Affine algebraic geometry

Stefan Maubach

April 2010

How this talk is organised:

- What is affine algebraic geometry?
- ▶ What are its big problems?
- ▶ → Polynomial automorphism group
- ▶ → → over finite fields

Subfield of Algebraic Geometry (duh!).

Subfield of Algebraic Geometry (duh!).

Typical objects:

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$

 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$

Subfield of Algebraic Geometry (duh!).

Typical objects:

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$

 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$

Geometrically sometimes "more difficult" than projective geometry (affine spaces are rarely compact).

Algebraically, more simple! (There's always a ring.)

Subfield of Algebraic Geometry (duh!).

Typical objects:

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$

 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$

Geometrically sometimes "more difficult" than projective geometry (affine spaces are rarely compact).

Algebraically, more simple! (There's always a *ring*.) Subtopic - but of *fundamental importance* to the whole of

Algebraic geometry.

Subfield of Algebraic Geometry (duh!).

Typical objects:

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$

 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$

Geometrically sometimes "more difficult" than projective geometry (affine spaces are rarely compact).

Algebraically, more simple! (There's always a ring.)

Subtopic - but of *fundamental importance* to the whole of Algebraic geometry.

We do all kinds of advanced things with algebraic geometry, but still we don't understand affine n-space k^n !

A Very Brief History

```
"Originally": geometry and algebra different things. Zariski \longrightarrow Grothendieck \longrightarrow etc.: algebraic geometry. +- 1970: What if we apply algebraic geometry to the original simple objects, like \mathbb{C}^n, or \mathbb{C}[X_1, X_2, \ldots, X_n]? ("Birth" of the field and many of its current questions.) Since then: steady growth of the field. (2000: separate AMS classification.)
```

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$

 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$

Objects, hence morphisms!

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$

 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$

Objects, hence morphisms!

$$F \cdot k^n \longrightarrow k^n$$

polynomial map if $F = (F_1, \dots, F_n), F_i \in k[X_1, \dots, X_n].$

Example: $F = (X + Y^2, Y)$ is polynomial map $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$.

$$k^n \leftrightarrow k[X_1, \dots, X_n]$$

 $V \leftrightarrow \mathcal{O}(V) := k[X_1, \dots, X_n]/I(V)$

Objects, hence morphisms!

$$F: k^n \longrightarrow k^n$$

polynomial map if $F = (F_1, ..., F_n)$, $F_i \in k[X_1, ..., X_n]$. Example: $F = (X + Y^2, Y)$ is polynomial map $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$. Set of polynomial automorphisms of k^n : $Aut_n(k)$, also denoted by $GA_n(k)$ - similarly to $GL_n(k)$!

A topic is defined by its problems.

algebra"...)

Many problems in AAG: inspired by linear algebra!
(In some sense: AAG most "natural generalization of linear

```
\operatorname{char}(k) = 0
L \text{ linear map;}
L \in \operatorname{GL}_n(k) \text{ invertible } \iff \operatorname{det}(L) = \operatorname{det}(\operatorname{Jac}(L)) \in k^*
```

```
\begin{aligned} \operatorname{char}(k) &= 0 \\ L \text{ linear map;} \\ L &\in \operatorname{GL}_n(k) \text{ invertible} &\iff \operatorname{det}(L) &= \operatorname{det}(\operatorname{Jac}(L)) \in k^* \\ F &\in \operatorname{GA}_n(k) \text{ invertible} &?? &\operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{aligned}
```

```
\begin{aligned} \mathsf{char}(k) &= 0 \\ L \text{ linear map;} \\ L &\in \mathsf{GL}_n(k) \text{ invertible} &\iff \det(L) &= \det(\mathsf{Jac}(L)) \in k^* \\ F &\in \mathsf{GA}_n(k) \text{ invertible} &?? &\det(\mathsf{Jac}(F)) \in k^* \end{aligned}
```

$$G \circ F = (X_1, \ldots, X_n).$$

```
\begin{aligned} \mathsf{char}(k) &= 0 \\ L \text{ linear map;} \\ L &\in \mathsf{GL}_n(k) \text{ invertible} &\iff \det(L) &= \det(\mathsf{Jac}(L)) \in k^* \\ F &\in \mathsf{GA}_n(k) \text{ invertible} &?? &\det(\mathsf{Jac}(F)) \in k^* \end{aligned}
```

$$\operatorname{Jac}(G \circ F) = \operatorname{Jac}(X_1, \dots, X_n).$$

```
\begin{array}{lll} \operatorname{char}(k) = 0 \\ L \text{ linear map;} \\ L \in \operatorname{GL}_n(k) \text{ invertible} & \iff & \det(L) = & \det(\operatorname{Jac}(L)) \in k^* \\ F \in \operatorname{GA}_n(k) \text{ invertible} & ?? & \det(\operatorname{Jac}(F)) \in k^* \end{array}
```

$$\operatorname{Jac}(G \circ F) = I.$$

```
\begin{aligned} \mathsf{char}(k) &= 0 \\ L \text{ linear map;} \\ L &\in \mathsf{GL}_n(k) \text{ invertible} &\iff \det(L) &= \det(\mathsf{Jac}(L)) \in k^* \\ F &\in \mathsf{GA}_n(k) \text{ invertible} &?? &\det(\mathsf{Jac}(F)) \in k^* \end{aligned}
```

$$\operatorname{Jac}(F) \cdot (\operatorname{Jac}(G) \circ F) = I.$$

```
\begin{aligned} \mathsf{char}(k) &= 0 \\ L \text{ linear map;} \\ L &\in \mathsf{GL}_n(k) \text{ invertible} &\iff \det(L) &= \det(\mathsf{Jac}(L)) \in k^* \\ F &\in \mathsf{GA}_n(k) \text{ invertible} &?? &\det(\mathsf{Jac}(F)) \in k^* \end{aligned}
```

$$\det(\operatorname{Jac}(F)) \cdot \det(\operatorname{Jac}(G) \circ F) = \det I = 1.$$

```
\begin{aligned} \operatorname{char}(k) &= 0 \\ L \text{ linear map;} \\ L &\in \operatorname{GL}_n(k) \text{ invertible} &\iff \operatorname{det}(L) &= \operatorname{det}(\operatorname{Jac}(L)) \in k^* \\ F &\in \operatorname{GA}_n(k) \text{ invertible} &?? &\operatorname{det}(\operatorname{Jac}(F)) \in k^* \end{aligned}
```

$$det(Jac(F)) \cdot det(blabla) = det I = 1.$$

```
\begin{aligned} \mathsf{char}(k) &= 0 \\ L \text{ linear map;} \\ L &\in \mathsf{GL}_n(k) \text{ invertible} &\iff \det(L) &= \det(\mathsf{Jac}(L)) \in k^* \\ F &\in \mathsf{GA}_n(k) \text{ invertible} &?? &\det(\mathsf{Jac}(F)) \in k^* \end{aligned}
```

$$\det(\operatorname{Jac}(F)) \in k[X_1, \dots, X_n]^* = k^*.$$

```
\begin{array}{lll} \operatorname{char}(k) = 0 \\ L \text{ linear map;} \\ L \in \operatorname{GL}_n(k) \text{ invertible} & \Longleftrightarrow & \det(L) = & \det(\operatorname{Jac}(L)) \in k^* \\ F \in \operatorname{GA}_n(k) \text{ invertible} & \Longleftrightarrow & \det(\operatorname{Jac}(F)) \in k^* \end{array}
```

$$\det(\operatorname{Jac}(F)) \in k[X_1, \dots, X_n]^* = k^*.$$

```
\begin{array}{lll} \operatorname{char}(k) = 0 \\ L \text{ linear map;} \\ L \in \operatorname{GL}_n(k) \text{ invertible} & \Longleftrightarrow & \det(L) = & \det(\operatorname{Jac}(L)) \in k^* \\ F \in \operatorname{GA}_n(k) \text{ invertible} & \Longleftrightarrow & \det(\operatorname{Jac}(F)) \in k^* \end{array}
```

Jacobian Conjecture:

$$F \in \mathsf{GA}_n(k)$$
 invertible $\Longrightarrow \det(\mathsf{Jac}(F)) \in k^*$

"Visual" version of Jacobian Conjecture

Volume-preserving polynomial maps are invertible.

Figure: Image of raster under $(X + \frac{1}{2}Y^2, Y + \frac{1}{6}(X + \frac{1}{2}Y^2)^2)$.

Jacobian Conjecture very particular for polynomials:

$$F:(x,y)\longrightarrow (e^x,ye^{-x})$$

$$\operatorname{Jac}(F) = \begin{pmatrix} e^{x} & 0 \\ -ye^{-x} & e^{-x} \end{pmatrix}$$

det(Jac(F)) = 1

```
L linear map;
```

$$L \in \mathsf{GL}_n(k)$$
 invertible \iff $\det(L) = \det(\mathsf{Jac}(L)) \in k^*$
 $F \in \mathsf{GA}_n(k)$ invertible \Rightarrow $\det(\mathsf{Jac}(F)) \in k^*$

Jac(F) = 1 but F(0) = F(1) = 0.

L linear map;

$$L \in \operatorname{GL}_n(k)$$
 invertible \iff $\det(L) = \det(\operatorname{Jac}(L)) \in k^*$
 $F \in \operatorname{GA}_n(k)$ invertible \Rightarrow $\det(\operatorname{Jac}(F)) \in k^*$

$$F: k^1 \longrightarrow k^1$$
$$X \longrightarrow X - X^p$$

$$Jac(F) = 1$$
 but $F(0) = F(1) = 0$.
Jacobian Conjecture in char $(k) = p$: Suppose $det(Jac(F)) = 1$ and $p \not | [k(X_1, ..., X_n) : k(F_1, ..., F_n)]$. Then F is an automorphism.

$$\begin{aligned} \mathsf{char}(k) &= 0: \\ F &= (X + a_1 X^2 + a_2 X Y + a_3 Y^2, Y + b_1 X^2 + b_2 X Y + b_3 Y^2) \\ 1 &= & \det(Jac(F)) \\ &= & 1 + \\ & & (2a_1 + b_2) X + \\ & & (a_2 + 2b_3) Y + \\ & & (2a_1b_2 + 2a_2b_1) X^2 + \\ & & (2b_2a_2 + 4a_1b_3 + 4a_3b_1) X Y + \\ & & (2a_2b_3 + 2a_3b_2) Y^2 \end{aligned}$$

In char(k)=2 : (parts of) equations vanish. **Question:** What are the right equations in char(k) = 2? (or p?)

Enough about the Jacobian Problem! Another problem:

Cancellation problem

Cancellation problem: introduction

V,W vector spaces, if $V \times k \cong W \times k$ then $V \cong W$. V vector space, then $V \times k \cong k^{n+1}$ implies $V \cong k^n$.

Cancellation problem: introduction

V,W vector spaces, if $V \times k \cong W \times k$ then $V \cong W$. V vector space, then $V \times k \cong k^{n+1}$ implies $V \cong k^n$.

V, W varieties, if $V \times k \cong W \times k$ then $V \cong W$?

Cancellation problem: introduction

V,W vector spaces, if $V \times k \cong W \times k$ then $V \cong W$. V vector space, then $V \times k \cong k^{n+1}$ implies $V \cong k^n$.

V, W varieties, if $V \times k \cong W \times k$ then $V \cong W$?

Cancellation problem: V variety. $V \times k \cong k^{n+1}$, is $V \cong k^n$?

Cancellation $V \times k \cong W \times k$ counterexamples

1972(?): Hoechster: over $\mathbb R$

Cancellation $V \times k \cong W \times k$

counterexamples

```
1972(?): Hoechster: over \mathbb R 1986(?): Danielewski: V: xz+y^2+1=0, W: x^2z+y^2+1 (over \mathbb C) (Not a UFD)
```

Cancellation $V \times k \cong W \times k$

counterexamples

```
1972(?): Hoechster: over \mathbb{R}
1986(?): Danielewski: V: xz+y^2+1=0, W: x^2z+y^2+1
(over \mathbb{C})
(Not a UFD)
2008: Finston & M.: "Best" counterexamples so far (UFD, over \mathbb{C}, lowest possible dimension):
```

$$V_{n,m} := \{(x, y, z, u, v) \mid x^2 + y^3 + z^7 = 0, x^m u - y^n v - 1 = 0\}$$

Cancellation $V \times k \cong W \times k$

counterexamples

```
1972(?): Hoechster: over \mathbb{R}
1986(?): Danielewski: V: xz+y^2+1=0, W: x^2z+y^2+1
(over \mathbb{C})
(Not a UFD)
2008: Finston & M.: "Best" counterexamples so far (UFD,
```

$$V_{n,m} := \{(x, y, z, u, v) \mid x^2 + y^3 + z^7 = 0, x^m u - y^n v - 1 = 0\}$$

Still looking for an example where $V = k^n$!

over \mathbb{C} , lowest possible dimension):

A map $F: k^n \longrightarrow k^n$ given by n polynomials:

$$F = (F_1(X_1, ..., X_n), ..., F_n(X_1, ..., X_n)).$$

A map $F: k^n \longrightarrow k^n$ given by n polynomials:

$$F = (F_1(X_1, \ldots, X_n), \ldots, F_n(X_1, \ldots, X_n)).$$

Example: $F = (X + Y^2, Y)$.

A map $F: k^n \longrightarrow k^n$ given by n polynomials:

$$F = (F_1(X_1, \ldots, X_n), \ldots, F_n(X_1, \ldots, X_n)).$$

Example: $F = (X + Y^2, Y)$.

Various ways of looking at polynomial maps:

A map $F: k^n \longrightarrow k^n$ given by n polynomials:

$$F = (F_1(X_1, \ldots, X_n), \ldots, F_n(X_1, \ldots, X_n)).$$

Example: $F = (X + Y^2, Y)$.

Various ways of looking at polynomial maps:

ightharpoonup A map $k^n \longrightarrow k^n$.

A map $F: k^n \longrightarrow k^n$ given by n polynomials:

$$F = (F_1(X_1, ..., X_n), ..., F_n(X_1, ..., X_n)).$$

Example: $F = (X + Y^2, Y)$.

Various ways of looking at polynomial maps:

- $A map <math>k^n \longrightarrow k^n.$
- ▶ A list of *n* polynomials: $F \in (k[X_1, ..., X_n])^n$.

A map $F: k^n \longrightarrow k^n$ given by n polynomials:

$$F = (F_1(X_1, ..., X_n), ..., F_n(X_1, ..., X_n)).$$

Example: $F = (X + Y^2, Y)$.

Various ways of looking at polynomial maps:

- ightharpoonup A map $k^n \longrightarrow k^n$.
- ▶ A list of *n* polynomials: $F \in (k[X_1, ..., X_n])^n$.
- A ring automorphism of $k[X_1, ..., X_n]$ sending $g(X_1, ..., X_n)$ to $g(F_1, ..., F_n)$.

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that $F(G) = (X_1, \dots, X_n)$.

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that $F(G) = (X_1, ..., X_n)$. Example: $(X + Y^2, Y)$ has inverse $(X - Y^2, Y)$.

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that $F(G) = (X_1, \ldots, X_n)$. Example: $(X + Y^2, Y)$ has inverse $(X - Y^2, Y)$.

$$(X + Y^2, Y) \circ (X - Y^2, Y) = ([X - Y^2] + [Y]^2, [Y])$$

= $(X - Y^2 + Y^2, Y)$
= (X, Y) .

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that $F(G) = (X_1, \ldots, X_n)$. Example: $(X + Y^2, Y)$ has inverse $(X - Y^2, Y)$.

$$(X + Y^2, Y) \circ (X - Y^2, Y) = ([X - Y^2] + [Y]^2, [Y])$$

= $(X - Y^2 + Y^2, Y)$
= (X, Y) .

 $(X^p, Y) : \mathbb{F}_p^2 \longrightarrow \mathbb{F}_p^2$ is not a polynomial automorphism, even though it induces a bijection of \mathbb{F}_p !

A polynomial map F is a polynomial automorphism if there is a polynomial map G such that $F(G) = (X_1, \ldots, X_n)$. Example: $(X + Y^2, Y)$ has inverse $(X - Y^2, Y)$.

$$(X + Y^2, Y) \circ (X - Y^2, Y) = ([X - Y^2] + [Y]^2, [Y])$$

= $(X - Y^2 + Y^2, Y)$
= (X, Y) .

 $(X^p,Y):\mathbb{F}_p^2\longrightarrow\mathbb{F}_p^2$ is not a polynomial automorphism, even though it induces a bijection of \mathbb{F}_p ! $(X^3,Y):\mathbb{R}^2\longrightarrow\mathbb{R}^2$ is not a polynomial automorphism, even though it induces a bijection of \mathbb{R} !

Remark: If k is algebraically closed, then a polynomial endomorphism $k^n \longrightarrow k^n$ which is a bijection, is an invertible polynomial map.

 $(X^p,Y): \mathbb{F}_p^2 \longrightarrow \mathbb{F}_p^2$ is not a polynomial automorphism, even though it induces a bijection of \mathbb{F}_p ! $(X^3,Y): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is not a polynomial automorphism, even though it induces a bijection of \mathbb{R} !

(This whole talk: $n \ge 2$) $GL_n(k)$ is generated by

(This whole talk: $n \ge 2$) $GL_n(k)$ is generated by

▶ Permutations $X_1 \longleftrightarrow X_i$

(This whole talk: $n \ge 2$)

 $GL_n(k)$ is generated by

- ▶ Permutations $X_1 \longleftrightarrow X_i$
- ▶ Map $(aX_1 + bX_i, X_2, ..., X_n)$ $(a \in k^*, b \in k)$

(This whole talk: $n \ge 2$)

 $GL_n(k)$ is generated by

- ▶ Permutations $X_1 \longleftrightarrow X_i$
- ▶ Map $(aX_1 + bX_i, X_2, ..., X_n)$ $(a \in k^*, b \in k)$

 $GA_n(k)$ is generated by ???

Elementary map: $(X_1 + f(X_2, ..., X_n), X_2, ..., X_n),$

invertible with inverse

$$(X_1-f(X_2,\ldots,X_n),X_2,\ldots,X_n).$$

$$(X_1-f(X_2,\ldots,X_n),X_2,\ldots,X_n).$$

Triangular map:
$$(X + f(Y, Z), Y + g(Z), Z + c)$$

$$= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z)$$

$$(X_1 - f(X_2, \dots, X_n), X_2, \dots, X_n).$$
Triangular man: $(X + f(Y, Z), Y + g(Z), Z + c)$

Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

$$= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z)$$

$$J_n(k) := \text{set of triangular maps}.$$

$$(X_1-f(X_2,\ldots,X_n),X_2,\ldots,X_n).$$

Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

$$= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z)$$

$$J_n(k) := \text{set of triangular maps}.$$

 $Aff_n(k)$:= set of compositions of invertible linear maps and translations.

$$(X_1-f(X_2,\ldots,X_n),X_2,\ldots,X_n).$$

Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

$$= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z)$$

$$J_n(k) := \text{set of triangular maps}.$$

 $Aff_n(k)$:= set of compositions of invertible linear maps and translations.

$$TA_n(k) := \langle J_n(k), Aff_n(k) \rangle$$

In dimension 1: we understand the automorphism group. (They are linear.)

In dimension 1: we understand the automorphism group. (They are linear.) $\label{eq:total_condition}$

In dimension 2: famous Jung-van der Kulk-theorem:

$$\mathsf{GA}_2(\mathbb{K}) = \mathsf{TA}_2(\mathbb{K}) = \mathit{Aff}_2(\mathbb{K}) \not\models \mathsf{J}_2(\mathbb{K})$$

Jung-van der Kulk is the reason that we can do a lot in dimension 2!

What about dimension 3?

What about dimension 3? Stupid idea: everything will be	
tame?	

1972: Nagata: "I cannot tame the following map:"

$$N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z)$$
 where $\Delta = XZ + Y^2$.

1972: Nagata: "I cannot tame the following map:" $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z) \text{ where } \Delta = XZ + Y^2.$

Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map.

1972: Nagata: "I cannot tame the following map:" $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z) \text{ where } \Delta = XZ + Y^2.$

Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!!

IV IS HOL Lame!

1972: Nagata: "I cannot tame the following map:" $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z) \text{ where } \Delta = XZ + Y^2.$

Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!!

(Difficult and technical proof.) (2007 AMS Moore paper award.)

1972: Nagata: "I cannot tame the following map:" $N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z) \text{ where } \Delta = XZ + Y^2.$

Nagata's map is the historically most important map for polynomial automorphisms. It is a very elegant but complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!! ...in characteristic ZERO...

(Difficult and technical proof.) (2007 AMS Moore paper award.)

AMS E.H. Moore Research Article Prize

Ivan Shestakov

(center) and Ualbai Umirbaev (right) with Jim Arthur.

How did Nagata make Nagata's map?

Study maps over $k[z, z^{-1}]$:

How did Nagata make Nagata's map? Study maps over $k[z, z^{-1}]$:

$$(X, Y + z^2X)$$

How did Nagata make Nagata's map? Study maps over $k[z, z^{-1}]$:

$$(X-z^{-1}Y^2,Y)(X,Y+z^2X)(X+z^{-1}Y^2,Y)$$

How did Nagata make Nagata's map? Study maps over $k[z, z^{-1}]$:

$$(X - z^{-1}Y^2, Y)(X, Y + z^2X)(X + z^{-1}Y^2, Y)$$

= $(X - 2(Xz + Y^2)Y - (Xz + Y^2)^2z, Y + (Xz + Y^2)z)$

How did Nagata make Nagata's map? Study maps over $k[z, z^{-1}]$:

$$(X - z^{-1}Y^2, Y)(X, Y + z^2X)(X + z^{-1}Y^2, Y)$$

= $(X - 2(Xz + Y^2)Y - (Xz + Y^2)^2z, Y + (Xz + Y^2)z)$

Thus: N is tame over $k[z, z^{-1}]$, i.e. N in $TA_2(k[z, z^{-1}])$.

How did Nagata make Nagata's map? Study maps over $k[z, z^{-1}]$:

$$(X - z^{-1}Y^2, Y)(X, Y + z^2X)(X + z^{-1}Y^2, Y)$$

= $(X - 2(Xz + Y^2)Y - (Xz + Y^2)^2z, Y + (Xz + Y^2)z)$

Thus: N is tame over $k[z, z^{-1}]$, i.e. N in $TA_2(k[z, z^{-1}])$. Nagata proved: N is NOT tame over k[z], i.e. N not in $TA_2(k[z])$.

Stably tameness

N tame in one dimension higher:

$$N := (X - 2Y\Delta - Z\Delta^2, Y + Z\Delta, Z, W)$$
 where $\Delta = XZ + Y^2$.

Stably tameness

N tame in one dimension higher:

$$N:=(X-2Y\Delta-Z\Delta^2,Y+Z\Delta,Z,W)$$
 where $\Delta=XZ+Y^2$.
$$(X+2YW-ZW^2,Y-ZW,Z,W)\circ (X,Y,Z,W-\frac{1}{2}\Delta)\circ (X-2YW-ZW^2,Y+ZW,Z,W)\circ (X,Y,Z,W+\frac{1}{2}\Delta)=N$$

```
(By T.T. Moh - called it Tame Transformation Method, or TTM...)
```

```
(By T.T. Moh - called it Tame Transformation Method, or TTM...)
```

Public key.

(By T.T. Moh - called it Tame Transformation Method, or TTM...)

 $(complicated map) \leftarrow Public key.$

```
(By T.T. Moh - called it Tame Transformation Method, or TTM...)
```

Secret key: decomposition

 $(complicated map) \leftarrow Public key.$

```
(By T.T. Moh - called it Tame Transformation Method, or TTM...)

Secret key: decomposition
(elementary) \times (affine) \times (elementary) \times ... \times (elementary)

= (complicated map) \leftarrow Public key.
```

```
(By T.T. Moh - called it Tame Transformation Method, or TTM...)

Secret key: decomposition (elementary) \times (affine) \times (elementary) \times ... \times (elementary) = (complicated map) \leftarrow Public key.

Nice idea - basic idea still uncracked, but: a lot of attacks on
```

implementations (Goubin, Courtois, etc.)

```
(By T.T. Moh - called it Tame Transformation Method, or
TTM...)
Secret key: decomposition
(elementary) \times (affine) \times (elementary) \times ... \times (elementary)
= (complicated map) \leftarrow Public key.
Nice idea - basic idea still uncracked, but: a lot of attacks on
implementations (Goubin, Courtois, etc.)
(End intermezzo 1.)
```

The "characteristic p case" has been neglected mostly - up until recently!

The "characteristic p case" has been neglected mostly - up until recently!

What are reasons to study especially \mathbb{F}_q ?

 Reduction-mod-p techniques (recent work of Belov-Kontsevich).

The "characteristic p case" has been neglected mostly - up until recently!

- Reduction-mod-p techniques (recent work of Belov-Kontsevich).
- Many new connections: finite Group Theory, Number Theory!

The "characteristic p case" has been neglected mostly - up until recently!

- Reduction-mod-p techniques (recent work of Belov-Kontsevich).
- Many new connections: finite Group Theory, Number Theory!
- ► Almost virgin research subject! (Brainstorming 30 minutes new accessible problem!)

The "characteristic p case" has been neglected mostly - up until recently!

- Reduction-mod-p techniques (recent work of Belov-Kontsevich).
- Many new connections: finite Group Theory, Number Theory!
- ► Almost virgin research subject! (Brainstorming 30 minutes new accessible problem!)
- Applications? (Cryptography)

The "characteristic p case" has been neglected mostly - up until recently!

- Reduction-mod-p techniques (recent work of Belov-Kontsevich).
- Many new connections: finite Group Theory, Number Theory!
- ► Almost virgin research subject! (Brainstorming 30 minutes new accessible problem!)
- Applications? (Cryptography)
- Quite accessible for students.

What about $TA_n(k) \subseteq GA_n(k)$ if $k = \mathbb{F}_q$ is a finite field?

What about $TA_n(k) \subseteq GA_n(k)$ if $k = \mathbb{F}_q$ is a finite field? Denote $Bij_n(\mathbb{F}_q)$ as set of bijections on \mathbb{F}_q^n . We have a natural

Denote $\mathrm{Bij}_n(\mathbb{F}_q)$ as set of bijections on \mathbb{F}_q^n . We have a natural

map $\mathsf{GA}_n(\mathbb{F}_q) \stackrel{\pi_q}{\longrightarrow} \mathsf{Bij}_n(\mathbb{F}_q).$

What about $TA_n(k) \subseteq GA_n(k)$ if $k = \mathbb{F}_q$ is a finite field? Denote $Bij_n(\mathbb{F}_q)$ as set of bijections on \mathbb{F}_q^n . We have a natural

map $GA_n(\mathbb{F}_q) \xrightarrow{\pi_q} Bij_n(\mathbb{F}_q).$ What is $\pi_*(GA_*(\mathbb{F}_*))$? Can we make every bijection on \mathbb{F}^n as

What is $\pi_q(GA_n(\mathbb{F}_q))$? Can we make every bijection on \mathbb{F}_q^n as an *invertible* polynomial map?

What about $TA_n(k) \subseteq GA_n(k)$ if $k = \mathbb{F}_q$ is a finite field? Denote $Bij_n(\mathbb{F}_q)$ as set of bijections on \mathbb{F}_q^n . We have a natural map

 $GA_n(\mathbb{F}_q) \xrightarrow{\pi_q} Bij_n(\mathbb{F}_q).$ What is $\pi_q(GA_n(\mathbb{F}_q))$? Can we make every bijection on \mathbb{F}_q^n as an *invertible* polynomial map?

Simpler question: what is $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))$?

Why simpler? Because we have a set of generators!

Question: what is $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))$?

See $\operatorname{Bij}_n(\mathbb{F}_q)$ as $\operatorname{Sym}(q^n)$.

Question: what is $\pi_a(\mathsf{TA}_n(\mathbb{F}_a))$?

See Bij_n(\mathbb{F}_q) as Sym(q^n).

 $\mathsf{TA}_n(\mathbb{F}_q) = \langle \mathsf{GL}_n(\mathbb{F}_q), \sigma_f \rangle$ where f runs over $\mathbb{F}_q[X_2, \dots, X_n]$

and $\sigma_f := (X_1 + f, X_2, \dots, X_n).$

Question: what is $\pi_a(\mathsf{TA}_n(\mathbb{F}_a))$?

See Bij_n(\mathbb{F}_a) as Sym(q^n).

 $\mathsf{TA}_n(\mathbb{F}_q) = \langle \mathsf{GL}_n(\mathbb{F}_q), \sigma_f \rangle$ where f runs over $\mathbb{F}_q[X_2, \dots, X_n]$ and $\sigma_f := (X_1 + f, X_2, \dots, X_n).$

We make finite subset $S \subset \mathbb{F}_q[X_2,\ldots,X_n]$ and define

We make finite subset
$$\mathcal{S} \subset \mathbb{F}_q[X_2,\ldots,X_n]$$
 and defin

$$\mathcal{G}:=<\mathsf{GL}_n(\mathbb{F}_q),\sigma_f\;;\;f\in\mathcal{S}>$$

such that

$$\pi_q(\mathsf{TA}_n(\mathbb{F}_q)) = \pi_q(\mathcal{G}).$$

Question: what is
$$\pi_q(I_n(\mathbb{F}_q))$$
?

(1)
$$\pi_q(T_n(\mathbb{F}_q)) = \pi_q(\mathcal{G})$$
 is 2-transitive, hence primitive.

(1) $\pi_q(T_n(\mathbb{F}_q)) = \pi_q(\mathcal{G})$ is 2-transitive, hence primitive.

You might know: if H < Sym(m) is primitive + a 2-cycle then

 $H = \operatorname{Sym}(m)$.

(1) $\pi_a(T_n(\mathbb{F}_a)) = \pi_a(\mathcal{G})$ is 2-transitive, hence primitive.

You might know: if $H < \operatorname{Sym}(m)$ is primitive + a 2-cycle then

 $H = \operatorname{Sym}(m)$.

If q = 2 or q odd, then indeed we find a 2-cycle!

(1) $\pi_a(T_n(\mathbb{F}_a)) = \pi_a(\mathcal{G})$ is 2-transitive, hence primitive.

You might know: if H < Sym(m) is primitive + a 2-cycle then

 $H = \operatorname{Sym}(m)$.

If q = 2 or q odd, then indeed we find a 2-cycle!

Hence if q=2 or q= odd, then $\pi_q(\mathcal{T}_n(\mathbb{F}_q))=\operatorname{Sym}(q^n).$

Answer: if q=2 or q= odd, then $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))=\mathsf{Sym}(q^n)$.

Answer: if q=2 or q= odd, then $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))=\mathsf{Sym}(q^n).$

If $q = 4, 8, 16, \ldots$ we don't succeed to find a 2-cycle.

Answer: if q=2 or q= odd, then $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))=\mathsf{Sym}(q^n)$.

If $q=4,8,16,\ldots$ we don't succeed to find a 2-cycle. In factall generators of $\mathsf{TA}_n(\mathbb{F}_q)$ turn out to be even, i.e.

 $\pi_q(\mathsf{TA}_n(\mathbb{F}_q)) \subseteq \mathsf{Alt}(q^n)!$ But: there's another theorem:

But: there's another theorem:

Theorem: $H < \operatorname{Sym}(m)$ Primitive + 3-cycle $\longrightarrow H = \operatorname{Alt}(m)$ or $H = \operatorname{Sym}(m)$.

Answer: if q = 2 or q = odd, then $\pi_q(\text{TA}_n(\mathbb{F}_q)) = \text{Sym}(q^n)$.

If $q=4,8,16,\ldots$ we don't succeed to find a 2-cycle. In factall generators of $\mathsf{TA}_n(\mathbb{F}_q)$ turn out to be even, i.e.

But: there's another theorem:

 $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))\subseteq \mathsf{Alt}(q^n)!$

Theorem: $H < \operatorname{Sym}(m)$ Primitive + 3-cycle $\longrightarrow H = \operatorname{Alt}(m)$ or $H = \operatorname{Sym}(m)$.

We find a 3-cycle!

Answer: if q=2 or q= odd, then $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))=\mathsf{Sym}(q^n)$.

If $q = 4, 8, 16, \dots$ we don't succeed to find a 2-cycle. In factall generators of $\mathsf{TA}_n(\mathbb{F}_q)$ turn out to be even, i.e.

But: there's another theorem:

 $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))\subseteq \mathsf{Alt}(q^n)!$

Theorem: $H < \operatorname{Sym}(m)$ Primitive + 3-cycle $\longrightarrow H = \operatorname{Alt}(m)$ or $H = \operatorname{Sym}(m)$.

We find a 3-cvcle!

Hence, if $q = 4, 8, 16, \ldots$ then $\pi_q(T_n(\mathbb{F}_q)) = \mathsf{Alt}(m)!$

Answer: if q=2 or q= odd, then $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))=\mathsf{Sym}(q^n)$.

Answer: if $q = 4, 8, 16, 32, \ldots$ then $\pi_a(\mathsf{TA}_n(\mathbb{F}_a)) = \mathsf{Alt}(q^n)$.

Suppose $F \in GA_n(\mathbb{F}_4)$ such that $\pi(F)$ odd permutation, then

 $\pi(F) \notin \pi(\mathsf{TA}_n(\mathbb{F}_4))$, so $\mathsf{GA}_n(\mathbb{F}_4) \neq \mathsf{TA}_n(\mathbb{F}_4)$!

Answer: if q=2 or q= odd, then $\pi_q(\mathsf{TA}_n(\mathbb{F}_q))=\mathsf{Sym}(q^n)$.

Answer: if $q = 4, 8, 16, 32, \ldots$ then $\pi_q(\mathsf{TA}_n(\mathbb{F}_q)) = \mathsf{Alt}(q^n)$. Suppose $F \in GA_n(\mathbb{F}_4)$ such that $\pi(F)$ odd permutation, then

 $\pi(F) \notin \pi(\mathsf{TA}_n(\mathbb{F}_4))$, so $\mathsf{GA}_n(\mathbb{F}_4) \neq \mathsf{TA}_n(\mathbb{F}_4)$!

So: Start looking for an odd automorphism!!! (Or prove they don't exist)

Answer: if q=2 or q= odd, then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{\mathsf{Sym}}(q^n).$

Answer: if q=4,8,16,32,... then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Sym}(q)$.

Answer: if q=2 or q= odd, then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{\mathsf{Sym}}(q^n).$

Answer: if $q=4,8,16,32,\ldots$ then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Alt}(q^n)$.

Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_4 ?

Answer: if q=2 or q= odd, then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{\mathsf{Sym}}(q^n).$

Answer: if $q=4,8,16,32,\ldots$ then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Alt}(q^n)$.

Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_4 ? Exciting! Let's try Nagata!

Answer: if q=2 or q= odd, then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Sym}(q^n)$.

Answer: if $q=4,8,16,32,\ldots$ then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Alt}(q^n)$.

Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_4 ? Exciting! Let's try Nagata!

$$N = \begin{pmatrix} X - 2(XZ + Y^{2})Y - (XZ + Y^{2})^{2}Z, \\ Y + (XZ + Y^{2})Z, \\ Z \end{pmatrix}$$

Answer: if q=2 or q= odd, then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Sym}(q^n)$.

Answer: if $q=4,8,16,32,\ldots$ then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Alt}(q^n)$.

Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_4 ? Exciting! Let's try Nagata!

$$N = \begin{pmatrix} X - 2(XZ + Y^2)Y - (XZ + Y^2)^2 Z, \\ Y + (XZ + Y^2)Z, \\ Z \end{pmatrix}$$

. . . drumroll. . .

Answer: if q=2 or q= odd, then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Sym}(q^n)$.

Answer: if $q=4,8,16,32,\ldots$ then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Alt}(q^n)$.

Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_4 ? Exciting! Let's try Nagata!

$$N = \begin{pmatrix} X - 2(XZ + Y^{2})Y - (XZ + Y^{2})^{2}Z, \\ Y + (XZ + Y^{2})Z, \\ Z \end{pmatrix}$$

... drumroll... Nagata is EVEN if and only if q=4,8,16,... and ODD otherwise...

Answer: if q=2 or q= odd, then $\pi_q(T_n(\mathbb{F}_q))=\operatorname{Sym}(q^n)$.

Answer: if $q=4,8,16,32,\ldots$ then $\pi_q(\mathcal{T}_n(\mathbb{F}_q))=\mathsf{Alt}(q^n)$.

Problem: Do there exist "odd" polynomial automorphisms over \mathbb{F}_4 ? Exciting! Let's try Nagata!

$$N = \begin{pmatrix} X - 2(XZ + Y^{2})Y - (XZ + Y^{2})^{2}Z, \\ Y + (XZ + Y^{2})Z, \\ Z \end{pmatrix}$$

... drumroll... Nagata is EVEN if and only if q = 4, 8, 16, ... and ODD otherwise... so far: no odd example found!

Different approach?

Is there perhaps a combinatorial reason why $\pi(GA_n(\mathbb{F}_4))$ has only even permutations??

 $\mathsf{GA}_n(\mathbb{F}_q)\subset \mathsf{GA}_n(\mathbb{F}_{q^m})\stackrel{\pi_{q^m}}{\longrightarrow} \mathsf{sym}(q^{mn}).$

$$\mathsf{GA}_n(\mathbb{F}_q)\subset \mathsf{GA}_n(\mathbb{F}_{q^m})\stackrel{\pi_{q^m}}{\longrightarrow}\mathsf{sym}(q^{mn}).$$
 $\mathsf{GA}_n(\mathbb{F}_q)$ $\bigcup |$ $\mathsf{TA}_n(\mathbb{F}_q)$

$$\mathsf{GA}_n(\mathbb{F}_q)\subset \mathsf{GA}_n(\mathbb{F}_{q^m})\stackrel{\pi_{q^m}}{\longrightarrow}\mathsf{sym}(q^{mn}).$$
 $\mathsf{GA}_n(\mathbb{F}_q)\longrightarrow \pi_{q^m}(\mathsf{GA}_n(\mathbb{F}_q))\subset \mathsf{sym}(q^{mn})$
 $\bigcup \mid \qquad \qquad \bigcup \mid$
 $\mathsf{TA}_n(\mathbb{F}_q)\longrightarrow \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q))\subset \mathsf{sym}(q^{mn})$

$$\begin{aligned} \mathsf{GA}_n(\mathbb{F}_q) \subset \mathsf{GA}_n(\mathbb{F}_{q^m}) & \xrightarrow{\pi_{q^m}} \mathsf{sym}(q^{mn}). \\ \mathsf{GA}_n(\mathbb{F}_q) & \longrightarrow & \pi_{q^m}(\mathsf{GA}_n(\mathbb{F}_q)) & \subset \mathsf{sym}(q^{mn}) \\ & \bigcup | & & \bigcup | \\ \mathsf{TA}_n(\mathbb{F}_q) & \longrightarrow & \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)) & \subset \mathsf{sym}(q^{mn}) \\ \end{aligned}$$

$$(1) \text{ Compute } \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)),$$

$$\mathsf{GA}_n(\mathbb{F}_q)\subset \mathsf{GA}_n(\mathbb{F}_{q^m})\stackrel{\pi_{q^m}}{\longrightarrow}\mathsf{sym}(q^{mn}).$$

$$\mathsf{GA}_n(\mathbb{F}_q)\longrightarrow \pi_{q^m}(\mathsf{GA}_n(\mathbb{F}_q))\subset \mathsf{sym}(q^{mn})$$

$$\bigcup |\qquad \qquad \bigcup |\qquad \qquad \qquad \\ \mathsf{TA}_n(\mathbb{F}_q)\longrightarrow \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q))\subset \mathsf{sym}(q^{mn})$$

$$(1)\;\mathsf{Compute}\;\pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)),$$

$$(2)\;\mathsf{check}\;\mathsf{if}\;\pi_{q^m}(N)\not\in\pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)),$$

$$\mathsf{GA}_n(\mathbb{F}_q)\subset \mathsf{GA}_n(\mathbb{F}_{q^m})\stackrel{\pi_{q^m}}{\longrightarrow}\mathsf{sym}(q^{mn}).$$

$$\mathsf{GA}_n(\mathbb{F}_q)\longrightarrow \pi_{q^m}(\mathsf{GA}_n(\mathbb{F}_q))\subset \mathsf{sym}(q^{mn})$$

$$\bigcup|\qquad\qquad \qquad \bigcup|$$

$$\mathsf{TA}_n(\mathbb{F}_q)\longrightarrow \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q))\subset \mathsf{sym}(q^{mn})$$

$$(1)\;\mathsf{Compute}\;\pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)),$$

$$(2)\;\mathsf{check}\;\mathsf{if}\;\pi_{q^m}(N)\not\in\pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)),$$

$$\mathsf{and}\;\mathsf{hop},\;(3)\;\mathsf{TA}_n(\mathbb{F}_q)\not=\mathsf{GA}_n(\mathbb{F}_q)\;\mathsf{and}\;\mathsf{immortal}\;\mathsf{fame!}$$

$$\mathsf{GA}_n(\mathbb{F}_q)\subset \mathsf{GA}_n(\mathbb{F}_{q^m})\xrightarrow{\pi_{q^m}}\mathsf{sym}(q^{mn}).$$

$$\mathsf{GA}_n(\mathbb{F}_q)\longrightarrow \pi_{q^m}(\mathsf{GA}_n(\mathbb{F}_q))\subset \mathsf{sym}(q^{mn})$$

$$\bigcup |\qquad \qquad \bigcup |\qquad \qquad \qquad \\ \mathsf{TA}_n(\mathbb{F}_q)\longrightarrow \pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q))\subset \mathsf{sym}(q^{mn})$$

$$(1)\;\mathsf{Compute}\;\pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)),$$

$$(2)\;\mathsf{check}\;\mathsf{if}\;\pi_{q^m}(N)\not\in\pi_{q^m}(\mathsf{TA}_n(\mathbb{F}_q)),$$
and hop, (3) $\mathsf{TA}_n(\mathbb{F}_q)\not=\mathsf{GA}_n(\mathbb{F}_q)$ and immortal fame! However:

Mimicking Nagata's map:

Theorem: (M) [- general stuff -]

Corollary: For every extension \mathbb{F}_{q^m} of \mathbb{F}_q , there exists

 $T_m \in \mathsf{TA}_3(\mathbb{F}_{q^m})$ such that T_m "mimicks" N, i.e.

$$\pi_{q^m}(T_m)=\pi_{q^m}(N).$$

Mimicking Nagata's map:

Theorem: (M) [- general stuff -]

Corollary: For every extension \mathbb{F}_{q^m} of \mathbb{F}_q , there exists

 $T_m \in \mathsf{TA}_3(\mathbb{F}_{q^m})$ such that T_m "mimicks" N, i.e.

$$\pi_{q^m}(T_m) = \pi_{q^m}(N).$$

Theorem states: for *practical* purposes, tame is almost always enough!

Nagata can be mimicked by a tame map for every $q = p^m$ -

i.e. exists $F \in TA_3(\mathbb{F}_p)$ such that $\pi_q N = \pi_q F$.

Nagata can be mimicked by a tame map for every $q=p^m$ - i.e. exists $F \in TA_3(\mathbb{F}_p)$ such that $\pi_q N = \pi_q F$. Proof is easy once you realize where to look... Remember Nagata's way of making Nagata map?

Nagata can be mimicked by a tame map for every $q = p^m$ - i.e. exists $F \in TA_3(\mathbb{F}_p)$ such that $\pi_q N = \pi_q F$. Proof is easy once you realize where to look... Remember Nagata's way of making Nagata map?

$$(X - z^{-1}Y^{2}, Y)(X, Y + z^{2}X), (X + z^{-1}Y^{2}, Y)$$

= $(X - 2\Delta Y - \Delta^{2}z, Y + \Delta z)$

Nagata can be mimicked by a tame map for every $q=p^m$ - i.e. exists $F \in TA_3(\mathbb{F}_p)$ such that $\pi_q N = \pi_q F$. Proof is easy once you realize where to look... Remember Nagata's way of making Nagata map?

$$(X - z^{-1}Y^{2}, Y)(X, Y + z^{2}X), (X + z^{-1}Y^{2}, Y)$$

= $(X - 2\Delta Y - \Delta^{2}z, Y + \Delta z)$

Do the Big Trick, since for $z \in \mathbb{F}_q$ we have $z^q = z$:

Nagata can be mimicked by a tame map for every $q=p^m$ - i.e. exists $F \in TA_3(\mathbb{F}_q)$ such that $\pi_q N = \pi_q F$. Proof is easy once you realize where to look... Remember Nagata's way of making Nagata map?

$$(X - z^{q-2}Y^2, Y)(X, Y + z^2X), (X + z^{q-2}Y^2, Y)$$

= $(X - 2\Delta Y - \Delta^2 z, Y + \Delta z)$

Do the Big Trick, since for $z \in \mathbb{F}_q$ we have $z^q = z$:

Nagata can be mimicked by a tame map for every $q=p^m$ - i.e. exists $F \in TA_3(\mathbb{F}_q)$ such that $\pi_q N = \pi_q F$. Proof is easy once you realize where to look... Remember Nagata's way of making Nagata map?

$$(X - z^{q-2}Y^2, Y)(X, Y + z^2X), (X + z^{q-2}Y^2, Y)$$

= $(X - 2\Delta Y - \Delta^2 z, Y + \Delta z)$

Do the Big Trick, since for $z \in \mathbb{F}_q$ we have $z^q = z$: This almost works - a bit more wiggling necessary (And for the general case, even more work.) Another idea: define $MA_n^d(k) := \{ F \in MA_n(k) \mid deg(F) \leq d \}.$

If $k = \mathbb{F}_q$, then this is finite.

Another idea: define $MA_n^d(k) := \{ F \in MA_n(k) | deg(F) \le d \}$.

If $k = \mathbb{F}_a$, then this is finite. Now compute

 $\mathsf{GA}_n^d(\mathbb{F}_a) := \mathsf{GA}_n(\mathbb{F}_a) \cap MA_n^d(\mathbb{F}_a)$ by checking all $F \in MA_n^d(k)$! We find ALL automorphisms of degree < d. Will we find new

ones we didn't know before?

Another idea: define $MA_n^d(k) := \{ F \in MA_n(k) \mid deg(F) \leq d \}$. If $k = \mathbb{F}_q$, then this is finite. Now compute

 $\mathsf{GA}_n^d(\mathbb{F}_q) := \mathsf{GA}_n(\mathbb{F}_q) \cap \mathit{MA}_n^d(\mathbb{F}_q)$ by checking all $F \in \mathit{MA}_n^d(k)!$ We find ALL automorphisms of degree $\leq d$. Will we find new

We find ALL automorphisms of degree $\leq d$. Will we find new ones we didn't know before?

Let's not be too ambitious: n = 3. And q = 2, 3, 4, 5. Computable is (R. Willems):

 $\mathsf{GA}_3^2(\mathbb{F}_{2,3,4,5})$ and main part of $\mathsf{GA}_3^3(\mathbb{F}_2)$. Surprisingly, results seem to be intersting!

Another idea: define $MA_n^d(k) := \{ F \in MA_n(k) \mid deg(F) \leq d \}.$

If $k = \mathbb{F}_q$, then this is finite. Now compute

 $\mathsf{GA}_n^d(\mathbb{F}_q) := \mathsf{GA}_n(\mathbb{F}_q) \cap MA_n^d(\mathbb{F}_q)$ by checking all $F \in MA_n^d(k)!$ We find ALL automorphisms of degree $\leq d$. Will we find new

Let's not be too ambitious: n = 3. And q = 2, 3, 4, 5.

Computable is (R. Willems):

ones we didn't know before?

 $\mathsf{GA}_3^2(\mathbb{F}_{2,3,4,5})$ and main part of $\mathsf{GA}_3^3(\mathbb{F}_2)$. Surprisingly, results seem to be intersting!

(Work in progress. Also bijective endomorphisms are interesting.)

 \mathcal{G} group, acting on \mathbb{C}^n means:

 \mathcal{G} group, acting on \mathbb{C}^n means:

 $\varphi_g \in GA_n(\mathbb{C})$ such that $\varphi_g \varphi_h = \varphi_{g+h}$ (in a "continuous way").

 \mathcal{G} group, acting on \mathbb{C}^n means:

 $\varphi_g\in \mathrm{GA}_n(\mathbb{C})$ such that $\varphi_g\varphi_h=\varphi_{g+h}$ (in a "continuous way").

Special example: $\mathcal{G}=<\mathbb{C},+>$. Denoted by $\mathcal{G}_{\mathsf{a}}.$

 \mathcal{G} group, acting on \mathbb{C}^n means:

 $\varphi_g\in \mathrm{GA}_n(\mathbb{C})$ such that $\varphi_g\varphi_h=\varphi_{g+h}$ (in a "continuous way").

Special example: $\mathcal{G}=<\mathbb{C},+>$. Denoted by $\mathcal{G}_{a}.$

Example: $t \in \mathcal{G}_a \longrightarrow \varphi_t := (X_1 + t, X_2, \dots, X_n).$

 \mathcal{G} group, acting on \mathbb{C}^n means:

 $\varphi_g\in {\sf GA}_n(\mathbb{C})$ such that $\varphi_g\varphi_h=\varphi_{g+h}$ (in a "continuous way").

Special example: $\mathcal{G}=<\mathbb{C},+>$. Denoted by $\mathcal{G}_{\mathsf{a}}.$

Example: $t \in \mathcal{G}_a \longrightarrow \varphi_t := (X_1 + t, X_2, \dots, X_n).$

Define $D: \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ as the 'log' of the action:

$$D(P) := \frac{\partial}{\partial t} \varphi_t(P)|_{t=0}$$

 \mathcal{G} group, acting on \mathbb{C}^n means:

 $\varphi_g\in \mathrm{GA}_n(\mathbb{C})$ such that $\varphi_g\varphi_h=\varphi_{g+h}$ (in a "continuous way").

Special example: $\mathcal{G}=<\mathbb{C},+>$. Denoted by $\mathcal{G}_{\mathsf{a}}.$

Example: $t \in \mathcal{G}_a \longrightarrow \varphi_t := (X_1 + t, X_2, \dots, X_n).$

Define $D: \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ as the 'log' of the action:

$$D(P) := \frac{\partial}{\partial t} \varphi_t(P)|_{t=0}$$

Example:

$$= \frac{\frac{\partial}{\partial t}P(X_1+t,X_2,\ldots,X_n)|_{t=0}}{\frac{\partial P}{\partial X_1}(X_1,X_2,\ldots,X_n)}$$

Additive group actions

Define $D: \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ as the 'log' of the action:

$$D(P) := \frac{\partial}{\partial t} \varphi_t(P)|_{t=0}$$

Example:

$$= \frac{\frac{\partial}{\partial t}P(X_1+t,X_2,\ldots,X_n)|_{t=0}}{\frac{\partial P}{\partial X_1}(X_1,X_2,\ldots,X_n)}$$

Additive group actions

Define $D: \mathbb{C}[X_1,\ldots,X_n] \longrightarrow \mathbb{C}[X_1,\ldots,X_n]$ as the 'log' of the action:

$$D(P) := \frac{\partial}{\partial t} \varphi_t(P)|_{t=0}$$

Example:

$$= \frac{\frac{\partial}{\partial t}P(X_1 + t, X_2, \dots, X_n)|_{t=0}}{\frac{\partial P}{\partial X_1}(X_1, X_2, \dots, X_n)}$$

$$D:=\frac{\partial}{\partial X_1}$$

Additive group actions

Define $D: \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ as the 'log' of the action:

$$D(P) := \frac{\partial}{\partial t} \varphi_t(P)|_{t=0}$$

Example:

$$= \frac{\frac{\partial}{\partial t}P(X_1+t,X_2,\ldots,X_n)|_{t=0}}{\frac{\partial P}{\partial X_1}(X_1,X_2,\ldots,X_n)}$$

$$D:=\frac{\partial}{\partial X_1}$$

and indeed:

$$\exp(tD)(P) = P(X_1 + t, X_2, \dots, X_n)$$

Additive group actions

D is a locally nilpotent derivation:

$$D(fg) = fD(g) + D(f)g$$
, $D(f + g) = D(f) + D(g)$ (derivation)

For all f, there exists an m_f such that $D^{m_f}(f) = 0$. (locally nilpotent)

Example:

$$= \frac{\frac{\partial}{\partial t}P(X_1 + t, X_2, \dots, X_n)|_{t=0}}{\frac{\partial P}{\partial X_1}(X_1, X_2, \dots, X_n)}$$
$$D := \frac{\partial}{\partial X_1}$$

and indeed:

$$\exp(tD)(P) = P(X_1 + t, X_2, \dots, X_n)$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

is locally nilpotent derivation.

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

is locally nilpotent derivation.

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

is locally nilpotent derivation.

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$

$$\delta(Y^2) = 2Y\delta(Y) = 2Y \cdot Z.$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

is locally nilpotent derivation.

 $\delta(XZ+Y^2)=0$

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot \delta(Y^2) = 2Y\delta(Y) = 2Y \cdot Z.$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

Hence.

is locally nilpotent derivation.
$$\delta(XZ) = -\delta(X)Z + X\delta(Z) = -2Y$$

 $\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$

$$\delta(Y^2) = 2Y\delta(Y) = 2Y \cdot Z.$$

$$\delta(XZ + Y^2) = 0$$

 $\delta(\Delta) = 0$ where $\Delta = XZ + Y^2$.

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$$

Hence.

is locally nilpotent derivation.

$$\delta(XZ) = \delta(X)Z + X\delta(Z) = -2Y \cdot Z.$$

$$\delta(Y^2) = 2Y\delta(Y) = 2Y \cdot Z.$$

$$\delta(XZ+Y^2)=0$$

$$\delta(\Delta) = 0$$
 where $\Delta = XZ + Y^2$.

Hence: $D := \Delta \delta$ is also an LND:

$$D^3(X) = D^2(\Delta \cdot -2Y) = \Delta \cdot -2 \cdot D^2(Y) = \Delta \cdot -2 \cdot D(Z) = 0$$

etc.

 $\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$

 $D := \Delta \delta, \ \Delta := XZ + Y^2$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$

$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$

$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$

$$\exp(tD)(X) = X + tD(X) + \frac{1}{2}t^2D^2(X)$$
$$\exp(tD)(Y) = Y + tD(Y)$$
$$\exp(tD)(Z) = Z$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$

$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$

$$\exp(tD)(X) = X + tD(X) + \frac{1}{2}t^2D^2(X)$$

$$\exp(tD)(Y) = Y + t\Delta Z$$

$$\exp(tD)(Z) = Z$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$

$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$\varphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$

$$\exp(tD)(X) = X + t(-2Y\Delta) + \frac{1}{2}t^2D(-2Y\Delta)$$

$$\exp(tD)(Y) = Y + t\Delta Z$$

$$\exp(tD)(Z) = Z$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$

$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$arphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$

$$\exp(tD)(X) = X + t(-2Y\Delta) + \frac{1}{2}t^2(-2Z\Delta^2)$$

$$\exp(tD)(Y) = Y + t\Delta Z$$

$$\exp(tD)(Z) = Z$$

$$\delta := -2Y \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y},$$

$$D := \Delta \delta, \quad \Delta := XZ + Y^2$$

$$arphi_t := \exp(tD) := (\exp(tD)(X), \exp(tD)(Y), \exp(tD)(Z))$$
 $\exp(tD)(X) = X - 2t\Delta Y - t^2\Delta^2 Z)$
 $\exp(tD)(Y) = Y + t\Delta Z$
 $\exp(tD)(Z) = Z$

 $\exp(tD)(X) = X - 2t\Delta Y - t^2\Delta^2 Z$

 $\exp(tD)(Y) = Y + t\Delta Z$

 $\exp(tD)(Z) = Z$

$$\exp(tD)(X) = X - 2t\Delta Y - t^2\Delta^2 Z$$

$$\exp(tD)(Y) = Y + t\Delta Z$$

 $\exp(tD)(Z) = Z$

Examine t = 1:

$$\exp(D)(X) = X - 2\Delta Y - \Delta^2 Z$$

$$\exp(D)(Y) = Y + \Delta Z$$

$$\exp(D)(Z) = Z$$

Examine t = 1:

$$\exp(D)(X) = X - 2\Delta Y - \Delta^2 Z$$

$$\exp(D)(Y) = Y + \Delta Z$$

$$exp(D)(Z) = Z$$

Examine t = 1: Nagata's automorphism!

 $\mathsf{GA}_n(k)$

 $TA_n(k)$

$$\begin{array}{ll} \mathsf{GA}_n(k) & & \\ \cup | & \\ \mathsf{LF}_n(k) & := < F \in \mathsf{GA}_n(k) \mid \mathit{deg}(F^m) \; \mathsf{bounded} > \\ \cup | & \\ \mathsf{ELFD}_n(k) & := < \exp(D) \mid D \; \mathsf{locally} \; \mathsf{finite} \; \mathsf{derivation} > \\ \cup | & & \\ \cup | & & \\ \end{array}$$

$$\begin{array}{ll} \mathsf{GA}_n(k) \\ \cup | \\ \mathsf{LF}_n(k) & := < F \in \mathsf{GA}_n(k) \mid \mathit{deg}(F^m) \; \mathsf{bounded} > \\ \cup | \\ \mathsf{ELFD}_n(k) & := < \exp(D) \mid \mathit{D} \; \mathsf{locally} \; \mathsf{finite} \; \mathsf{derivation} > \\ \cup | \end{array}$$

 $GLIN_n(k)$:= normal closure of $GL_n(k)$

 $|\cdot|$? TA_n(k)

```
GA_n(k)
Ul
\mathsf{ELFD}_n(k) := < \exp(D) \mid D \text{ locally finite derivation} >
```

$$\mathsf{LF}_n(k) := < F \in \mathsf{GA}_n(k) \mid deg(F^m) \text{ bounded } >$$
 $\cup \mid$

 $GTAM_n(k) := normal closure of TA_n(k)$

 $GLIN_n(k)$:= normal closure of $GL_n(k)$

$$\mathsf{GTAM}_n(k)$$
 $\cup \mid$

 \cup

?∪|? $TA_n(k)$

No conjugate of Nagata is in $GL_n(k)$ for any field k! **Theorem:** (M., Poloni) Nagata is *shifted linearizable*:

9 1 9 1 9 1 9 1

No conjugate of Nagata is in $GL_n(k)$ for any field k! **Theorem:** (M., Poloni) Nagata is *shifted linearizable*: choose

Theorem: (M., Poloni) Nagata is *shifted linearizable:* choose $s \in k$ such that $s \neq 0, 1, -1$.

No conjugate of Nagata is in $GL_n(k)$ for any field k!

Theorem: (M., Poloni) Nagata is *shifted linearizable:* choose $s \in k$ such that $s \neq 0, 1, -1$.

 $(s \exp(D))$

No conjugate of Nagata is in $GL_n(k)$ for any field k!

Theorem: (M., Poloni) Nagata is *shifted linearizable:* choose $s \in k$ such that $s \neq 0, 1, -1$.

$$\exp(\frac{-s^2}{1-s^2}D)(s\exp(D))\exp(\frac{s^2}{1-s^2}D)$$

No conjugate of Nagata is in $GL_n(k)$ for any field k!

Theorem: (M., Poloni) Nagata is *shifted linearizable:* choose $s \in k$ such that $s \neq 0, 1, -1$.

$$\exp(\frac{-s^2}{1-s^2}D)(s\exp(D))\exp(\frac{s^2}{1-s^2}D) =$$

$$\exp(\frac{-s^2}{1-s^2}D)(s\exp(D))\exp(\frac{s^2}{1-s^2}D)=sI$$

No conjugate of Nagata is in $GL_n(k)$ for any field k!

Theorem: (M., Poloni) Nagata is *shifted linearizable:* choose $s \in k$ such that $s \neq 0, 1, -1$.

$$\exp(\frac{-s^2}{1-s^2}D)(s\exp(D))\exp(\frac{s^2}{1-s^2}D)=sI$$

Hence: Nagata map is in $GLIN_3(k)$!

No conjugate of Nagata is in $GL_n(k)$ for any field k!

Theorem: (M., Poloni) Nagata is *shifted linearizable:* choose $s \in k$ such that $s \neq 0, 1, -1$.

$$\exp(\frac{-s^2}{1-s^2}D)(s\exp(D))\exp(\frac{s^2}{1-s^2}D)=sI$$

Hence: Nagata map is in $GLIN_3(k)$! - If $k \neq \mathbb{F}_2, \mathbb{F}_3$, that is !!

How does $GLIN_n(k)$ compare to $GTAM_n(k)$?

How does $GLIN_n(k)$ compare to $GTAM_n(k)$? As soon as $(X_1 + f(X_2), X_2, ..., X_n) \in GLIN_n(k)$ for any

As soon as $(X_1 + f(X_2), X_2, ..., X_n) \in GLIN_n(k)$ for any $f \in k[X_2]$, then $GLIN_n(k) = GTAM_n(k)$.

How does $GLIN_n(k)$ compare to $GTAM_n(k)$?

As soon as $(X_1 + f(X_2), X_2, \dots, X_n) \in GLIN_n(k)$ for any

As soon as
$$(X_1 + f(X_2), X_2, ..., X_n) \in GLIN_n(k)$$
 for any $f \in k[X_2]$, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$:

As soon as $(X_1 + f(X_2), X_2, \dots, X_n) \in \mathsf{GLIN}_n(k)$ for any

$$f \in k[X_2]$$
, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$:

(aX, Y)

As soon as
$$(X_1 + f(X_2), X_2, \dots, X_n) \in GLIN_n(k)$$
 for any

As soon as
$$(X_1 + f(X_2), X_2, ..., X_n) \in GLIN_n(k)$$
 for any $f \in k[X_2]$, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$:

(X - bf(Y), Y)(aX, Y)(X + bf(Y), Y)

As soon as $(X_1 + f(X_2), X_2, \dots, X_n) \in GLIN_n(k)$ for any

$$f \in k[X_2]$$
, then $\mathsf{GLIN}_n(k) = \mathsf{GTAM}_n(k)$. Choose some $a \neq 0$:

 $(a^{-1}X, Y)(X - bf(Y), Y)(aX, Y)(X + bf(Y), Y)$

How does
$$GLIN_n(k)$$
 compare to $GTAM_n(k)$?

$$f \in k[X_2]$$
, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$:

 $(a^{-1}X, Y)(X - bf(Y), Y)(a(X + bf(Y)), Y)$

As soon as
$$(X_1 + f(X_2), X_2, \dots, X_n) \in GLIN_n(k)$$
 for any $f \in k[X_2]$, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$

 $f \in k[X_2]$, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$:

 $(a^{-1}X, Y)(X - bf(Y), Y)(aX + abf(Y), Y)$

How does
$$GLIN_n(k)$$
 compare to $GTAM_n(k)$?

$$f \in k[X_2]$$
, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$:

 $(a^{-1}X, Y)(aX + abf(Y) - bf(Y), Y)$

How does
$$GLIN_n(k)$$
 compare to $GTAM_n(k)$?

As soon as
$$(X_1 + f(X_2), X_2, ..., X_n) \in GLIN_n(k)$$
 for any $f \in k[X_2]$, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$:

 $(X + bf(Y) - a^{-1}bf(Y), Y)$

How does
$$GLIN_n(k)$$
 compare to $GTAM_n(k)$?

As soon as
$$(X_1 + f(X_2), X_2, ..., X_n) \in GLIN_n(k)$$
 for any $f \in k[X_2]$, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$:

 $(X + b(1 - a^{-1})f(Y), Y)$

As soon as $(X_1 + f(X_2), X_2, ..., X_n) \in \operatorname{GLIN}_n(k)$ for any $f \in k[X_2]$, then $\operatorname{GLIN}_n(k) = \operatorname{GTAM}_n(k)$. Choose some $a \neq 0$

$$(X + b(1 - a^{-1})f(Y), Y)$$

Choose $b = (1 - a^{-1})^{-1}$.

As soon as $(X_1 + f(X_2), X_2, ..., X_n) \in GLIN_n(k)$ for any $f \in k[X_2]$, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$

$$(X + b(1 - a^{-1})f(Y), Y)$$

Choose $b = (1 - a^{-1})^{-1}$.

 $a \neq 1$:

As soon as $(X_1 + f(X_2), X_2, \dots, X_n) \in \mathsf{GLIN}_n(k)$ for any $f \in k[X_2]$, then $\mathsf{GLIN}_n(k) = \mathsf{GTAM}_n(k)$. Choose some $a \neq 0$ $a \neq 1$:

 $(X+b(1-a^{-1})f(Y),Y)$

Choose $b = (1 - a^{-1})^{-1}$. Then (X + f(Y), Y) in $GLIN_2(k)$!

As soon as $(X_1 + f(X_2), X_2, \dots, X_n) \in GLIN_n(k)$ for any $f \in k[X_2]$, then $GLIN_n(k) = GTAM_n(k)$. Choose some $a \neq 0$ $a \neq 1$:

$$(X + b(1 - a^{-1})f(Y), Y)$$

Choose $b = (1 - a^{-1})^{-1}$. Then (X + f(Y), Y) in $GLIN_2(k)!$... if $k \neq \mathbb{F}_2$...

How does $\operatorname{GLIN}_n(k)$ compare to $\operatorname{GTAM}_n(k)$? As soon as $(X_1+f(X_2),X_2,\ldots,X_n)\in\operatorname{GLIN}_n(k)$ for any $f\in k[X_2]$, then $\operatorname{GLIN}_n(k)=\operatorname{GTAM}_n(k)$. Choose some $a\neq 0$ $a\neq 1$:

$$(X + b(1 - a^{-1})f(Y), Y)$$

Choose $b = (1 - a^{-1})^{-1}$. Then (X + f(Y), Y) in $GLIN_2(k)!$... if $k \neq \mathbb{F}_2$...

Question: How does $GLIN_n(\mathbb{F}_2)$ and $GTAM_n(\mathbb{F}_2)$ relate?

 $\mathsf{GLIN}_n(\mathbb{F}_2) \subsetneq \mathsf{GTAM}_n(\mathbb{F}_2).$

 $\mathsf{GLIN}_n(\mathbb{F}_2) \subsetneq \mathsf{GTAM}_n(\mathbb{F}_2).$

Proof.

 $\mathsf{GLIN}_n(\mathbb{F}_2) \subsetneq \mathsf{GTAM}_n(\mathbb{F}_2).$

Proof. Remember, $\pi_2(TA_n(\mathbb{F}_2)) = \operatorname{Sym}(2^n)$, as \mathbb{F}_2 was the exception to the exception.

 $\mathsf{GLIN}_n(\mathbb{F}_2) \subsetneq \mathsf{GTAM}_n(\mathbb{F}_2).$

Proof. Remember, $\pi_2(TA_n(\mathbb{F}_2)) = \operatorname{Sym}(2^n)$, as \mathbb{F}_2 was the exception to the exception.

Now, notice that if $n \geq 3$, then any element of $GL_n(\mathbb{F}_2)$ is even.

 $\mathsf{GLIN}_n(\mathbb{F}_2) \subsetneq \mathsf{GTAM}_n(\mathbb{F}_2).$

Proof. Remember, $\pi_2(TA_n(\mathbb{F}_2)) = \operatorname{Sym}(2^n)$, as \mathbb{F}_2 was the exception to the exception.

Now, notice that if $n \geq 3$, then any element of $GL_n(\mathbb{F}_2)$ is even. Hence $\pi_2(GLIN_n(\mathbb{F}_2)) \subseteq Alt(2^n)$. If n=2, then (X+Y,Y) is odd, unfortunately.

 $\mathsf{GLIN}_n(\mathbb{F}_2) \subsetneq \mathsf{GTAM}_n(\mathbb{F}_2).$

Proof. Remember, $\pi_2(TA_n(\mathbb{F}_2)) = \operatorname{Sym}(2^n)$, as \mathbb{F}_2 was the exception to the exception.

Now, notice that if $n \geq 3$, then any element of $GL_n(\mathbb{F}_2)$ is even. Hence $\pi_2(GLIN_n(\mathbb{F}_2)) \subseteq Alt(2^n)$. If n=2, then (X+Y,Y) is odd, unfortunately. However, in dimension 2 we understand the automorphism group, and can do a computer calculation

 $\mathsf{GLIN}_n(\mathbb{F}_2) \subsetneq \mathsf{GTAM}_n(\mathbb{F}_2).$

Proof. Remember, $\pi_2(TA_n(\mathbb{F}_2)) = \operatorname{Sym}(2^n)$, as \mathbb{F}_2 was the exception to the exception.

Now, notice that if $n \geq 3$, then any element of $GL_n(\mathbb{F}_2)$ is even. Hence $\pi_2(GLIN_n(\mathbb{F}_2)) \subseteq Alt(2^n)$. If n=2, then (X+Y,Y) is odd, unfortunately. However, in dimension 2 we understand the automorphism group, and can do a computer calculation to see that

$$\frac{\#\pi_4(\mathsf{GLIN}_2(\mathbb{F}_2))}{\#\pi_4(\mathsf{GTAM}_2(\mathbb{F}_2))} = 2.$$

End proof.

Just one more slide:

Just one more slide:

I hope you got an impression of the beauty of Affine Algebraic Geometry!

Just one more slide:

I hope you got an impression of the beauty of Affine Algebraic Geometry!

THANK YOU

(for enduring 189 slides...)