etD = AU(t),

and det(U(t)) = det(S ) det(etD) , 0 for all t ∈ R. Consequently, U is a fundamental matrix by
Proposition 4.18.

We remark that another fundamental matrix is Ũ(t) = S etDS −1.

Definition 4.20. Let A : J → Rn×n be continuous. If U = (u1 · · · un) : I → Rn×n is a solution of
the matrix differential equation

U′(t) = A(t)U(t),

its determinant w(t) = det U(t) is called the Wronskian of the solution system u1, . . . , un.

We remark that in the previous definition we do not require that U is a fundamental matrix.

Theorem 4.21. Let A : J → Rn×n be continuous and U : J → Rn×n be a solution of the matrix
differential equation

U′(t) = A(t)U(t).

Then, the Wronskian w(t) = det U(t) satisfies the scalar ODE

w′(t) = tr(A(t))w(t), t ∈ J,

where tr(A(t)) = a11(t) + a22(t) + · · · + ann(t) is the trace of A. Consequently, we have

w(t) = w(t0)e
∫ t

t0
tr(A(s))ds

, for some t ∈ J.

Proof. A proof can be found, e.g. in [6]. �

Theorem 4.21 allows to compute the Wronskian without knowing the fundamental matrix
U. In particular, if we choose the fundamental matrix Ũ(t) with initial value Ũ(t0) = Id, then
w(t) = det Ũ(t) is given by

w(t) = e
∫ t

t0
tr(A(s))ds

.

Corollary 4.22. Let the hypothesis of Theorem 4.21 be satisfied. Then, the Wronskian w is either
w ≡ 0 in J or w(t) , 0 for all t ∈ J.

In particular, U is a fundamental matrix for the homogeneous system (4.8) if and only if
w(t) = det U(t) , 0 for all t ∈ J and U satisfies U′(t) = A(t)U(t).

Proof. This is an immediate consequence of Theorem 4.21 and Proposition 4.18. �

If U satisfies the matrix differential equation U′(t) = A(t)U(t), then the non-vanishing of the
Wronskian is a necessary and sufficient condition for U being a fundamental matrix.

In general, it is not easy to find a fundmental matrix. In certain cases, Theorem 4.21 allows to
determine the fundamental matrix, if one particular solution of the ODE system in known. This is
illustrated in the following example.
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Example 4.23. Consider the ODE

x′′(t) = p(t)x′(t) + q(t)x(t), (4.10)

where p, q : R→ R are continuous. It can be rewritten as the first order system

u′(t) = A(t)u(t), A(t) =

(
0 1

q(t) p(t)

)
, u(t) =

(
x(t)
x′(t)

)
We assume that one solution x is known and aim to find a fundamental matrix for the system,

U(t) = (x(t)y(t)) =

(
x(t) y(t)
x′(t) y′(t)

)
,

i.e. we need to find a second linearly independent solution y.
By Theorem 4.21, the Wronskian w(t) = det U(t) = x(t)y′(t) − x′(t)y(t) satisfies

w(t) = w(t0)e
∫ t

t0
p(s)ds

.

If x , 0 (at least on some interval), then we can find y by solving the ODE

y′(t) =
x′(t)
x(t)

y(t) +
1

x(t)
w(t0)e

∫ t
t0

p(s)ds
,

which is a scalar linear ODE for y that we can solve explicitly.
We conclude that all solutions of the ODE (4.10) are of the form

z(t) = c1x(t) + c2y(t), c1, c2 ∈ R.

Finally, we consider IVPs for linear inhomogeneous systems (4.7), i.e.

u′(t) = A(t)u(t) + f (t),

u(t0) = u0,

where u0 ∈ R
n and A : J → Rn×n and f : J → Rn are continuous.

As for scalar equations and systems with constant coefficients we will obtain the solution of
the inhomogeneous problem by a suitable variation of constants formula.

Theorem 4.24. Every solution of the inhomogeneous problem (4.7) can be written in the form

u(t) = up(t) + uh(t),

where up is one particular solution of the inhomogeneous system and uh a solution of the homo-
geneous system (4.8).

Proof. Let up be one particular solution of the inhomogeneous system and u be an arbitrary solu-
tion of the inhomogeneous system. Then, their difference satisfies the homogeneous system

u′(t) − u′p(t) = A(t)(u(t) − up(t)),

i.e. u − up ∈ L. �
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The problem therefore reduces to the problem of finding one particular solution of the inho-
mogeneous problem. To this end we use the variation of constants method. We recall that if U is
a fundamental matrix of the homogeneous problem, then all solutions of the homogeneous system
are of the form u(t) = U(t)c, for some c ∈ Rn. We now vary the constant and make the ansatz

u(t) = U(t)c(t). (4.11)

In particular, we aim to find a function c such that u solves the inhomogeneous system. We obtain

u′(t) = U′(t)c(t) + U(t)c′(t) = A(t)U(t)c(t) + U(t)c′(t) = A(t)u(t) + U(t)c′(t),

and hence, u is a solution of the inhomogeneous system if c satisfies

U(t)c′(t) = f (t).

Since U is a fundamental matrix, the Wronskian w(t) = det U(t) , 0, t ∈ J, and hence, the inverse
matrix (U(t))−1 exists and is continuous in J. Multiplying the above equation from the left by
(U(t))−1 we obtain

c′(t) = (U(t))−1 f (t)

and integrating from t0 to t is follows that

c(t) = c(t0) +

∫ t

t0
(U(s))−1 f (s)ds.

Finally, by (4.11) the solution u is given by

u(t) = U(t)c(t0) + U(t)
∫ t

t0
(U(s))−1 f (s)ds,

where we need to choose c(t0) such that u satisfies the initial value.

Theorem 4.25. Let A : J → Rn×n and f : J → Rn be continuous and u0 ∈ R
n. Then, there exists

a unique solution of the IVP (4.7),

u′(t) = A(t)u(t) + f (t),

u(t0) = u0,

which is given by

u(t) = U(t)(U(t0))−1u0 + U(t)
∫ t

t0
(U(s))−1 f (s)ds,

where U is a fundamental matrix for the homogeneous system.

Proof. By Corollary 4.22, U satisfies U′(t) = A(t)U(t), t ∈ J, and U(t) is regular for all t ∈ J.
Consequently, the inverse matrix (U(t))−1 exists and the solution formula is well-defined. We
obtain

u′(t) = U′(t)(U(t0))−1u0 + U′(t)
∫ t

t0
(U(s))−1 f (s)ds + U(t)(U(t))−1 f (t)

= U′(t)
(
(U(t0))−1u0 +

∫ t

t0
(U(s))−1 f (s)ds

)
+ f (t)

= A(t)u(t) + f (t),

for all t ∈ J, i.e. u satisfies the ODE. Moreover, u(t0) = u0, i.e. u is a solution of the IVP. The
uniqueness of solutions follows from Theorem 4.3. �
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Example 4.26. Consider the linear inhomogeneous system

u′(t) =

(
0 1
− 2

t2
2
t

)
u(t) +

(
0
t

)
, t > 0,

with initial value u(1) =

(
1
0

)
.

We first observe that U(t) =

(
t2 t
2t 1

)
is a fundamental matrix for the homogeneous system.

Indeed, det U(t) = −t2 , 0 for all t > 0 and

A(t)U(t) =

(
0 1
− 2

t2
2
t

) (
t2 t
2t 1

)
=

(
2t 1
2 0

)
= U′(t),

and hence, Corollary 4.22 implies that U is a fundamental matrix.
We can now compute the solution of the inhomogeneous IVP using the variation of constants

formula in Theorem 4.25. We observe that

(U(t))−1 = −
1
t2

(
1 −t
−2t t2

)
and consequently,

u(t) = U(t)(U(t0))−1u0 + U(t)
∫ t

t0
(U(s))−1 f (s)ds

=

(
t2 t
2t 1

) (
−1 1
2 −1

) (
1
0

)
+

(
t2 t
2t 1

) ∫ t

1

−1
s2

(
1 −s
−2s s2

) (
0
s

)
ds

=

(
t2 t
2t 1

) (
−1
2

)
+

(
t2 t
2t 1

) ∫ t

1

(
1
−s

)
ds =

( 1
2 t3 − 2t2 + 5

2 t
3
2 t2 − 4t + 5

2

)
.

4.5 Exercises

E4.1 Matrix exponentials

(a) Compute etA if A ∈ Rn×n is of the form

A =



0 1 0 · · · 0
...

. . .
. . .

. . .
...

. . .
. . . 0

...
. . . 1

0 . . . . . . 0


.

(b) Find an example of two matrices A, B ∈ R2×2 such that

eA+B , eAeB.
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E4.2 Induced matrix norm
Consider Rn with the maximum norm ‖ · ‖max. Show that the induced matrix norm is given by

‖A‖ = max
i=1,...,n

n∑
j=1

|ai j|, A ∈ Rn×n.

E4.3 Matrix exponentials
Compute etA and etB for the following matrices:

A =

(
1 −2
5 −1

)
, B =

(
4 3
0 1

)
, C =

4 1 0
0 4 0
0 0 −2

 .
E4.4 Initial value problems

Consider the matrices A and B in Problem 1.

(a) Compute the solution of the IVP

u′(t) = Au(t), u(0) =

(
−3
3

)
.

(b) Compute the solution of the IVP

u′(t) = Bu(t) +

(
t
0

)
, u(0) =

(
1
−1

)
.

E4.5 Cauchy-Euler equation
Let a, b ∈ R. The Cauchy-Euler equation is the ODE

x′′(t) +
b
t

x′(t) +
a
t2 x(t) = 0, t > 0.

We assume that a < 1
4 (1 − b)2. Find the solution of the ODE and determine the behavior of the

solution as t tends to infinity.

To this end, first transform the equation into a linear, second order ODE by introducing the
change of variables s = ln t, i.e. t = es.

E4.6 Fundamental matrix
Consider the ODE

x′′(t) +
2
t

x′(t) + x(t) = 0, t > 0. (4.12)

One solution of the ODE is given by the function x(t) =
sin(t)

t . Rewrite the second order ODE as
a system of first order ODEs and find the fundamental matrix of this system. Finally, determine
the solution of the original ODE (4.12) corresponding to the initial values x(π) = 1 and x′(π) =

0.

Hint: See Example 4.22.
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E4.7 Inhomogeneous IVP

Consider the ODE system

u′(t) = −
1
2t

u(t) +
1

2t2 v(t) + t,

v′(t) =
1
2

u(t) +
1
2t

v(t) + t2,

for t > 0.

(a) Show that U(t) =

(
1 1

t
t −1

)
is a fundamental matrix for the homogeneous system.

(b) Compute the solution of the inhomogeneous IVP with u(1) = 1, v(1) = 2.

E4.8 Fundamental matrix

Find a fundamental matrix for the ODE system

u′(t) =

(
−1 2e3t

0 −2

)
u(t).

Hint: Note that the solutions can be computed explicitly.
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Chapter 5

Stability and linearization

In this chapter we analyze the qualitative behavior of autonomous ODE systems,

u′(t) = f (u(t)), (5.1)

where f : Rn → Rn is continuously differentiable. In general, we cannot find explicit solutions,
but we can often derive qualitative properties of solutions without explicitly solving the ODE. In
particular, we aim to study equilibria and their stability properties. Before we consider general
nonlinear autonomous systems, we analyze linear systems.

Phase portraits

A solution u(t) = (u1(t), . . . , un(t)), t ∈ I, I ⊂ R an interval, of (5.1) can be viewed as a param-
etetrization of a curve in Rn. This curve is called trajectory or orbit of the solution, and Rn is
called the phase space (or phase plane if n = 2). Drawing several trajectories corresponding to
different initial conditions and indicating the orientation of the curve by small arrows, we obtain
the phase portrait for the ODE. The arrows indicate in which direction the solutions transverse
the curve as time increases.

Phase portraits illustrate the qualitative behavior of solutions such as equilibria and their sta-
bility or periodicity of solutions and their longtime behavior.

5.1 Stability of equilibria

Here and in the sequel, we assume that a unique solution of the initial value problem

u′(t) = f (u(t)),

u(t0) = u0,
(5.2)

exists for every t0 ∈ R, u0 ∈ R
n, and that the solution u = u(·; t0, u0) : [t0,∞) → Rn exists for all

t ≥ t0.
Recall that every zero u∗ ∈ Rn of the function f corresponds to an equilibrium of the ODE, i.e.

to a constant solution u ≡ u∗ of the ODE u′(t) = f (u(t)).

Definition 5.1. Let u∗ ∈ Rn be an equilibrium of the ODE (5.1) and let ‖ · ‖ denote an arbitrary
norm in Rn.
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• We call the equilibrium u∗ stable if for every ε > 0 there exists δ > 0 such that

‖u0 − u∗‖ < δ implies that ‖u(t) − u∗‖ < ε ∀t ≥ t0.

• We call the equilibrium u∗ unstable if u∗ is not stable.

• We call the equilibrium u∗ asymptotically stable if it is stable and if there exists η > 0 such
that

‖u0 − u∗‖ < η implies that lim
t→∞

u(t) = u∗.

Since all norms in Rn are equivalent, the concept of stability is independent of the norm we
choose. Furthermore, we remark that stability as defined above is a local property. A steady state
is stable if solutions starting close to u∗ remain close u∗ for all times, and solutions even converge
to u∗ if the equilibrium is asymptotically stable. The behavior of solutions that do not start close
to the equilibrium u∗ is not addressed in these definitions.

Example 5.2. Consider the scalar ODE

u′(t) = au(t),

where a ∈ R. Then, all solutions are of the form u(t) = ceat, for some c ∈ R. If a , 0 then u∗ = 0
is the only equilibrium. If a = 0, then every solution is an equilibrium. Moreover, the steady state
u∗ = 0 is stable if a ≤ 0, unstable if a > 0 and asymptotically stable if a < 0.

The phase portraits for this ODE with a , 0 are sketched below.

5.2 Linear systems

For autonomous linear homogeneous systems, i.e. systems of the form

u′(t) = Au(t),

where A ∈ Rn×n, the zero solution u∗ = 0 is an equilibrium. Moreover, it is the only equilibrium if
the matrix A is non-singular. In this case, we can easily characterize the stability properties of the
equilibrium u∗ = 0.

Classification for two-dimensional systems

We first discuss two-dimensional systems whose phase portraits can be fully classified. We con-
sider

u′(t) = Au(t), A =

(
a b
c d

)
, (5.3)
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where a, b, c, d ∈ R. Then, u∗ = 0 is an equilibrium, and all solutions of the ODE are of the form

u(t) = eAtĉ, t ∈ R,

for some constant ĉ ∈ R2.

Normal forms

We aim to characterize the phase portraits for the linear ODE (5.3). We recall that two matrices
A, B ∈ R2×2 are equivalent (or similar) if there exists an invertible matrix S ∈ R2×2 such that
A = S BS −1. Moreover, similar matrices have the same eigenvalues, determinant and trace.

Every non-singular matrix A ∈ R2×2 is equivalent to one of the following normal forms

A1 =

(
λ 0
0 µ

)
, A2 =

(
λ 1
0 λ

)
, A3 =

(
α β

−β α

)
,

where λ, µ, α and β are real numbers such that µ , 0, λ , 0 and β , 0. Note that zero is not an
eigenvalue as A is not singular.

If A and B are similar matrices and u is a solution of the ODE

u′(t) = Au(t),

then, v = S −1u satisfies the ODE

v′(t) = Bv(t), B = S −1AS .

Under such transformations the phase portraits are subject to an affine transformation (e.g. circles
transform into ellipses), but the qualitative behavior of solutions (e.g. the stability of equilibria) of
both systems is the same. Therefore, to analyze the qualitative behavior of the ODE (5.3) with a
non-singular matrix A, it suffices to study the behavior of the system for the normal forms A1, A2
and A3.

Consider the matrix A in (5.3) and assume it is non-singular, i.e. det(A) , 0. Its characteristic
polynomial is

det(A − λId) = λ2 − λtr(A) + det(A),

where tr(A) = a + d is the trace of A and det(A) = ad − bc. Hence, we obtain the eigenvalues

λ1 =
1
2

(
tr(A) +

√
tr(A)2 − 4 det(A)

)
, λ2 =

1
2

(
tr(A) −

√
tr(A)2 − 4 det(A)

)
,

and can distinguish the following cases:

• If tr(A)2 > 4 det(A) we have two real eigenvalues λ1 and λ2, the matrix is diagonizable and
similar to A1. In fact, if S = (v1v2) is the matrix whose columns are the eigenvectors v1 and
v2 corresponding to λ1 and λ2, then A = S A1S −1.

• If tr(A)2 < 4 det(A) we have two conjugate complex eigenvalues λ1 = λ and λ2 = λ̄ and the
matrix is similar to A3. In fact, if v and v̄ are the corresponding (complex) eigenvectors, then

with S = (vv̄) being the matrix with columns v and v̄ we have A = S
(
λ 0
0 λ̄

)
S −1. However,
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we aim to find a real normal form. To this end we write v = v1 + iv2 and λ = α + iβ with
β > 0. Splitting the equation Av = λv into the real and imaginary parts we obtainAv1 = αv1 − βv2

Av2 = αv2 + βv1
⇐⇒ A(v1v2) = (Av1Av2) = (v1v2)

(
α β

−β α

)
.

Since v, v̄ are linearly independent and can be represented as a linear combination of v1 and
v2 (v1 = 1

2 (v + v̄), v2 = − i
2 (v − v̄)), the vectors v1 and v2 are linearly independent as well.

Hence, the matrix S̃ = (v1v2) is regular and we have A = S̃ A3S̃ −1.

• Finally, if tr(A)2 = 4 det(A), the matrix A has only one eigenvalue λ ∈ R. If there exists
two linearly independent eigenvectors, then A is similar to A1 with λ = µ. Otherwise, A is
defective and similar to A2. In fact, in this case there exists one eigenvector v1 corresponding
to the eigenvector λ and v2 ∈ R

2 such that (A − λId)v2 = v1. Then, the matrix S = (v1v2)
satisfies A = S A2S −1.

Phase portraits

Up to rotations and scaling, the phase portrait of the ODE (5.3) with a non-singular matrix A is
determined by the phase portraits corresponding to A1, A2 or A3. Hence, it suffices to determine
the phase portraits for these normal forms. We plot the phase portraits for the matrices A1, A2 and
A3, the case that A is singular is left as an exercise (see case (v)).

(i) For the matrix A1, if µ ≤ λ < 0 or µ ≥ λ > 0, all solutions are of the form u1(t) =

c1eλt, u2(t) = c2eµt, t ∈ R, for some constants c1, c2 ∈ R. The solution curves are determined
by (

u1

c1

)µ
=

(
u2

c2

)λ
, c1, c2 , 0,

u1

c1
,

u2

c2
> 0.

If λ = µ the curves are straight lines, and potential curves otherwise.

µ < λ < 0 µ = λ < 0

If µ ≤ λ < 0, then ‖u(t)‖ = 0 as t → ∞, i.e. the solutions tend to u∗ = 0 as t tends to infinity.
In this case, the equilibrium u∗ = 0 is asymptotically stable and called a stable node.

If the signs of the eigenvalues are reversed, i.e. µ ≥ λ > 0, the arrows point in the opposite
direction and ‖u(t)‖ → ∞ as t → ∞. Then, u∗ = 0 is unstable and called an unstable node.
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(ii) For the matrix A1, if λ and µ have opposite signs, the solutions are again given by u1(t) =

c1eλt, u2(t) = c2eµt, t ∈ R, for some constants c1, c2 ∈ R, and the solution curves are
determined by the same relation as in (i). However, µ

λ < 0 and the phase portrait looks
essentially different. We have two trajectories pointing to the origin, all other solutions
satisfy ‖u(t)‖ → ∞ as t → ∞. In this case, the origin is an unstable equilibrium and called a
saddle.

λ > 0 > µ λ < 0 < µ

(iii) For the matrix A2, all solutions are of the form u1(t) = (c1 + tc2)eλt, u2(t) = c2eλt, t ∈ R, for
some constants c1, c2 ∈ R. If c1 = 0, i.e. we start with an initial value u1(0) = 0, u2(0) = c2,
then we have u1(t) = tu2(t). The trajectories are then determined by

λu1 = u2 ln
(
u2

c2

)
, if c2 , 0.

If λ < 0, then ‖u(t)‖ → 0 as t → ∞, i.e. the solutions tend to u∗ = 0 as t tends to infinity. In
this case, the equilibrium u∗ = 0 is asymptotically stable and called a stable node. If the sign
of the eigenvalue λ is reversed, the arrows point in the opposite direction and ‖u(t)‖ → ∞ as
t → ∞. Then, the equilibrium u∗ = 0 is unstable and called an unstable node.

λ < 0 λ > 0

(iv) For the matrix A3, the solutions are of the form

u1(t) = (c1 cos(βt) − c2 sin(βt))eαt,

u2(t) = (c1 sin(βt) + c2 cos(βt))eαt,
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t ∈ R, for some constants c1, c2 ∈ R. We could equally write the solutions in complex
notation

u1(t) = ceαt−iβt, u2(t) = ceαt+iβt, c ∈ C.

We observe that ‖u(t)‖ = ‖c‖eαt, t ∈ R. If α = 0, the solution curves are circles around the
origin and the sign of β determines in which direction the curves are traversed. In this case,
u∗ = 0 is stable, but not asymptotically stable, and called a center.

If α < 0 the solution curves spiral around the origin and converge to u∗ = 0 as time tends to
infinity. In this case, the origin is asymptotically stable and called a stable spiral. Finally,
if α > 0, the solution curves spiral around the origin, but ‖u(t)‖ → ∞ as t → ∞. In this case,
u∗ = 0 is unstable and called an unstable spiral.

α = 0, β > 0 α < 0, β < 0

(v) Finally, if A , 0 is not invertible, then A is similar to

A4 =

(
λ 0
0 0

)
or A5 =

(
0 1
0 0

)
,

with λ , 0. For the phase portraits, we refer to the exercises.

In the case of matrix A4, the steady state u∗ = 0 is stable if λ < 0, but not asymptotically
stable, and unstable if λ > 0. For the matrix A5, the origin u∗ = 0 is unstable.

Summarizing, we observe that if all eigenvalues of the matrix A in (5.3) satisfy Re(λ) < 0,
the origin u∗ = 0 is asymptotically stable, while the origin is unstable if there exists an eigenvalue
with Re(λ) > 0.

Example 5.3. The following scalar second order ODE

x′′(t) + 2αx′(t) + βx(t) = 0

describes a damped oscillation. We assume that the initial values are x(0) = x0, x′(0) = x1 with
x0, x1 ∈ R. Here, x describes the displacement from equilibrium, 2α > 0 is the damping coefficient
and β > 0 the spring constant.

Setting y = x′ we can rewrite the ODE as first order system,(
x′(t)
y′(t)

)
=

(
0 1
−β −2α

) (
x(t)
y(t)

)
= A

(
x(t)
y(t)

)
.

68



The eigenvalues and eigenvectors of the matrix A are

λ1/2 = −α ±

√
α2 − β, vi =

(
1
λi

)
, i = 1, 2.

Since α and β are positive, we conclude that Re(λi) < 0, i = 1, 2, and hence, the zero steady state
is asymptotically stable. We can distinguish three cases.

• Overdamping: If α2 > β both eigenvalues are negative and the solutions are of the form

x(t) = c1eλ1t + c2eλ2t, t ∈ R,

where the constants c1, c2 ∈ R are determined by the initial values. In this case, the origin is
a stable node and the phase portrait is of the type (i).

• Critical damping: If α2 = β, the matrix A is defective and we have only one eigenvalue. The
solutions are of the form

x(t) = (c1 + c2t)e−αt, t ∈ R,

and hence, the origin is a stable node and the phase portrait is of the type (iii).

• Damped oscillation: If α2 < β, we have two complex conjugate eigenvalues and the solu-
tions are of the form

x(t) = c1e−αt cos(ωt) + c2e−αt sin(ωt), t ∈ R,

where ω =
√
β − α2. In this case, the phase portrait is of the type (iv) and the origin is a

stable spiral.

From the phase portraits we cannot determine how fast the solutions converge to the steady
state. To compare the three cases we plot the graphs of the solutions versus time with the same
values for x0, x1 and the parameter α, but we vary β. In the figure below the blue line corresponds
to the case α2 > β (overdamping), the red line to the case α2 = β (critical damping) and the green
line to the case α2 < β (damped oscillations). We observe that the fastest decay occurs with critical
damping.
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Stability for n-dimensional systems

For two dimensional linear systems (5.3) we observed that the origin u∗ = 0 is asymptotically sta-
ble if and only if Re(λ) < 0 for all eigenvalues λ of A and it is unstable if there exists an eigenvalue
λ of A such that Re(λ) > 0. Moreover, the origin is stable if Re(λ) ≤ 0 for all eigenvalues of A
and the eigenvalues with Re(λ) = 0 are not defective. We aim to generalize these results now for
n-dimensional linear systems.

We consider linear systems of the form,

u′(t) = Au(t), (5.4)

where A ∈ Rn×n. Then, u∗ = 0 is an equilibrium of the ODE and all solutions are of the form
u(t) = etAc, for some c ∈ Rn.

Remark 5.4. We observe that the origin is stable if and only if ‖etA‖ ≤ M for all t ≥ 0, for some
constant M ≥ 1, where ‖·‖ denotes the induced matrix norm. Moreover, it is asymptotically stable,
if and only if ‖eAt‖ → 0 as t → ∞ (see exercises).

We use these estimates to prove the following theorem which generalizes the properties we
derived in the previous subsection for higher dimensional systems.

Theorem 5.5. Consider the ODE (5.4).

(i) The stationary solution u∗ = 0 is stable if and only if every eigenvalue λ of A satisfies
Re(λ) ≤ 0 and eigenvalues with Re(λ) = 0 are not defective.

(ii) The stationary solution u∗ = 0 is asymptotically stable if and only if every eigenvalue λ of
A satisfies Re(λ) < 0.

(iii) The stationary solution u∗ = 0 is unstable if and only if there exists an eigenvalue λ of A
such that Re(λ) > 0, or if there exists an eigenvalues with Re(λ) = 0 that is defective.

Proof. There exists an invertible matrix S ∈ Cn×n such that A = S JS −1, where

J =


J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jm

 , Jk =


λk 1 0

0 λk
. . .

...
. . .

. . . 1
0 · · · 0 λk

 ∈ C
nk×nk ,

where n1 + · · · + nm = n and λ1, . . . , λm ∈ C are the eigenvalues of A. By (4.5) in Remark 4.14 we
have

1
c
‖etJ‖ ≤ ‖etA‖ ≤ c‖etJ‖,

for some constant c > 0. Moreover, using the maximum norm we have

‖etJ‖max = max
1≤k≤m

‖etJk‖max = max
1≤k≤m

|etλk |

nk−1∑
j=0

|t| j

j!
,
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see (4.6) in Remark 4.14. Let α = max{Re(λk) : k = 1, . . . ,m}, where λ1, . . . , λm are the eigenval-
ues of A with the corresponding dimensions n1, . . . , nm of the Jordan blocks.

To show (i) we observe that the estimates (4.5) and (4.6) above imply that ‖etA‖ ≤ M for all
t ≥ 0 if and only if ‖etJ‖ ≤ M̃ for all t ≥ 0. This is equivalent to the conditions α ≤ 0 and nk = 1 if
there exists an eigenvalue λk with Re(λk) = 0.

Moreover, to prove (ii) we note that ‖etA‖ → 0 as t → ∞ if and only if ‖etJ‖ → 0 as t → ∞.
This is equivalent to α < 0, which shows the second statement about asymptotic stability.

Finally, statement (iii) follows from (i) since u∗ = 0 is unstable, if it is not stable. �

Proposition 5.6. If u∗ = 0 is an asymptotically stable equilibrium of (5.4) (i.e. Re(λ) < 0 for all
eigenvalues λ of A), then

‖etA‖ ≤ Me−at for all t ≥ 0,

for some constants M ≥ 1 and a > 0 such that max
{
Re(λ) : λ eigenvalue of A

}
< −a < 0.

Proof. Let Ã = aId + A, then ‖etA‖ = e−ta‖etÃ‖. Moreover, Ã has the eigenvalues λ̃ = a + λ, where
λ is an eigenvalue of A with Re(λ̃) = a + Re(λ) < 0. Consequently, by Remark 5.4 we conclude
that ‖etÃ‖ ≤ M for all t ≥ 0, for some constant M ≥ 1. �

Finally, we remark that stability for linear systems is not a local but a global property. In fact,
if u is a solution, then au is also a solution for all a ∈ R. This is different for nonlinear systems.

5.3 Nonlinear systems

Before we analyze the stability for equilibria of general nonlinear systems we consider systems
with a principal linear part,

u′(t) = Au(t) + g(u(t)), (5.5)

where A ∈ Rn×n is a matrix with constant coefficients and g : Rn → Rn is continuously differen-
tiable and satisfies

lim
u→0

‖g(u)‖
‖u‖

= 0, (5.6)

where ‖ · ‖ is an arbitrary norm in Rn. The latter condition implies that g(0) = 0, and hence, u∗ = 0
is still an equilibrium of system (5.5).

The following theorem states that stability properties of the steady state u∗ = 0 of the lin-
ear system u′ = Au are preserved for the perturbed system (5.5). Here, it is essential that the
perturbation g(u) is small compared to u as u tends to zero.

Theorem 5.7. Consider the ODE (5.5). Let g : Rn → Rn be continuously differentiable and satisfy
(5.6). Then, the following statements hold:

(i) If Re(λ) < 0 for all eigenvalues λ of A, then the equilibrium u∗ = 0 is asymptotically stable.

(ii) If there exists an eigenvalue λ of A with Re(λ) > 0, then the equilibrium u∗ = 0 is unstable.
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Proof. We will only prove the first statement (i). The proof of the second statement can be found
in [6]. It is rather technical and will be omitted.

Assume that Re(λ) < 0 for all eigenvalues λ of A. Then, by Proposition 5.6, we have

‖etA‖ ≤ Me−at ∀t ≥ 0,

for some constants M ≥ 1 and a > 0. Condition (5.6) implies that there exists δ > 0 such that

‖g(v)‖ ≤
a

2M
‖v‖ for all v ∈ Rn : ‖v‖ ≤ δ. (5.7)

To show the asymptotic stability of u∗ = 0 we will prove that for all ε ≤ δ and u0 ∈ R
n such that

‖u0‖ <
ε
M , there exists a unique solution u of the IVP (5.5) with u(0) = u0, the solution exists for

all t ≥ 0 and satisfies

‖u(t)‖ < e−
1
2 atε ∀t ≥ 0. (5.8)

Let now T > 0 be arbitrary. Since g is continuously differentiable and does not depend on time t,
g satisfies a Lipschitz condition in D = [0,T ] × B, where B = {v ∈ Rn : ‖v‖ ≤ ε}. This implies that
the function u 7→ Au + g(u) satisfies a Lipschitz condition in D as well. Consequently, Theorem
3.13 implies that there exists a unique solution u of the IVP, the solution exists on an interval [0, T̃ ]
and ‖u(t)‖ ≤ ε for all t ∈ [0, T̃ ], where T̃ = T, or 0 < T̃ < T and ‖u(T̃ )‖ = ε.

The variation of constants formula for linear inhomogeneous systems (Theorem 4.9) now im-
plies that

u(t) = etAu0 +

∫ t

0
e(t−s)Ag(u(s))ds.

Taking the norm and using Lemma 3.10 we obtain

‖u(t)‖ ≤ ‖etA‖ ‖u0‖ +

∫ t

0
‖e(t−s)A‖ ‖g(u(s))‖ds

≤ e−at M‖u0‖ +

∫ t

0
Me−a(t−s) a

2M
‖u(s)‖ds

≤ e−at M‖u0‖ +

∫ t

0

a
2

e−a(t−s)‖u(s)‖ds,

where we used Proposition 5.6 and the estimate (5.7). We can rewrite this estimate as

eat‖u(t)‖ ≤ M‖u0‖ +

∫ t

0

a
2

eas‖u(s)‖ds.

Hence, Gronwall’s Lemma (Lemma 3.21) applied to G(t) = eat‖u(t)‖ implies that

G(t) ≤ M‖u0‖ +
a
2

∫ t

0
e

a
2 (t−s)M‖u0‖ds = M‖u0‖e

at
2 .

Consequently, we conclude that

‖u(t)‖ ≤ e−
a
2 t M‖u0‖ < e−

a
2 tε ∀t ∈ [0, T̃ ].

This shows that ‖u(T̃ )‖ < ε, and consequently, T̃ = T. Finally, since T > 0 was arbitrary, it follows
that the solution exists for all t ≥ 0 and u satisfies the estimate (5.8) for all t ≥ 0. �
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Remark 5.8. We remark that no conclusion can be made if the eigenvalues λ of the matrix A satisfy
max{Re(λ) : λ eigenvalue of A} = 0. In this case, the stability of u∗ = 0 strongly depends on the
specific form of the nonlinearity g.

Theorem 5.7 is limited to a very particular class of nonlinear ODEs. We now extend the result
for general autonomous systems. We consider the ODE (5.1),

u′(t) = f (u(t)),

and assume that f : Rn → Rn is continuously differentiable and f (u∗) = 0 for some u∗ ∈ R. This
implies that u∗ is an equilibrium of the ODE.

We linearize f around u∗. To this end let w ∈ Rn with ‖w‖ small and A = f ′(u∗) be the Jacobian
matrix of f in u∗, i.e. A = (ai j)1≤i, j≤n, where ai j =

∂ fi
∂u j

(u∗). Then, Taylor’s Theorem implies that

f (u∗ + w) = f (u∗) + Aw + o(‖w‖) = Aw + o(‖w‖) as w→ 0,

where we used that f (u∗) = 0. We recall that a function g ∈ o(h) as w → 0 if limw→0

∥∥∥∥g(w)
h(w)

∥∥∥∥ = 0.
Consequently, we have

lim
w→0

‖ f (u∗ + w) − Aw‖
‖w‖

= 0.

Defining g(w) := f (u∗ + w) − Aw,w ∈ Rn, we observe that g is continuously differentiable and
satisfies (5.6).

Let now u be a solution of the ODE system (5.1), u′(t) = f (u(t)), and let u∗ be an equilibrium.
We define

w(t) = u(t) − u∗,

and apply the approximation above to obtain

w′(t) = u′(t) = f (u∗ + w(t)) = Aw(t) + g(w(t)).

Since f (u∗) = 0 it follows that
w′(t) = Aw(t) + g(w(t)).

The equation w′(t) = Aw(t) with A = f ′(u∗) is called the linearized equation of the ODE (5.1)
in u∗. The linearized equation often allows us to determine the stability of the steady state u∗. In
fact, from Theorem 5.7 and the approximation above we derive the following result.

Theorem 5.9. Let f : Rn → Rn be continuously differentiable, u∗ be an equilibrium of the ODE
u′(t) = f (u(t)) and A = f ′(u∗). Then, the following holds:

(i) If Re(λ) < 0 for all eigenvalues λ of A, then u∗ is asymptotically stable.

(ii) If there exists an eigenvalue λ of A with Re(λ) > 0, then u∗ is unstable.

Proof. This is an immediate consequence of Theorem 5.7 and the derivation of the linearization
around u∗ above. �

Note that the stability of the linearized equation is not enough to draw a conclusion about the
stability of the equilibrium of the nonlinear equation. For an example we refer to the exercises.
However, if all eigenvalues of the matrix A = f ′(u∗) satisfy Re(λ) < 0, then the equilibrium u∗

is asymptotically stable, and the asymptotic stability transfers to the equilibrium of the nonlinear
equation.
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Example 5.10. Consider the ODE

u′(t) = f (u(t)) =

(
−u1 − u2 + u2

2
u1(1 + u2

2)

)
, u = (u1, u2).

Then, f : R2 → R2 is continuously differentiable. The steady states are u∗ = (0, 0) and v∗ = (0, 1),
and the Jacobian matrix of f in (u1, u2) is

f ′(u1, u2) =

(
−1 −1 + 2u2

1 + u2
2 2u1u2

)
.

To determine the stability of the equilibria we compute the linearizations in u∗ and v∗. The lin-
earization of the ODE in u∗ is

w′(t) =

(
−1 −1
1 0

)
w(t) = A1w(t).

The matrix A1 has the eigenvalues λ1/2 = −1±i
√

3
2 . Hence, Re(λ1/2) < 0, which implies that u∗ is

asymptotically stable by Theorem 5.9.
The linearization of the ODE in v∗ is

w′(t) =

(
−1 1
2 0

)
w(t) = A2w(t).

The matrix A2 has the eigenvalues λ1 = 1, λ2 = −2. Hence, Re(λ1) > 0, which implies that v∗ is
unstable by Theorem 5.9.

Remark 5.11. If the Jabocian matrix A = f ′(u∗) in an equilibrium u∗ has no eigenvalues whose
real part is zero, not only the stability of the zero solution of the linearized equation w′(t) = Aw(t)
determines the stability of the steady state u∗ of the original ODE, but also the topological structure
of the phase portrait will be locally the same, including the direction of the trajectories (i.e. spirals,
nodes and saddle points in the two-dimensional case). This remarkable property is known as the
Hartman-Grobman Theorem:

Let f : D→ Rn, D ⊂ Rn open, be continuously differentiable and f (u∗) = 0 for some u∗ ∈ D.
If f ′(u∗) has no eigenvalues λ with Re(λ) = 0, then there exist neighborhoods U of u∗ and V
of 0 and a continuous bijection ϕ : V → U that maps the trajectories of the linearized equation
w′(t) = f ′(u∗)w(t) onto the trajectories of the nonlinear equation u′(t) = f (u(t)).

Example 5.12. Mathematical pendulum.
We assume a point mass m is attached to a massless, non-stretchable cord suspended from a

pivot point and swings freely without friction and energy loss under the influence of gravity. The
movement of the pendulum is then described by the ODE

ϕ′′(t) + c sin(ϕ(t)) = 0, (5.9)

where c =
g
l , g is the gravitational constant, l the length of the cord and ϕ the angle between the

vertical and the cord.
Setting ψ = ϕ′ we can rewrite the ODE (5.9) as first order system(

ϕ′(t)
ψ′(t)

)
=

(
ψ(t)

− sin(ϕ(t))

)
= f (ϕ(t), ψ(t)).
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The steady states are (0, 0) and (π, 0), and the matrices in the corresponding linearizations are

A1 = f ′(0, 0) =

(
0 1
−1 0

)
, A2 = f ′(π, 0) =

(
0 1
1 0

)
.

The linearized equation w′ = A1w is the harmonic oscillator w′′+w = 0, see Example 5.3 with
α = 0 and β = 1. The eigenvalues of A1 are λ1,2 = ±i and hence, the steady state (0, 0) is a center
of the linearized equation and the trajectories are circles around the origin. However, Theorem 5.9
cannot be applied to draw a conclusion about the stability of the nonlinear system.

On the other hand, the matrix A2 has the eigenvalues λ1,2 = ±1 and hence, the steady state
(π, 0) is a saddle of the linearized system w′ = A2w. By Theorem 5.9 and the Hartmann-Grobman
theorem, the equilibrium (π, 0) is also a saddle for the nonlinear system.

5.4 Exercises

E5.1 Singular matrix

Consider the linear two-dimensional ODE

u′(t) = Au(t),

with a matrix A ∈ R2×2. If A is not invertible (and not the zero matrix), then A is similar to one
of the following two matrices:

A4 =

(
λ 0
0 0

)
or A5 =

(
0 1
0 0

)
,

where λ , 0. Determine all equilibria of the ODEs

u′(t) = A4u(t) and u′(t) = A5u(t)

and plot the phase portraits for both systems. Are the equilibria stable, asymptotically stable or
unstable?

E5.2 Classification in 2D

Let

A =

(
a b
c d

)
∈ R2×2

be invertible and D = det(A) = ad − bc and T = tr(A) = a + d be its trace and determinant.

Determine in the T − D-plane the regions in which the different phase portraits (i)-(iv) plotted
in the lecture notes occur and distinguish the stable and unstable cases.

Hint: Plot the parabola T 2 = 4D.

E5.3 Classification of equilibria

Consider the following matrices

B1 =

(
4 1
2 5

)
, B2 =

(
1 −2
5 −1

)
.
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(a) Determine whether the equilibrium u∗ = 0 of the ODE

u′(t) = Biu(t), i = 1, 2,

is a stable/unstable node, a stable/unstable spiral, a saddle or a center.

(b) Sketch the phase portrait for the ODEs (up to rotation and scaling).

E5.4 Linear system with constant coefficients
Consider the ODE

u′′(t) − 4u′(t) + 4u(t) = 0.

Reformulate the ODE as first order system. Find a fundamental matrix for this system and
verify that it indeed is one.

Is the equilibrium u∗ = 0 stable, asymptotically stable or unstable (for the original ODE)?
Sketch the phase portrait for the resulting system (up to scalings and rotations).

Hint: See Example 4.19.

E5.5 Scalar ODE
Consider the scalar ODE

u′(t) = 5u(t)(u(t) − 1)(u(t) − 2).

(a) Determine the equilibria and sketch the phase portrait of the ODE.

(b) Sketch the graph of the solution corresponding to the following initial data

u(0) = u0 ∈

{
−1,

1
4
,

3
2
,

5
2

}
.

(c) Determine whether the equilibria are stable, asymptotically stable or unstable.

E5.6 Stability for linear systems [2 points]

Consider the linear system
u′(t) = Au(t), A ∈ Rn×n,

with equilibrium u∗ = 0. Show that u∗ = 0 is stable according to Definition 5.1 if and only if
‖etA‖ ≤ C, for some constant C ≥ 1.

Hint: You can use (without proof) that

‖etA‖ = max
{
‖etAv‖ : v ∈ Rn, ‖v‖ ≤ 1

}
.

E5.7 Nonlinear system
Determine the equilibria of the system

x′(t) = (3 − y(t))x(t),

y′(t) = (1 + x(t) − y(t))y(t),

and determine whether they are stable, unstable or asymptotically stable.
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E5.8 Stability of nonlinear systems

Show that the stability of the linearized equation is not enough to make a conclusion about the
stability of an equilibrium of a nonlinear equation. To this end, consider the following ODEs

u′(t) = u3(t), v′(t) = −v3(t).

Hint: Recall Theorem 5.9. Determine the equilibria of the ODEs and linearize the equations in
these steady states. Then, solve the ODEs explicitly.
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Chapter 6

Qualitative theory of ODE systems

In this chapter we continue studying qualitative properties of solutions of ODE systems. In partic-
ular, we analyze whether solutions exist globally and study properties of orbits of solutions.

6.1 Global versus finite time existence

Consider the IVP

u′(t) = f (t, u(t)),

u(t0) = u0,
(6.1)

where (t0, u0) ∈ D, D ⊂ Rn+1 is open and f : D→ Rn is continuous and satisfies a local Lipschitz
condition in D. By Theorem 3.16, there exists a unique solution u : I0 → R

n of the IVP (6.1),
where I0 = [t0 − δ0, t0 + δ0], for some δ0 > 0.

Let now t1 := t0 + δ0 and u1 := u(t1), then (t1, u1) ∈ D. Therefore, Theorem 3.16 implies that
there exists a unique solution v : I1 → R

n, where I1 = [t1− δ1, t1 + δ1], for some δ1 > 0, of the IVP

v′(t) = f (t, v(t)),

v(t1) = u1.

By Proposition 3.20, we have u ≡ v on I0 ∩ I1. Hence, we can define

ū(t) =

u(t), t ∈ I0,

v(t), t ∈ [t1, t1 + δ1].

The function ū is a solution of the original IVP (6.1) and called a continuation of the solution u.
In the same way, we can continue solutions to the left, i.e. for t ≤ t0.

Theorem 6.1. Consider the IVP (6.1). Then, there exists an open interval Imax ⊂ R and a solution
umax : Imax → R

n of (6.1) such that for all solutions u : I → Rn, I ⊂ R an interval, of (6.1) we
have I ⊂ Imax and umax

∣∣∣
I = u.

Proof. Let

J :=
{
I ⊂ R interval : t0 ∈ I, there exists a solution uI : I → Rn of (6.1)

}
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and set Imax :=
⋃

I∈J I. Then, Imax ⊂ R is an interval and t0 ∈ R. Moreover, Imax is open, since
otherwise, if an endpoint of the interval was contained in Imax we could extend the solution as
above. This would be a contradiction to the definition of Imax.

Finally, we define umax(t) := uI(t), t ∈ I, I ∈ J . Due to the uniqueness of solutions, umax is
well-defined. Moreover, umax is a solution of the IVP (6.1) and Imax is maximal. �

Recall that Imax is called the maximal interval of existence. By Theorem 6.1, the interval Imax is
of the form (−∞, b), (a, b), (a,∞) or (−∞,∞), for some −∞ < a < t0 < b < ∞. If Imax = (−∞,∞),
then umax is called a global solution of the IVP.

For the solution u of the IVP (6.1) with maximal interval of existence Imax we have the follow-
ing possibilities:

• The solution exists for all t ∈ [t0,∞).

• There exists t0 < b < ∞ such that ‖u(t)‖ → ∞ as t → b, i.e. the solution blows up in finite
time.

• There exists t0 < b < ∞ such that

dist
(
(t, u(t)), ∂D

)
→ 0 as t → b,

where ∂D denotes the boundary of D and

dist
(
v, ∂D

)
= inf{‖v − w‖ : w ∈ ∂D},

for v ∈ D, i.e. the solution approaches the boundary of D.

That these are the only possibilities follows from the following theorem. Analogous statements
hold for the behavior of the solution for t ≤ t0.

Theorem 6.2. Let u be the solution of the IVP (6.1) with maximal interval of existence Imax. Then,
there exists no compact subset K ⊂ D such that the positive graph of the solution Γ+ = {(t, u(t)) :
t ∈ Imax, t ≥ t0} satisfies Γ+ ⊂ K.

Proof. Assume that K ⊂ D is compact and Γ+ ⊂ K. Since K is bounded and Imax is open, we
conclude that Imax = (a, b) or Imax = (−∞, b), for some −∞ < a < t0 < b < ∞. Let t, t̃ ∈ [t0, b)
and M := max{‖ f (s, v)‖ : (s, v) ∈ K}. The maximum is attained, since K is compact and f is
continuous. We observe that

‖u(t) − u(t̃)‖ =
∥∥∥∥ ∫ t

t̃
f (s, u(s))ds

∥∥∥∥ ≤ ∫ t

t̃
‖ f (s, u(s))‖ds ≤ M|t − t̃|,

which implies that the limit limt→b u(t) =: ub < ∞ exists. Indeed, if (tm)m∈N0 is a sequence such
that tm → b as m → ∞, then (tm)m∈N0 is a Cauchy sequence and the estimate above implies that
for all ε > 0 there exists N ∈ N such that

‖u(tk) − u(tm)‖ ≤ M‖tk − tm‖ < ε, ∀k,m ≥ N.

This implies that (u(tm))m∈N0 is a Cauchy sequence in Rn and hence, it converges.
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We can now continue u by ũ(t) = u(t), t ∈ [t0, b) and ũ(b) = ub. Since K is closed, we conclude
that (b, ub) ∈ K. Moreover, ũ is a solution of the IVP as it satisfies

ũ(t) = ub +

∫ t

b
f (s, u(s))ds ∀t ∈ [t0, b].

We can now further continue the solution. In fact, by Theorem 3.16, there exists a unique solution
ū : [b − δ, b + δ]→ R, for some δ > 0, of the IVP

u′(t) = f (u(t)), u(b) = ub.

This contradicts the fact that Imax = (a, b) or Imax = (−∞, b) and Imax is maximal. �

We remark that in the same way one can show that an analogous result holds for the negative
graph Γ− = {(t, u(t)) : t ∈ Imax, t ≤ t0}.

Corollary 6.3. Consider the IVP (6.1) and assume that D = Rn+1. If the solution satisfies

‖u(t)‖ ≤ c ∀t ∈ Imax ∩ [t0,∞),

for some c ≥ 0, then the solution exists for all t ∈ [t0,∞).

Proof. This follows immediately from Theorem 6.2. �

6.2 Qualitative properties of orbits

From now on, we consider autonomous ODEs, where the function f is defined for all u ∈ Rn,

u′(t) = f (u(t)), (6.2)

where f : Rn → Rn is continuous and satisfies a local Lipschitz condition in Rn.
By Theorem 6.2 and Theorem 3.16, for every t0 ∈ R, u0 ∈ R

n there exists a unique solution of
(6.2) with u(t0) = u0. Moreover, the solution either exists for all t ≥ t0 or there exists t0 < b < ∞
such that the solution exists for all [t0, b) and ‖u(t)‖ → ∞ as t → ∞. In the same way, we can
follow solutions backwards in time t ≤ t0, and either the solution exists for all t ≤ t0, or it exists
on a finite interval (a, t0] and limt↘a ‖u(t)‖ = ∞. Let Imax be the maximal interval of existence of
a solution u. We consider the trajectory (or orbit) Γ = {u(t) : t ∈ Imax} of the solution u.

Theorem 6.4. Consider the ODE (6.2). Through every u0 ∈ R
n there passes exactly one trajectory.

In particular, if two orbits Γ and Γ̃ have one point in common, they must coincide, i.e. Γ ≡ Γ̃.

Proof. Let t0 ∈ R and u0 ∈ R
n. Then, there exists a unique solution u : Imax → R

n of (6.2) with
u(t0) = u0, where Imax denotes the maximal interval of existence. Hence, there exists at least one
orbit Γ passing through u0.

Assume that ũ : Ĩmax → R
n is another solution of (6.2) such that its orbit Γ̃ passes through u0

at time t̃ ∈ Ĩmax, i.e.
ũ′(t) = f (ũ(t)), ũ(t̃) = u0.

Let v(t) := ũ(t − t0 + t̃), then

v′(t) = f (v(t)), v(t0) = ũ(t̃) = u0,
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i.e. u and v are both solutions of the IVP (6.2) with u(t0) = v(t0) = u0. The uniqueness of solutions
implies that u ≡ v on Imax. Consequently, u(t) = ũ(t − t0 + t̃) for all t ∈ Imax, which implies that
Γ ⊂ Γ̃.

In the same way, we can show that Γ̃ ⊂ Γ, i.e. Γ = Γ̃, which concludes the proof. �

Two different trajectories of solutions do not intersect, however, it can happen that trajectories
are closed curves in the phase space. This situation corresponds to periodic solutions, i.e. there
exists T > 0 such that the solution satisfies

u(t + T ) = u(t) ∀t ∈ R.

Unless the solution is constant (i.e. the condition holds for all T > 0 and the trajectory is a single
point), the smallest T > 0 for which this property holds is well-defined and called the period of
the solution.

Proposition 6.5. Let u be a solution of (6.2) such that u(t0) = u(t0 +T ) for some t0 ∈ R and T > 0.
Then, u(t) = u(t + T ) for all t ∈ R, i.e. u must be periodic.

Proof. Assume that u is a solution of (6.2) such that u(t0) = u(t0 + T ). Then, the function v(t) :=
u(t + T ) is also a solution of (6.2) with v(t0) = u(t0) and the uniqueness of solutions implies that
u ≡ v. �

On the other hand, assume that Γ̃ is a closed curve in Rn that does not contain any steady states
and u : R → Rn is a solution of (6.2) with u(t) ∈ Γ̃ for all t ∈ R. Then, ‖u′(t)‖ ≥ c for all t ∈ R
and some constant c > 0, and hence, the speed at which the solution moves along the curve Γ is
strictly positive. It follows that u is periodic and the orbit of u is Γ̃.

Trajectories of periodic solutions can be surrounded by trajectories of other periodic solutions,
e.g. this occurs in the case of two-dimensional linear systems if the origin is a center, see Section
5.2. In case of nonlinear ODEs, it can also happen that periodic solutions attract or repel other
nearby solutions. Then, the periodic solution is called a limit cycle.

We discuss one example of a nonlinear ODE in R2 that possesses periodic solutions, additional
examples are discussed in the tutorials.

Example 6.6. The Duffing equation (without forcing) is a second order ODE of the form

x′′(t) = x(t) − x3(t) − αx′(t).

It describes the motion of a damped oscillator, where α ≥ 0 is the damping parameter. It is used to
model, e.g. an elastic pendulum whose spring’s stiffness is described by the nonlinear force x− x3.

We rewrite the ODE as first order system, u1 = x, u2 = x′,

u′(t) =

(
u′1(t)
u′2(t)

)
=

(
u2(t)

u1(t) − u3
1(t) − αu2(t)

)
= f (u1(t), u2(t)).

It is an autonomous ODE system and the function f is defined on Rn and continuously differen-
tiable (which implies that it satisfies a local Lipschitz condition in Rn). There exist three equilibria,
u∗1 = (0, 0), u∗2 = (1, 0), u∗3 = (−1, 0). To determine the stability of the equilibria we compute the
Jacobian matrix of f ,

f ′(u) =

(
0 1

1 − 3u2
1 −α

)
,
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and determine the linearization in each equilibrium.
In u∗1 = (0, 0), we have

f ′(u∗1) =

(
0 1
1 −α

)
,

and find the eigenvalues −α2 ±
1
2

√
α2 + 4. Since there exists an eigenvalue with positive real part,

the origin is unstable. In u∗2 = (1, 0) and u∗3 = (−1, 0) we have

f ′(u∗2) = f ′(u∗3) =

(
0 1
−2 −α

)
,

and find the eigenvalues −α2 ±
1
2

√
α2 − 8. If α > 0, both eigenvalues have a negative real part and

hence, the steady states u∗2, u
∗
3 are asymptotically stable. If α = 0 the real parts of the eigenvalues

are zero and we cannot apply Theorem 5.9.
We now analyze the case α = 0 and will see that there exist periodic solutions. Even though

we cannot explicitly compute the solutions, we can derive explicit expressions for the orbits. In
fact, we observe that if α = 0, the ODE implies that (u1 − u3

1)u′1 = u2u′2. Integrating this equation
we conclude that

E(u1, u2) = u2
2 − u2

1 +
1
2

u4
1

satisfies d
dt E(u1(t), u2(t)) = 0. Consequently, the trajectories of the ODE correspond to the level

sets of E, E(u1, u2) = c, for some c ∈ R. These are closed curves, and therefore, if they do not
contain equilibria (i.e. for c , 0 and c , 1

2 ), the corresponding solutions are periodic. Several
orbits are shown in the figure below.

In the right panel, trajectories of solutions for α > 0 are plotted. We observe that as t → ∞
these solutions converge to one of the asymptotically stable steady states u∗1 or u∗2, and there do not
exist periodic solutions. This can be shown as follows. Using the function E we observe that

d
dt

E(u1(t), u2(t)) =
(
− 2u1(t) + 2u3

1(t)
)
u′1(t) + 2u2(t)u′2(t) = −2αu2

2(t),
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and hence, E is monotonically decreasing along solutions. On the other hand, if u = (u1, u2) is a
periodic solution with period T > 0, then we would have

0 = E(u1(T ), u2(T )) − E(u1(0), u2(0)) = −2α
∫ T

0
u2

2(t)dt.

This implies that u2(t) = 0 for all t ∈ [0,T ], which is a contradiction.

The function E allowed us to study the behavior of solutions along trajectories without know-
ing the solutions themselves. Such a function E is called Lyapunov functions. We introduce this
concept in the next section and use it to formulate stability and instability results.

6.3 Lyapunov functions

We consider the autonomous ODE

u′(t) = f (u(t)), (6.3)

where f : D → Rn is continuously differentiable in an open set D ⊂ Rn, 0 ∈ D and f (0) = 0.
Hence, the origin is an equilibrium of the ODE. Theorem 3.16 implies that for every t0 ∈ R and
u0 ∈ D there exists a unique solution of the ODE with u(t0) = u0.

We remark that the assumption f (0) = 0 is not restrictive and that the following results can
easily be generalized for equilibria u∗ , 0. Indeed, in this case we consider ũ = u−u∗, then ũ′ = u′

and
ũ′(t) = f̃ (ũ(t)), f̃ (ũ) = f (ũ + u∗).

Definition 6.7. The zero steady state is called exponentially stable, if there exist positive con-
stants δ, γ, c > 0 such that for every solution u of (6.3) with u(t0) = u0 we have

‖u0‖ < δ implies that ‖u(t)‖ ≤ ce−γ(t−t0) for t > t0.

Here, we assume that solutions exists for all t ≥ t0.

Remark 6.8. If f is locally Lipschitz, the exponential stability implies the asymptotic stability of
an equilibrium.

Indeed, for every ε > 0 there exists a ≥ 0 such that ceaγ < ε. Hence, if ‖u0‖ < δ then the
corresponding solution satisfies ‖u(t)‖ < εe−γ(t−t0−a) for all t ∈ [t0 + a,∞). Moreover, Corollary
3.23 can be extended to functions f : D → Rn that are continuously differentiable in an open set
D ⊂ Rn. This implies that there exists β < δ such that ‖u0‖ < β implies that ‖u(t)‖ < ε for all
t ∈ [t0, t0 + a]. Consequently, the inequality holds for all t ≥ t0, i.e. the equilibrium is stable and
therefore also asymptotically stable.

Motivated by Example 6.6 we now introduce Lyapunov functions.

Definition 6.9. Consider the ODE (6.3). For a continuously differentiable function V : D → R
we define

V̇(u) = ∇V(u) · f (u) =

n∑
i=1

Vui(u) fi(u), u ∈ D.

Then, V is a Lyapunov function for the ODE (6.3) if

V(0) = 0, V(u) > 0 if u , 0, V̇(u) ≤ 0, u ∈ D.
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We observe that if u is a solution of the ODE (6.3), then the chain rule implies that

d
dt

V(u(t)) = ∇V(u(t)) · u′(t) = ∇V(u(t)) · f (u(t)) = V̇(u(t)), t ≥ t0. (6.4)

Therefore, V̇ is typically called the derivative of V along trajectories. We can use Lyapunov
functions to derive qualitative properties of trajectories without knowing the solutions explicitly.
In particular, we have the following stability theorem.

Theorem 6.10. Let f : D → Rn be continuously differentiable, f (0) = 0, 0 ∈ D and assume that
there exists a Lyapunov function V for the ODE (6.3). Then, the following statements hold:

(i) If V̇(u) ≤ 0 for all u ∈ D then the zero steady state is stable.

(ii) If V̇(u) < 0 for all u ∈ D \ {0} then the zero steady state is asymptotically stable.

(iii) If V̇(u) ≤ −αV(u) and V(u) ≥ c‖u‖β for all u ∈ D, for some positive constants α, β, c > 0,
then the zero steady state is exponentially stable.

Proof. (i): Let ε > 0 be such that Bε(0) ⊂ D, where Bε(0) = {v ∈ Rn : ‖v‖ ≤ ε}. Moreover, let
γ > 0 be such that V(u) ≥ γ for ‖u‖ = ε and 0 < δ < ε be such that V(u) < γ for all ‖u‖ < δ. Then,
for solutions u corresponding to initial data ‖u0‖ < δ by (6.4) it follows that ϕ(t) = V(u(t)) satisfies
ϕ′(t) ≤ 0. We conclude that ϕ(t) ≤ ϕ(t0) < γ. Since V(u) ≥ γ if ‖u‖ = ε, it follows that ‖u(t)‖ < ε

as long as the solution exists. By Corollary 6.3 we conclude that the solution exists for all t ≥ t0
and ‖u(t)‖ < ε for all t ≥ t0 and we conclude that u∗ = 0 is stable.

(ii): Let u be a solution of (6.3) and ϕ(t) = V(u(t) as in (i). Then, the limit limt→∞ ϕ(t) = β < γ

exists (as ϕ is monotone and bounded), and 0 ≤ β ≤ ϕ(t) ≤ γ for t > t0. We aim to show that
β = 0.

Assume that β , 0, then the set A =
{
u ∈ Bε(0) : β ≤ V(u) ≤ γ

}
is a compact subset of Bε(0) \

{0} and since V̇ is continuous it attains a maximum on A. We conclude that max{V̇(u) : u ∈ A} =

−α < 0, for some α > 0. Since the positive orbit of the solution lies in A, it follows that ϕ′(t) ≤ −α
which is a contradiction.

This shows that ϕ(t) → 0 as t → ∞, which implies that u(t) → 0. Indeed, let 0 < ε̃ < ε then
the function V attains its minimum δ on the compact set {u ∈ Rn : ε̃ ≤ ‖u‖ ≤ ε}. Moreover, there
exists T > t0 such that ϕ(t) ≤ δ for all t ≥ T and therefore, ‖u(t)‖ ≤ ε̃ for all t ≥ T .

(iii): As before, let u be a solution of (6.3) and ϕ(t) = V(u(t). We observe that the hypotheses
imply that b‖u(t)‖β ≤ V(u(t)) = ϕ(t) and ϕ′(t) ≤ −αϕ(t). Gronwall’s lemma (Lemma 3.21) implies

that ϕ(t) ≤ ϕ(0)e−αt, and we conclude that ‖u(t)‖ ≤ ce−γt, where γ = α
β > 0 and c =

(
ϕ(0)

b

) 1
β . �

Using Lyapunov functions we can also derive an instability theorem.

Theorem 6.11. Let V : D → R be continuously differentiable, V(0) = 0 and V(uk) > 0 for a
sequence (uk)k∈N in D such that uk → 0 as k → ∞.

If V̇(u) > 0 for u ∈ D \ {0} or if V̇(u) ≥ λV(u) for all u ∈ D, for some λ > 0, then the zero
steady state of (6.3) is unstable. In particular, this holds if V(u) > 0 and V̇(u) > 0 for u ∈ D.

Proof. Let u be a solution of (6.3) with u(t0) = uk and ϕ(t) = V(u(t)). Then, ϕ(t0) = α > 0. We
consider the first case and choose ε > 0 such that V(u) < α for all u ∈ Bε(0). Since ϕ′(t) ≥ 0 we
conclude that α = ϕ(t0) ≤ ϕ(t). This implies that ‖u(t)‖ > ε. Let now Br(0), r > ε, be a closed
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ball contained in D. For ε ≤ ‖u‖ ≤ r we have V̇(u) ≥ β > 0, which implies that ϕ′ ≥ β as long
as u(t) ∈ Br(0). Hence, we conclude that ϕ(t) ≥ α + βt as long as u(t) ∈ Br(0). Since V attains a
maximum in Br(0), it is bounded in Br(0). Therefore, the solution u has to exit the ball Br(0) in
finite time.

In the second case we have ϕ′(t) ≥ λϕ(t). Gronwall’s lemma (Lemma 3.21) implies that ϕ(t) ≥
αeλt. Hence, as in the first case it follows that ‖u(t)‖ > r for large t. Since the sequence (uk)k∈N

converges to 0 as k → ∞, there exist solutions with arbitrarily small initial values that exist the
ball Br(0) in finite time. �

There is no general recipe to construct Lyapunov functions. In a concrete application, one can
only rely on known examples and intuition.

Example 6.12. • Nonlinear oscillations without friction

We consider the ODE
x′′(t) + h(x(t)) = 0,

where h : R → R is continuously differentiable, h(0) = 0, and xh(x) > 0 for x , 0..
The solution x describes the movement of a point mass with mass 1, where x = 0 is the
equilibrium configuration and −h(x) is the size of the restoring force. Setting u1 = x and
u2 = x′ we rewrite the ODE as first order system

u′1(t) = u2(t),

u′2(t) = −h(u1(t)).

We consider the energy function

E(u) = E(u1, u2) =
1
2

u2
2 + H(u1), H(u1) =

∫ u1

0
h(s)ds,

which is the sum of the kinetic energy, 1
2 u2

2, and potential energy, H(u1). We observe that

E(u) > 0 u , 0,

Ė(u) = u2h(u1) + (−h(u1))u2 = 0,

where the latter identity implies that the energy E is conserved. We note that E is a Lyapunov
function and that Theorem 6.10 implies that (u1, u2) = (0, 0) is stable.

• Nonlinear oscillations with friction

Including friction and considering a linear friction term µx′, for some µ > 0, we obtain

x′′(t) + µx′(t) + h(x(t)) = 0.

The ODE is equivalent to the first order system

u′1(t) = u2(t),

u′2(t) = −µu2(t) − h(u1(t)).

Hence, the energy function now satisfies

Ė(u) = −µu2
2.
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This shows that the energy is decreasing, as expected, and Theorem 6.10 implies that the
zero steady state (u1, u2) = (0, 0) is stable. We would even expect that it is asymptotically
stable, but cannot make this conclusion based on Theorem 6.10. To shows this requires
refined techniques.

6.4 Exercises

E6.1 Stability via a different approach

Consider the ODE system

u′(t) = v(t) − µu(t)(u2(t) + v2(t)),

v′(t) = −u(t) − µv(t)(u2(t) + v2(t)),

where µ = ±1.

(a) Determine the equilibrium of the ODE and explain why Theorem 5.9 cannot be applied to
study the stability.

(b) To investigate whether the equilibrium is stable or unstable consider the function

ϕ(t) = E(u(t), v(t)) = u2(t) + v2(t).

Distinguish the cases µ = 1 and µ = −1.

E6.2 Equilibria and limit cycles

We aim to investigate the qualitative behavior of the following ODE system

u′(t) = u(t) − v(t) − u(t)
√

u2(t) + v2(t),

v′(t) = u(t) + v(t) − v(t)
√

u2(t) + v2(t).
(6.5)

(a) Determine the steady states of system (6.5) and investigate whether they are stable, asymp-
totically stable or unstable.

(b) As in Problem 2 consider the function

ϕ(t) = E(u(t), v(t)) = u2(t) + v2(t)

and derive an ODE for ϕ. Determine the equilibria of this ODE, draw the phase portrait
and investigate the stability of the equilibria.

(c) Use (b) to sketch the phase portrait for system (6.5).

(d) If t0 = 0 and u(0) = u0, v(0) = v0 are given, does the corresponding solution exist for all
t ≥ 0? If (u0, v0) , (0, 0) what is the asymptotic behavior of the solution as t → ∞?
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Chapter 7

Applications

In this section we discuss and analyze two-dimensional ODE models applying the techniques and
theory developed in the previous chapters.

7.1 Predator-prey models

We first consider models that describe the dynamics of two interacting populations. In Chapter 1,
we already mentioned two simple models that are commonly used to describe the growth of single
species populations. Let u(t) denote the density of a population at time t ≥ 0. Then, a simple
model for its growth is the ODE

u′(t) = αu(t),

where α ∈ R is the growth rate of the population, which is assumed to be constant. The model
predicts exponential growth if α > 0 and exponential decay of the population if α < 0.

Exponential growth is observed in populations if resources are abundantly available, however,
this is often not the case. The growth rate of a population typically decreases as the population
size increases, since resources such as food and the available space become limited. This can be
taken into account by considering growth rates that depend on the population size. We recall that
a growth rate that decreases linearly in u leads to the ODE

u′(t) = αu(t) − βu2(t)

where we assume that α, β > 0. This ODE is called the logistic equation. In population dynamics,
it is also known as the Verhulst model, see Example 1.3.
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We now aim to describe the dynamics of two interacting species: a prey population with
density u(t) and a predator population with density v(t). We assume that for the prey population
food is abundantly available and preys only die when killed by a predator. If the number of preys
consumed by predators per unit time is proportional to uv, we obtain the ODE

u′(t) = α1u(t) − γ1u(t)v(t),

where α1 > 0 is the growth rate of the prey population and γ1 > 0 the attack rate. Furthermore, we
assume that the predator population decreases at a constant rate α2 > 0 if there are no preys and
it increases at a rate proportional to the number of consumed preys, i.e. to uv. These assumptions
lead to the ODE

v′(t) = −α2v(t) + γ2u(t)v(t),

where γ2 > 0. Hence, the resulting ODE system is

u′(t) = α1u(t) − γ1u(t)v(t),

v′(t) = −α2v(t) + γ2u(t)v(t),
(7.1)

and we assume that the initial values satisfy

u(0) = u0 ≥ 0, v(0) = v0 ≥ 0.

The model is known as the predator-prey model or the Lotka-Volterra model.
The Lotka-Volterra model is a nonlinear system of ODEs that cannot be solved explicitly.

However, we can study the qualitative behavior of solutions. Since the solutions describe popu-
lation densities, a first important property that the model should possess is that solutions remain
non-negative. To shorten notations we define f : R2 → R2 as the function on the right hand side
of (7.1),

f (u, v) =

(
α1u − γ1uv
−α2y + γ2uv

)
.

Proposition 7.1. For every u0 ≥ 0 and v0 ≥ 0 there exists a unique solution (u, v) of the Lotka-
Volterra model (7.1), and the solutions satisfy u(t) ≥ 0, v(t) ≥ 0 for all t ∈ Imax, where Imax is the
maximal interval of existence. In particular, if the initial data are strictly positive, the solutions
remain strictly positive for all t ∈ Imax.

Proof. The function f : R2 → R2 is continuously differentiable in R2, and therefore, by Corollary
3.17, there exists a unique local solution of the IVP.

If u0 = 0 and v0 > 0, then we obtain the solution u(t) = 0, v(t) = e−α2tv0 > 0, for all
t ≥ 0. On the other hand, if v0 = 0 and u0 > 0, we observe that the corresponding solution
is v(t) = 0, u(t) = u0eα1t > 0, for all t ≥ 0. Consequently, the positive u-axis and the positive
v-axis are trajectories of the ODE. The origin (0, 0) is a steady state and hence, a single point
trajectory. Since trajectories cannot intersect by Theorem 6.4, we conclude that every solution
(u, v) : Imax → R

2 emanating from a positive initial value u0 > 0, v0 > 0 satisfies u(t) > 0, v(t) > 0
for all t ∈ Imax. �

Next, we analyze equilibria and their stability. We observe that the origin (0, 0) and (u∗, v∗) =

(α2
γ2
, α1
γ1

) are the steady states of the ODE. Furthermore, the Jacobian matrix is

f ′(u, v) =

(
α1 − γ1v −γ1u
γ2v −α2 + γ2u

)
.
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Evaluating the matrix in the origin (0, 0) we obtain

f ′(0, 0) =

(
α1 0
0 −α2

)
,

and hence, there exists an eigenvalue with positive real part. We conclude that (0, 0) is an unstable
equilibrium by Theorem 5.9. Furthermore, in the positive steady state (u∗, v∗) = (α2

γ2
, α1
γ1

) we have

f ′(u∗, v∗) =

 0 −γ1
α2
γ2

γ2
α1
γ1

0

 ,
and hence, the eigenvalues of the matrix are purely imaginary. Therefore, Theorem 5.9 does not
allow us to draw a conclusion about the stability of the steady state (u∗, v∗).

We will show that all solutions in the positive quadrant are periodic.

Proposition 7.2. All trajectories of the ODE (7.1) in the positive quadrant, except for the steady
state of (u∗, v∗), are closed curves and hence, correspond to periodic solutions.

Proof. Assume that u0 > 0, v0 > 0, then the corresponding solutions are strictly positive. We
observe that

u′(t)
v′(t)

=

α1
v(t) − γ1

−
α2
u(t) + γ2

,

and consequently, (
α1

v(t)
− γ1

)
v′(t) =

(
−
α2

u(t)
+ γ2

)
u′(t).

Integrating the equation we observe that the trajectories are given by the curves E(u, v) = c, for
some c ∈ R, where

E(u, v) = α1 ln(v) − γ1v + α2 ln(u) − γ2u, u > 0, v > 0.

The equation E(u, v) = c is equivalent to

ψ1(u)ψ2(v) = ec, ψ1(u) =
uα2

eγ2u , ψ2(v) =
vα1

eγ1v ,

where u > 0, v > 0. The function ψ1 has one maximum in ū =
α2
γ2

, ψ2 has one maximum in v̄ =
α1
γ1

and ψi(0) = limz→∞ ψi(z) = 0, i = 1, 2. Hence, the product function ψ1ψ2 has a single maximum
which is attained in the steady state (u∗, v∗) =

(
α2
γ2
, α1
γ1

)
.

All other contour lines ψ1(u)ψ2(v) = ec, c ∈ R, are closed curves in the first quadrant around
the steady state (u∗, v∗). Since these curves do not contain equilibria, they correspond to trajectories
of periodic solutions, by Proposition 6.5. �

Remark. By Corollary 6.3 and Proposition 7.2 we conclude that all solutions emanating from
non-negative initial data exist for all times t ≥ 0.
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A number of these trajectories are plotted in the figure above. Each trajectory corresponds to
a periodic solution with some period T > 0. The dashed purple lines are the null-isoclines of u
(i.e. the curves along which u′ is zero) and the dashed turquoise lines the null-isoclines of v (i.e.
the curves along which v′ is zero). The equilibria correspond to intersections of dashed purple and
dashed turquoise lines.

Even though the solutions and their periods are unknown, we can compute the time averages
of the solutions over one period.

Proposition 7.3. Let (u, v) be a periodic solution of (7.1) of period T > 0. Then, the time averages
over one period are given by

ū =
1
T

∫ T

0
u(t) dt =

α2

γ2
, v̄ =

1
T

∫ T

0
v(t)dt =

α1

γ1
.

Proof. From the first ODE in (7.1) we conclude that u′(t)
u(t) = α1 − γ1v(t) and consequently,

1
T

∫ T

0

u′(t)
u(t)

dt =
1
T

∫ T

0
α1 − γ1v(t)dt = α1 − γ1v̄.

On the other hand, ∫ T

0

u′(t)
u(t)

dt = ln(u(T )) − ln(u(0)) = 0,

since u is periodic, i.e. u(0) = u(T ). This implies that v̄ =
α1
γ1

. In the same way, one can find the
value for ū. �

All solutions in the positive quadrant are periodic and circle around the positive equilibrium
(u∗, v∗). Moreover, the time averages ū, v̄ of the solutions over one period are independent of the
initial values and coincide with the coordinates of the steady state, ū = u∗, v̄ = v∗. The values of
the initial data determine the amplitudes of the solutions.
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Finally, we investigate the effect of harvesting on the predator-prey system assuming constant
death rates β1, β2 > 0 for both populations, e.g. through fishing, hunting, pollution or pesticides.
This leads to the modified model

u′(t) = (α1 − β1)u(t) − γ1u(t)v(t),

v′(t) = −(α2 + β2)v(t) + γ2u(t)v(t).
(7.2)

If α1 > β1, these additional terms do not modify the structure of the system, and only cause a
change of the parameter values. In fact, the positive equilibrium of system (7.2) is shifted to
(ũ∗, ṽ∗), where

ũ∗ =
α2 + β2

γ2
, ṽ∗ =

α1 − β1

γ1
.

Hence, harvesting leads to an increase of the prey population and a decrease of the predator pop-
ulation.

Volterra’s principle

The observation concerning harvesting has important consequences for applications, e.g. for in-
secticide treatment. Suppose that in a greenhouse there is a prey insect population u (e.g. aphids)
and a predator insect population v (e.g. ladybird beetles) that can be modeled by system (7.1). If
insecticide is sprayed causing a constant decay of both insect populations, the time averages of the
predator population decrease while the averages of the prey population increase, which is contrary
to the intention.

This remarkable effect is known as Volterra’s principle. Originally, Volterra proposed and
analyzed the model (7.1) to explain data about fish populations in the Mediterranean Sea that were
collected by the biologist D’Ancona during the First World War. In fact, it had been observed
that the percentage of predatory fishes showed a large increase compared to the population of prey
fishes. It seemed obvious that the reduced level of fishing during the war should be responsible.
However, it was unclear why this would affect the predators and preys in a different way. Volterra’s
explanation was that the decrease of fisheries favored the predator population, shifting the equi-
librium (ū∗, v̄∗) of the modified model (7.2) back to the equilibrium (u∗, v∗) of the original model
(7.1).

The Lotka-Volterra model has been criticized for too simplistic modeling assumptions and has
been further developed and improved in various directions. One way to improve the model is to
take internal competition into account and to model the growth of the populations by the logistic
equation. This leads to the modified system

u′(t) = α1u(t) − κ1u2(t) − γ1u(t)v(t),

v′(t) = −α2v(t) − κ2v2(t) + γ2u(t)v(t),
(7.3)

where κ1, κ2 > 0. These parameters cause some damping and change the qualitative behavior of
the model. In particular, if κ1 and κ2 are small compared to the other parameters, the solutions will
spiral around the positive equilibrium (u∗, v∗), given by u∗ = η(α1β2 + α2γ1), v∗ = η(α1γ2 − α2β1),
where η = 1

β1β2+γ1γ2
, and converge to it as t tends to infinity. Two trajectories of the ODE (7.3) and

the isoclines are shown in the figure below.
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7.2 Competition models

Next, we consider models for two interacting populations where the species compete for a shared
resource, e.g. a common nutrient. Let u(t) and v(t) denote the densities of the two populations
at time t ≥ 0. We assume that the growth of both species is described according to the Verhulst
model and the species compete with each other. For both species we assume that the growth rate
decreases as the population of the other species increases. This leads to the system

u′(t) = α1u(t) − β1u2(t) − γ1u(t)v(t),

v′(t) = α2v(t) − β2v2(t) − γ2u(t)v(t),
(7.4)

where α1, α2, β1, β2 > 0 are the parameters modeling the logistic growth of u and v and γ1, γ2 > 0
describe the competition among the species. We assume that the initial values satisfy

u(0) = u0 ≥ 0, v(0) = v0 ≥ 0.

Depending on the parameter values, the model (7.4) can predict coexistence of both species, or
survival of one species and extinction of the other one.

Proposition 7.4. For every u0 ≥ 0 and v0 ≥ 0 there exists a unique solution (u, v) of (7.4) with
u(0) = u0, v(0) = v0, and the solutions satisfy u(t) ≥ 0, v(t) ≥ 0 for all t ∈ Imax, where Imax is
the maximal interval of existence. Moreover, if the initial data are strictly positive, the solutions
remain strictly positive for all t ∈ Imax.

Proof. The proof is similar to the proof of Proposition 7.1. In particular, we can show that the
positive u-axis and the positive v-axis are covered by trajectories of the system (7.4) connecting
steady states. �

Coexistence of two species

We now assume that
α1

β1
<
α2

γ2
,

α2

β2
<
α1

γ1
, (7.5)
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and will show that these conditions imply the coexistence of the two species.
To study the qualitative behavior of solutions, we consider the null-isoclines for u and v, i.e.

the curves along which the derivatives u′ or v′ vanish,

G1 = {(u, v) ∈ R2 : α1 − β1u − γ1v = 0}, G2 = {(u, v) ∈ R2 : α2 − β2v − γ2u = 0}.

In fact, on G1 as well as along the v-axis, we have u′(t) = 0, and on G2 as well as along the u-axis,
we have v′(t) = 0. In the figure below, the null-isoclines for u are the dashed purple lines and the
null-isoclines for v are the turquoise dashed lines. The intersections of the purple and turquoise
lines are the equilibria of the competition model (7.4).

The null-isoclines for u and v divide the first quadrant into four regions:

S +,+ = {(u, v) ∈ R2 : u′ > 0, v′ > 0},

S +,− = {(u, v) ∈ R2 : u′ > 0, v′ < 0},

S −,+ = {(u, v) ∈ R2 : u′ < 0, v′ > 0},

S −,− = {(u, v) ∈ R2 : u′ < 0, v′ < 0}.

In S +,+, trajectories move in the upward right direction, in S +,−, in the downward right direction,
in S −,+, in the upward left direction and S −,−, trajectories move in the downward left direction.
This gives a rough indication how the phase portrait looks like.

We observe that there are four equilibria, (0, 0), (α1
β1
, 0), (0, α2

β2
) and one strictly positive equi-

librium (u∗, v∗). These are the intersections of the dashed red and dashed green lines. The positive
equilibrium (u∗, v∗) is the intersection of G1 and G2 and represents the coexistence of both species.
Using Theorem 5.9, we can analyze the stability of the steady states. Denoting by f the right hand
side of (7.4), the Jacobian matrix of f is

f ′(u, v) =

(
α1 − 2β1u − γ1v −γ1u

−γ2u α2 − 2β2v − γ2u

)
.

Computing the linearizations in the equilibria and corresponding eigenvalues we find that the ori-
gin (0, 0) and the equilibria (α1

β1
, 0) and (0, α2

β2
) are unstable, while the strictly positive equilibrium

(u∗, v∗) is asymptotically stable.
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Proposition 7.5. Let the condition (7.5) be satisfied. Then, all solutions of (7.4) with a strictly
positive initial value, u0 > 0, v0 > 0, exists for all times t ≥ 0 and converge to the coexistence
equilibrium (u∗, v∗) as t → ∞.

Proof. We only give a sketch of the proof. First, we assume that (u0, v0) ∈ S +,+, which implies that
the derivative (u + v)′ > 0. Consequently, the solution moves upwards right and it either tends to
(u∗, v∗) or it enters the region S +,− or S −,+. If (u0, v0) ∈ S −,−, then the solution moves downwards
left and the same statement holds. Hence, it remains to analyze the behavior of trajectories in S +,−

or S −,+.
In S −,+, we have (−u+v)′ > 0 and hence, solutions move upwards left. Moreover, they remain

in S −,+ for all times. Indeed, solutions cannot hit the u-axis as v′ > 0 in this region. Moreover,
assume that the solution hits a point on G1 at time t1, then u′(t1) = 0 and v′(t1) > 0. This implies
that the solution intersects G1 vertically, which is impossible when coming from S −,+. In a similar
way, one can show that solutions coming from S +,− cannot hit the line G2 and remain in S +,− for
all times.

We can conclude that the solutions are bounded, exist for all times and converge to the coex-
istence equilibrium (u∗, v∗) as t → ∞. �

In the figure below, several trajectories for the model (7.4) with parameters satisfying (7.5) are
plotted that illustrate the qualitative behavior of solutions.

Extinction of one species

We again consider the competition model (7.4), but now assume that

α1

β1
>
α2

γ2
,

α2

β2
>
α1

γ1
. (7.6)

As before, we have the four equilibria (0, 0), (α1
β1
, 0), (0, α2

β2
) and the coexistence equilibrium

(u∗, v∗). However, assuming (7.6) their stability properties are different compared to the case
(7.5). In fact, the origin (0, 0) is an unstable node, the strictly positive equilibrium (u∗, v∗) is a
saddle (i.e. unstable) and the extinction equilibria (α1

β1
, 0) and (0, α2

β2
) are asymptotically stable.

This can be shown by Theorem 5.9 and determining the linearization in each equilibrium.
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Similarly as in the coexistence case we can divide the positive quadrant into four regions S̃ ±,±.
Then, one can show that all solutions starting from an initial value (u0, v0) with u0 > 0, v0 > 0
converge to one of the asymptotically stable equilibria as t → ∞, except for those solutions that
lie on the trajectory connecting the origin with (u∗, v∗) or the saddle point (u∗, v∗) with infinity.
This means, for almost all initial conditions u0 > 0, v0 > 0 one of the two species will eventually
become extinct while the other one survives. The nullclines for u and v, the equilibria and several
trajectories of the model with parameters satisfying (7.6) are shown in the figure below.

7.3 Exercises

E7.1 Lotka-Volterra model

Consider the modified Lotka-Volterra model (7.3) with the parameter values α1 = α2 = γ1 =

γ2 = 1 and κ2 = 0. This is a modification of the classical Lotka-Volterra model assuming that
the growth of the prey population is described according to the Verhulst model. We aim to study
the behavior of the model depending on the value of the parameter κ1 > 0.

(a) Determine the equilibria of the model and their stability, distinguishing the cases κ1 ∈

(0, 1) and κ1 > 1.

(b) Draw the null-isoclines for u and v and determine the regions S ±,± (as done in Section 7.2
in the lecture notes).

(c) Sketch qualitatively several trajectories of the ODE.

Remark: One can show that the predator population v will eventually become extinct if κ1 > 1.
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