Mimicking automorphisms over

finite fields by tame automorphisms

Stefan Maubach

AAS, July 2009

Let $F \in \mathrm{GA}_{n}\left(\mathbb{F}_{q}\right)$. Then we say that F is tamely mimickable if for each $m \in \mathbb{N}$ we have $\pi_{q^{m}}(F) \in \pi_{q^{m}}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right.$.
Hope: Nagata's automorphism is not tamely mimickable, hence not tame.

Let $F \in \mathrm{GA}_{n}\left(\mathbb{F}_{q}\right)$. Then we say that F is tamely mimickable if for each $m \in \mathbb{N}$ we have $\pi_{q^{m}}(F) \in \pi_{q^{m}}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right.$.
Hope: Nagata's automorphism is not tamely mimickable, hence not tame.
Notation: If $F \in \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right)$ and $c \in \mathbb{F}_{q^{m}}$, then
$F_{c}:=\left.F\right|_{z=c} \in \operatorname{GA}_{n}\left(\mathbb{F}_{q}(c)\right)$.
F is tamely mimickable if for each $m \in \mathbb{N}: \pi_{q^{m}}(F) \in \pi_{q^{m}}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right)\right.$.

$$
F_{c}:=\left.F\right|_{z=c} \in \mathrm{GA}_{n}\left(\mathbb{F}_{q}(c)\right)
$$

F is tamely mimickable if for each $m \in \mathbb{N}: \pi_{q} m(F) \in \pi_{q} m\left(\mathrm{TA}_{n}\left(\mathbb{F}_{q}\right)\right.$. $F_{c}:=\left.F\right|_{Z=c} \in \operatorname{GA}_{n}\left(\mathbb{F}_{q}(c)\right)$.

Theorem
Let $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right) \cap \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right)$.

Theorem
Let $F \in \mathrm{TA}_{n}\left(\mathbb{F}_{q}(Z)\right) \cap \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right)$. Assume that for some $m \in \mathbb{N}$ we have:

$$
c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \mathrm{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}} .
$$ $m \in \mathbb{N}$ we have:

$$
c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \mathrm{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}} .
$$

Then F is tamely mimickable.

Theorem

Let $F \in \mathrm{TA}_{n}\left(\mathbb{F}_{q}(Z)\right) \cap \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right)$. Assume that for some $m \in \mathbb{N}$ we have:
$c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \mathrm{TA}_{n}\left(\mathbb{F}_{q}(c)\right)$ for all $c \in \mathbb{F}_{q^{m}}$.
Then F is tamely mimickable.
Corollary
Let $F \in \mathrm{GA}_{2}\left(\mathbb{F}_{q}[Z]\right)$. Then F is tamely mimickable.
F is tamely mimickable if for each $m \in \mathbb{N}: \pi_{q^{m}}(F) \in \pi_{q^{m}}\left(\mathrm{TA}_{n}\left(\mathbb{F}_{q}\right)\right.$.
$F_{c}:=\left.F\right|_{Z=c} \in \operatorname{GA}_{n}\left(\mathbb{F}_{q}(c)\right)$.
Theorem: Let $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right) \cap \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right)$. Assume that for some $m \in \mathbb{N}$ we have:

$$
c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}}
$$

Then F is tamely mimickable.

Example: Nagata's automorphism

$$
N:=\left(X-\frac{1}{Z} Y^{2}, Y\right)\left(X, Y+Z^{2} X\right)\left(X+\frac{1}{Z} Y^{2}, Y\right)
$$

F is tamely mimickable if for each $m \in \mathbb{N}: \pi_{q^{m}}(F) \in \pi_{q^{m}}\left(\mathrm{TA}_{n}\left(\mathbb{F}_{q}\right)\right.$.
$F_{c}:=\left.F\right|_{Z=c} \in \operatorname{GA}_{n}\left(\mathbb{F}_{q}(c)\right)$.
Theorem: Let $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right) \cap \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right)$. Assume that for some $m \in \mathbb{N}$ we have:

$$
c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}}
$$

Then F is tamely mimickable.

Example: Nagata's automorphism

$$
N:=\left(X-\frac{1}{Z} Y^{2}, Y\right)\left(X, Y+Z^{2} X\right)\left(X+\frac{1}{Z} Y^{2}, Y\right)
$$

for $Z=c \neq 0: F_{c}$ is tame,
F is tamely mimickable if for each $m \in \mathbb{N}: \pi_{q^{m}}(F) \in \pi_{q^{m}}\left(\mathrm{TA}_{n}\left(\mathbb{F}_{q}\right)\right.$.
$F_{c}:=\left.F\right|_{Z=c} \in G A_{n}\left(\mathbb{F}_{q}(c)\right)$.
Theorem: Let $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right) \cap \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right)$. Assume that for some $m \in \mathbb{N}$ we have:

$$
c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}}
$$

Then F is tamely mimickable.

Example: Nagata's automorphism

$$
N:=\left(X-\frac{1}{Z} Y^{2}, Y\right)\left(X, Y+Z^{2} X\right)\left(X+\frac{1}{Z} Y^{2}, Y\right)
$$

for $Z=c \neq 0: F_{c}$ is tame, for $Z=0$: $\left(X-2 Y^{3}, Y\right)$.

```
F is tamely mimickable if for each m}\in\mathbb{N}:\mp@subsup{\pi}{q}{m}(F)\in\mp@subsup{\pi}{q}{m}(\mp@subsup{\textrm{TA}}{n}{}(\mp@subsup{\mathbb{F}}{q}{})
F
Theorem: Let F}\in\mp@subsup{\operatorname{TA}}{n}{}(\mp@subsup{\mathbb{F}}{q}{}(Z))\cap\mp@subsup{\textrm{GA}}{n}{}(\mp@subsup{\mathbb{F}}{q}{}[Z])\mathrm{ . Assume that for some m}\in\mathbb{N}\mathrm{ we have:
```

$$
c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}}
$$

Then F is tamely mimickable.

Example: Nagata's automorphism

$$
N:=\left(X-\frac{1}{Z} Y^{2}, Y\right)\left(X, Y+Z^{2} X\right)\left(X+\frac{1}{Z} Y^{2}, Y\right)
$$

for $Z=c \neq 0: F_{c}$ is tame, for $Z=0$: $\left(X-2 Y^{3}, Y\right)$.
How to mimick this one? Idea: replace Z^{-1} by $Z^{q^{m}-2}$.

$$
N_{\text {fake }}:=\left(X-Z^{q^{m}-2} Y^{2}, Y\right)\left(X, Y+Z^{2} X\right)\left(X+Z^{q^{m}-2} Y^{2}, Y\right)
$$

$$
N_{\text {fake }}:=\left(X-Z^{q^{m}-2} Y^{2}, Y\right)\left(X, Y+Z^{2} X\right)\left(X+Z^{q^{m}-2} Y^{2}, Y\right)
$$

$$
\text { for } Z=c \neq 0:\left(N_{\text {fake }}\right)_{c}=N_{c} \text { is tame, }
$$

$$
N_{\text {fake }}:=\left(X-Z^{q^{m}-2} Y^{2}, Y\right)\left(X, Y+Z^{2} X\right)\left(X+Z^{q^{m}-2} Y^{2}, Y\right)
$$

for $Z=c \neq 0:\left(N_{\text {fake }}\right)_{c}=N_{c}$ is tame, for $Z=0: N_{0}=\left(X-2 Y^{3}, Y\right),\left(N_{\text {fake }}\right)_{0}=(X, Y)$.

$$
N_{\text {fake }}:=\left(X-Z^{q^{m}-2} Y^{2}, Y\right)\left(X, Y+Z^{2} X\right)\left(X+Z^{q^{m}-2} Y^{2}, Y\right)
$$

for $Z=c \neq 0:\left(N_{\text {fake }}\right)_{c}=N_{c}$ is tame,
for $Z=0: N_{0}=\left(X-2 Y^{3}, Y\right)$, $\left(N_{\text {fake }}\right)_{0}=(X, Y)$.
Let $M:=\left(X-2 Y^{3} f(Z), Y\right)$ where $f(Z):=\lambda\left(Z^{q^{m}-1}-1\right)$.

$$
N_{\text {fake }}:=\left(X-Z^{q^{m}-2} Y^{2}, Y\right)\left(X, Y+Z^{2} X\right)\left(X+Z^{q^{m}-2} Y^{2}, Y\right)
$$

for $Z=c \neq 0:\left(N_{\text {fake }}\right)_{c}=N_{c}$ is tame,
for $Z=0: N_{0}=\left(X-2 Y^{3}, Y\right),\left(N_{\text {fake }}\right)_{0}=(X, Y)$.
Let $M:=\left(X-2 Y^{3} f(Z), Y\right)$ where $f(Z):=\lambda\left(Z^{q^{m}-1}-1\right)$.
Then $M N_{\text {fake }}$ mimicks N over $\mathbb{F}_{q^{m}}$.
F is tamely mimickable if for each $m \in \mathbb{N}: \pi_{q^{m}}(F) \in \pi_{q^{m}}\left(\mathrm{TA}_{n}\left(\mathbb{F}_{q}\right)\right.$.
$F_{c}:=\left.F\right|_{Z=c} \in \operatorname{GA}_{n}\left(\mathbb{F}_{q}(c)\right)$.
Theorem: Let $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right) \cap \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right)$. Assume that for some $m \in \mathbb{N}$ we have:

$$
c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}}
$$

Then F is tamely mimickable.
F is tamely mimickable if for each $m \in \mathbb{N}: \pi_{q^{m}}(F) \in \pi_{q^{m}}\left(\mathrm{TA}_{n}\left(\mathbb{F}_{q}\right)\right.$.
$F_{c}:=\left.F\right|_{Z=c} \in G A_{n}\left(\mathbb{F}_{q}(c)\right)$.
Theorem: Let $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right) \cap \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right)$. Assume that for some $m \in \mathbb{N}$ we have:

$$
c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}}
$$

Then F is tamely mimickable.

STEP 1: May assume $F=I+H$. (trivial)

$$
\begin{aligned}
& F \text { is tamely mimickable if for each } m \in \mathbb{N}: \pi_{q} m(F) \in \pi_{q^{m}}\left(\operatorname{TA}_{n}\left(\mathbb{F}_{q}\right) .\right. \\
& F_{c}:=\left.F\right|_{Z=c} \in \mathrm{GA}_{n}\left(\mathbb{F}_{q}(c)\right) . \\
& \text { Theorem: Let } F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right) \cap \mathrm{GA}_{n}\left(\mathbb{F}_{q}[Z]\right) \text {. Assume that for some } m \in \mathbb{N} \text { we have: } \\
& \qquad c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}}
\end{aligned}
$$

Then F is tamely mimickable.

STEP 1: May assume $F=I+H$. (trivial)
STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.

```
F is tamely mimickable if for each m}\in\mathbb{N}:\mp@subsup{\pi}{q}{m}(F)\in\mp@subsup{\pi}{q}{m}(\mp@subsup{\textrm{TA}}{n}{}(\mp@subsup{\mathbb{F}}{q}{})
F
Theorem: Let F}\in\mp@subsup{\operatorname{TA}}{n}{}(\mp@subsup{\mathbb{F}}{q}{}(Z))\cap\mp@subsup{\textrm{GA}}{n}{}(\mp@subsup{\mathbb{F}}{q}{}[Z])\mathrm{ . Assume that for some m}\in\mathbb{N}\mathrm{ we have:
```

$$
c \in \mathbb{F}_{q^{m}} \longrightarrow F_{c} \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(c)\right) \text { for all } c \in \mathbb{F}_{q^{m}}
$$

Then F is tamely mimickable.

STEP 1: May assume $F=I+H$. (trivial)
STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
STEP 3: Mimick strictly upper triangular maps.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine,
$\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine,
$\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine, $\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.
(2) May assume: $E_{i}(0)=A_{i}(0)$.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine,
$\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.
(2) May assume: $E_{i}(0)=A_{i}(0)$.
(3) May assume: E_{i} strictly triangular, $\operatorname{det}\left(A_{i}\right)=1$.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine, $\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.
(2) May assume: $E_{i}(0)=A_{i}(0)$.
(3) May assume: E_{i} strictly triangular, $\operatorname{det}\left(A_{i}\right)=1$.

Let D_{i} diagonal such that $\operatorname{det}\left(D_{i}\right)=\operatorname{det}\left(A_{i}\right)$. Replace A_{i} by $D_{i}^{-1} A_{i}$ and push D_{i} to the left:
$E_{i-1} D_{i}=D_{i} E_{i-1}^{\prime}$.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine, $\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.
(2) May assume: $E_{i}(0)=A_{i}(0)$.
(3) May assume: E_{i} strictly triangular, $\operatorname{det}\left(A_{i}\right)=1$.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine, $\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.
(2) May assume: $E_{i}(0)=A_{i}(0)$.
(3) May assume: E_{i} strictly triangular, $\operatorname{det}\left(A_{i}\right)=1$.
(4) May assume: A_{i} either permutation, or diagonal.

Use Gaussian elimination: $A_{i}=D E_{1} E_{2} \ldots E_{n} P$.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine, $\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.
(2) May assume: $E_{i}(0)=A_{i}(0)$.
(3) May assume: E_{i} strictly triangular, $\operatorname{det}\left(A_{i}\right)=1$.
(4) May assume: A_{i} either permutation, or diagonal (of $\operatorname{det}+-1$).

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine, $\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.
(2) May assume: $E_{i}(0)=A_{i}(0)$.
(3) May assume: E_{i} strictly triangular, $\operatorname{det}\left(A_{i}\right)=1$.
(4) May assume: A_{i} either permutation, or diagonal (of $\operatorname{det}+-1$).
(5) May assume: A_{i} is a permutation.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine, $\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.
(2) May assume: $E_{i}(0)=A_{i}(0)$.
(3) May assume: E_{i} strictly triangular, $\operatorname{det}\left(A_{i}\right)=1$.
(4) May assume: A_{i} either permutation, or diagonal (of $\operatorname{det}+-1$).
(5) May assume: A_{i} is a permutation.
D diagonal: composition of maps of the form $\left(\lambda^{-1} X_{1}, \lambda X_{2}, X_{3}, \ldots, X_{n}\right)$.
$\left(\begin{array}{c}f^{-1} \\ 0\end{array} \quad \begin{array}{c}f \\ 1\end{array} f^{-1} \begin{array}{l}0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}1 & 1-f \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}1 & 1-f^{-1} \\ 0 & 1\end{array}\right)$.

STEP 2: $F \in \operatorname{TA}_{n}\left(\mathbb{F}_{q}(Z)\right)$, hence a product of permutations and strictly upper triangular maps.
Basic tool: D is triangular + affine, E triangular OR affine,
$\longrightarrow D E=E^{\prime} D$ for some E^{\prime} of same type.
(1) $F=E_{1} A_{1} E_{2} A_{2} \cdots E_{s} A_{s}$ where E_{i} triangular, A_{s} affine.
(2) May assume: $E_{i}(0)=A_{i}(0)$.
(3) May assume: E_{i} strictly triangular, $\operatorname{det}\left(A_{i}\right)=1$.
(4) May assume: A_{i} either permutation, or diagonal.
(5) May assume: A_{i} is a permutation.

STEP 3: Mimick strictly triangular.

STEP 3: Mimick strictly triangular. $E=I+H, H$ coefficients in $\mathbb{F}_{q}\left[Z, \frac{1}{f(Z)}\right]$.

STEP 3: Mimick strictly triangular. $E=I+H, H$ coefficients in $\mathbb{F}_{q}\left[Z, \frac{1}{f(Z)}\right]$.
Replace $\frac{1}{f(Z)}$ by $f(Z)^{q^{m}-2}$.

STEP 3: Mimick strictly triangular.
$E=I+H, H$ coefficients in $\mathbb{F}_{q}\left[Z, \frac{1}{f(Z)}\right]$.
Replace $\frac{1}{f(Z)}$ by $f(Z)^{q^{m}-2}$.
$\tilde{E}=I+\tilde{H}$. Then we are left with $G:=\tilde{E}^{-1} E$.
$G_{c}=l$ if $f(c) \neq 0$.

STEP 3: Mimick strictly triangular.

$$
G_{c}=I \text { if } f(c) \neq 0 . G=I+H .
$$

STEP 3: Mimick strictly triangular.
$G_{c}=I$ if $f(c) \neq 0 . G=I+H$.
$f=f_{1} f_{2} \cdots f_{s}$ decomposition in irreducible factors.

STEP 3: Mimick strictly triangular.
$G_{c}=I$ if $f(c) \neq 0 . G=I+H$.
$f=f_{1} f_{2} \cdots f_{s}$ decomposition in irreducible factors.
Define $g:=\left(1-f_{i}^{q^{m}-1}\right)$.

STEP 3: Mimick strictly triangular.
$G_{c}=I$ if $f(c) \neq 0 . G=I+H$.
$f=f_{1} f_{2} \cdots f_{s}$ decomposition in irreducible factors.
Define $g:=\left(1-f_{i}^{q^{m}-1}\right)$. Then $g(c)=0$ if $f_{i}(c) \neq 0$, and $g(c)=1$ if $f_{i}(c)=0$.

STEP 3: Mimick strictly triangular.
$G_{c}=I$ if $f(c) \neq 0 . G=I+H$.
$f=f_{1} f_{2} \cdots f_{s}$ decomposition in irreducible factors.
Define $g:=\left(1-f_{i}^{q^{m}-1}\right)$. Then $g(c)=0$ if $f_{i}(c) \neq 0$, and $g(c)=1$ if $f_{i}(c)=0$. let $f_{i}(\alpha)=0$.

STEP 3: Mimick strictly triangular.
$G_{c}=I$ if $f(c) \neq 0 . G=I+H$.
$f=f_{1} f_{2} \cdots f_{s}$ decomposition in irreducible factors.
Define $g:=\left(1-f_{i}^{q^{m}-1}\right)$. Then $g(c)=0$ if $f_{i}(c) \neq 0$, and $g(c)=1$ if $f_{i}(c)=0$.
let $f_{i}(\alpha)=0$. Consider $G_{\alpha}=I+h(\alpha, X)$. Define

$$
\tilde{G}_{i}:=I+g h(Z, X)
$$

STEP 3: Mimick strictly triangular.
$G_{c}=I$ if $f(c) \neq 0 . G=I+H$.
$f=f_{1} f_{2} \cdots f_{s}$ decomposition in irreducible factors.
Define $g:=\left(1-f_{i}^{q^{m}-1}\right)$. Then $g(c)=0$ if $f_{i}(c) \neq 0$, and $g(c)=1$ if $f_{i}(c)=0$.
let $f_{i}(\alpha)=0$. Consider $G_{\alpha}=I+h(\alpha, X)$. Define

$$
\tilde{G}_{i}:=I+g h(Z, X)
$$

- If $f_{i}(c) \neq 0: g(c)=0$ hence $\left(\tilde{G}_{i}\right)_{c}=I$.

STEP 3: Mimick strictly triangular.
$G_{c}=I$ if $f(c) \neq 0 . G=I+H$.
$f=f_{1} f_{2} \cdots f_{s}$ decomposition in irreducible factors.
Define $g:=\left(1-f_{i}^{q^{m}-1}\right)$. Then $g(c)=0$ if $f_{i}(c) \neq 0$, and $g(c)=1$ if $f_{i}(c)=0$.
let $f_{i}(\alpha)=0$. Consider $G_{\alpha}=I+h(\alpha, X)$. Define

$$
\tilde{G}_{i}:=I+\operatorname{gh}(Z, X)
$$

- If $f_{i}(c) \neq 0: g(c)=0$ hence $\left(\tilde{G}_{i}\right)_{c}=1$.
- If $f_{i}(c)=0$ then exists $\phi \in \operatorname{Gal}\left(\mathbb{F}_{q}: \mathbb{F}_{q}(\alpha)\right)$ such that $\phi(\alpha)=c$.

STEP 3: Mimick strictly triangular.
$G_{c}=I$ if $f(c) \neq 0 . G=I+H$.
$f=f_{1} f_{2} \cdots f_{s}$ decomposition in irreducible factors.
Define $g:=\left(1-f_{i}^{q^{m}-1}\right)$. Then $g(c)=0$ if $f_{i}(c) \neq 0$, and $g(c)=1$ if $f_{i}(c)=0$.
let $f_{i}(\alpha)=0$. Consider $G_{\alpha}=I+h(\alpha, X)$. Define

$$
\tilde{G}_{i}:=I+\operatorname{gh}(Z, X)
$$

- If $f_{i}(c) \neq 0: g(c)=0$ hence $\left(\tilde{G}_{i}\right)_{c}=I$.
- If $f_{i}(c)=0$ then exists $\phi \in \operatorname{Gal}\left(\mathbb{F}_{q}: \mathbb{F}_{q}(\alpha)\right)$ such that $\phi(\alpha)=c$. Now

$$
\left(\tilde{G}_{i}\right)_{c}=\left(\tilde{G}_{i}\right)_{\phi(\alpha)}=\phi\left(\left(\tilde{G}_{i}\right)_{\alpha}\right)=\phi\left(G_{\alpha}\right)=G_{\phi(\alpha)}=G_{c} .
$$

STEP 3: Mimick strictly triangular.
$G_{c}=I$ if $f(c) \neq 0 . G=I+H$.
$f=f_{1} f_{2} \cdots f_{s}$ decomposition in irreducible factors.
Define $g:=\left(1-f_{i}^{q^{m}-1}\right)$. Then $g(c)=0$ if $f_{i}(c) \neq 0$, and $g(c)=1$ if $f_{i}(c)=0$.
let $f_{i}(\alpha)=0$. Consider $G_{\alpha}=I+h(\alpha, X)$. Define

$$
\tilde{G}_{i}:=I+\operatorname{gh}(Z, X)
$$

- If $f_{i}(c) \neq 0: g(c)=0$ hence $\left(\tilde{G}_{i}\right)_{c}=1$.
- If $f_{i}(c)=0$ then exists $\phi \in \operatorname{Gal}\left(\mathbb{F}_{q}: \mathbb{F}_{q}(\alpha)\right)$ such that

$$
\begin{aligned}
& \phi(\alpha)=c . \text { Now } \\
& \left(\tilde{G}_{i}\right)_{c}=\left(\tilde{G}_{i}\right)_{\phi(\alpha)}=\phi\left(\left(\tilde{G}_{i}\right)_{\alpha}\right)=\phi\left(G_{\alpha}\right)=G_{\phi(\alpha)}=G_{c} .
\end{aligned}
$$

Define $\tilde{G}:=\tilde{G}_{1} \tilde{G}_{2} \cdots \tilde{G}_{s}$.

Result said differently:

$$
\mathrm{GA}_{2}\left(\mathbb{F}_{q}[Z]\right) \subseteq \lim _{\rightarrow} \pi_{q^{m}}\left(\mathrm{TA}_{2}\left(\mathbb{F}_{q}[Z]\right)\right)
$$

To see that there exist non-tame automorphisms over \mathbb{F}_{p} we need a new approach.

To see that there exist non-tame automorphisms over \mathbb{F}_{p} we need a new approach.

For each extension $\mathbb{F}_{q^{m}}$ there's a mimicking tame map T_{m}.

To see that there exist non-tame automorphisms over \mathbb{F}_{p} we need a new approach.

For each extension $\mathbb{F}_{q^{m}}$ there's a mimicking tame map T_{m}. What if you fix T, and then let m run high? Does it reveal tameness?

To see that there exist non-tame automorphisms over \mathbb{F}_{p} we need a new approach.

For each extension $\mathbb{F}_{q^{m}}$ there's a mimicking tame map T_{m}. What if you fix T, and then let m run high? Does it reveal tameness?

Idea: for N Nagata, $\pi_{q^{m}}(N)$ is "nice".

To see that there exist non-tame automorphisms over \mathbb{F}_{p} we need a new approach.

For each extension $\mathbb{F}_{q^{m}}$ there's a mimicking tame map T_{m}. What if you fix T, and then let m run high? Does it reveal tameness? Idea: for N Nagata, $\pi_{q^{m}}(N)$ is "nice".
Start with $T:=E_{1} A_{1} \cdots E_{s} A_{s}$. If for all high $m, \pi_{q^{m}}(T)$ is "nice" like Nagata, then T is of length one.

To see that there exist non-tame automorphisms over \mathbb{F}_{p} we need a new approach.

For each extension $\mathbb{F}_{q^{m}}$ there's a mimicking tame map T_{m}. What if you fix T, and then let m run high? Does it reveal tameness? Idea: for N Nagata, $\pi_{q^{m}}(N)$ is "nice".
Start with $T:=E_{1} A_{1} \cdots E_{s} A_{s}$. If for all high $m, \pi_{q^{m}}(T)$ is "nice" like Nagata, then T is of length one. Hence, if N tame, then $N=E_{1}$. Contradiction.

To see that there exist non-tame automorphisms over \mathbb{F}_{p} we need a new approach.

For each extension $\mathbb{F}_{q^{m}}$ there's a mimicking tame map T_{m}. What if you fix T, and then let m run high? Does it reveal tameness? Idea: for N Nagata, $\pi_{q^{m}}(N)$ is "nice". Start with $T:=E_{1} A_{1} \cdots E_{s} A_{s}$. If for all high $m, \pi_{q^{m}}(T)$ is "nice" like Nagata, then T is of length one. Hence, if N tame, then $N=E_{1}$. Contradiction.

