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Linear algebra v.s. affine algebraic

geometry

Linear algebra is (in my opinion) the motivating factor for

affine algebraic geometry. Perhaps, one day, we will use

polynomial automorphisms in many cases where we use linear

maps. Linear algebra is one of the dominating factors in

spawning conjectures.
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Question 1: When V , W , U are vector spaces and

V × U = W × U , is V ∼= W ?

Question 2: When is a vector space V isomorphic to a vector

space W ?

Affine algebraic geometry:

Question 1: Let k be a field. Let U , V , W be k-varieties.

Suppose

U × W ∼= V × W . Does this imply U ∼= V ?

(Later today)
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Two Basic Questions in Affine Algebraic

Geometry

Q.2a:Are two given varieties isomorphic? (Are two given rings

isomorphic?)

Q.2b:Are two given varieties not isomorphic? (Are two given

rings not isomorphic?)

Most important case: when is a variety kn? (k a field.) When

is a ring a polynomial ring?
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Methods to distinguish varieties and rings

◮ Topology (homotopy theory, homotopy groups, etc.)

◮ (Basic) algebraic or geometric properties (singularities,

UFD, etc. etc.)

◮ Relatively new: certain group actions (Ga-actions,

derivations, etc.)



A motivating example: Koras-Russell

3-folds

1993: M. Koras and P. Russell tracked down a class of 3-folds

on C which were:

affine, smooth, diffeomorphic to R
6, + something extra.

Were they isomorphic to C
3?

Simplest example: X + X 2Y + Z 2 + T 3.

Topological arguments do not work, basic algebraic properties

do not work to distinguish this from C
3.
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A new method: Makar-Limanov invariant

Brilliant breakthrough by Leonid Makar-Limanov:

On the hypersurface X + X 2Y + Z 2 + T 3 in C
4, Isr.M.J:

Introduction of the AK-invariant—————- ML-invariant.
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Basics: derivations

Let A be a k-algebra, k a field. A derivation D : A −→ A is a

map satisfying

(1) D(a + b) = D(a) + D(b), λD(a) = D(λa) for all a, b ∈ A,

λ ∈ k .

(2) D(ab) = D(a)b + aD(b) for all a, b ∈ A.

A derivation on k[X1, . . . , Xn] will have the form:

a1
∂

∂X1
+ . . . + an

∂
∂Xn

for some ai ∈ k[X1, . . . , Xn].

D is called locally nilpotent if:

For all a ∈ A there exists m ∈ N such that Dm(a) = 0.

EXAMPLE: D = ∂
∂X1

on k[X1, . . . , Xn].
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Exponents of derivations

D locally nilpotent derivation, then

exp(D)(a) := a + D(a) + 1
2!

D2(a) + 1
3!

D3(a) + . . . is

well-defined homomorphism.

Inverse is exp(−D).

EXAMPLE: D = Y 2 ∂
∂X

+ Z ∂
∂Y

on C[X , Y , Z ]:

exp(D) = (exp(D)(X ), exp(D)(Y ), exp(D)(Z ))

= (X + Y 2 + YZ + 1
3
Z 2, Y + Z , Z )



LND equals k+ action (Ga-action)

Define A −→ A[T ] by

a −→ exp(TD)(a) = a + TD(a) + T 2

2!
D2(a) + T 3

3!
D3(a) + . . .

In case A = O(V ) then this gives an algebraic k+ action on

V :

Ga × V −→ V

t × v −→ exp(tD)(v)
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A a ring, AD := {a ∈ A | D(a) = 0} is called the kernel of the

derivation D.

Example: ∂X on C[X , Y , Z ].

Then C[X , Y , Z ]∂X = C[Y , Z ].

Example: Y ∂X + Z∂Y on C[X , Y , Z ].

Then C[X , Y , Z ]Y ∂X +Z∂Y = C[2XZ − Y 2, Z ].

In general: if trdeg(A) = n, then trdeg(AD) = n − 1. (AD

can be quite complicated, though.) But:

If D has a slice, an element s such that D(s) = 1, (think of

∂X ) then A = AD [s]. (C[X , Y , Z ]∂X [X ] = C[X , Y , Z ].)
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Using LNDs

How to recognize if a variety V is not C
n?

How to recognize if a ring A is not a polynomial ring?

A polynomial ring has MANY different kernels. Idea of

Makar-Limanov: study

ML(A) :=
⋂

D∈LND(A)

AD .

Notice:

ML(C[X , Y , Z ]) ⊆ C[X , Y , Z ]∂X ∩ C[X , Y , Z ]∂Y ∩ C[X , Y , Z ]∂Z

C[Y , Z ] ∩ C[X , Z ] ∩ C[X , Y ] = C.
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Example: A := C[X , Y , Z ]/(X 2Y − P(Z )). ML(A) = C[X ],

hence A is not a polynomial ring.

Hence X 2Y − P(Z ) = 0 is not isomorphic to C
3.
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In ’93 Russel and Koras constructed surfaces which were

topologically the same as C
3, but of which they didn’t know if

they were C
3.

Simplest example: V := X 2Y + X + Z 2 + T 3. Breakthrough

by Makar-Limanov:

ML(O(V )) = C[X ].

Proof is quite elaborate - using smart gradings, filtrations, etc.

etc.

Let me give an indication of how it works.
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Define A := C[X , Y , Z , T ]/(X 2Y + X + Z 2 + T 3). Define

grading on C[X , Y , Z , T ] by assigning weights to X , Y , Z , T :

w(X ) = −1, w(Y ) = 2, w(Z ) = w(T ) = 0. This defines a

semi-degree function on A (not necessarily

deg(ab) = deg(a)deg(b)). Using this degree function: make

graded ring GR1(A) ∼= C[X , Y , Z , T ]/(X 2Y + Z 2 + T 3).

Make another (different) grading, and do the same process:

GR2(GR1(A)) ∼= GR1(A).
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GR2GR1(A) ∼= GR1(A) ∼= C[X , Y , Z , T ]/(X 2Y + Z 2 + T 3).

Suppose D ∈ LND(A) such that D(X ) = f 6= 0.

Then, D̃ := gr2gr1(D) is an LND on Ã which is doubly
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A := C[X , Y , Z , T ]/(X 2Y + X + Z 2 + T 3), Ã :=

GR2GR1(A) ∼= GR1(A) ∼= C[X , Y , Z , T ]/(X 2Y + Z 2 + T 3).

Suppose D ∈ LND(A) such that D(X ) = f 6= 0.

Then, D̃ := gr2gr1(D) is an LND on Ã which is doubly

homogeneous, and it has D̃(X ) = f̃ 6= 0. Also f̃ is

homogeneous.

Since D̃(f ) = 0, . . . calculatecalculate. . . D̃ = 0, which is

not possible.



Makar-Limanov techniques

The strength of ML invariant comes because of the techniques

to compute it. Sometimes one can use these techniques,

sometimes not. But - there are cases where the ML invariant

will fail!
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Non-omnipotency of ML invariant

Example: Let A1 := C[X , Y , Z , T ]/(XY − ZT − 1), A2 :=

C[X , Y , Z , T ]/(XY − Z 2 − T 3). Both have many LNDs, for

example z∂y + x∂t on A1. It turns out that

ML(A1) = ML(A2) = C.
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Most rings have no locally nilpotent derivations.

A polynomial ring has many lnd’s.

A polynomial ring has many commuting lnd’s.

proposition: Let A is k-algebra, trdeg(A) = n. Let

D1, . . . , Dn be commuting lnd’s on A which are linearly

independent over A. Then

(i). A = k[s1, . . . , sn] a polynomial ring in n variables over k .

(ii). Di = ∂
∂si

.
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Let A := k[X1, . . . , Xn], and let D1, . . . , Dn−1 ∈ LND(A) be

◮ commuting,

◮ linearly independent over A.

Then AD1,...,Dn−1 = k[f ] and f is a coordinate.

Proven for n = 2 (Rentschler), n = 3 (Maubach). Dimension

4 seems very far away. . .
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D1 mod (x − α), D2 mod (x − α) are independent over

A/(x − α) except case α = 0.
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D1, . . . , Dn ∈ LND(A), commuting, linearly independent over A.

Theorem: Now AD1,...,Dn = k[f ] for some f ∈ A\k , and

1. . D1 mod (f − α), . . . , Dn mod (f − α)

independent over A/(f − α)

⇒ A/(f − α) ∼= C
[n].

There are only finitely many α ∈ C for which D1

mod (f − α), . . . , Dn mod (f − α) are dependent over

A/(f − α).

2. . D1 mod (f − α), . . . , Dn mod (f − α) independent

over A/(f − α) for all α ∈ k

⇒ A ∼= C
[n+1], f coordinate.
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Let U , V be k-varieties. Suppose

U × k ∼= V × k . Is U ∼= V ?

Ring theoretic version:

Suppose A, B are finitely generated k-algebras. Suppose

A[X ] ∼= B[X ]. Is A ∼= B?
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cancellation problem

Problem: “The” cancellation problem:

V × C ∼= C
n+1 −→ V ∼= C

n.

(Abhyankar, Eakin, Heinzer (1972)): V , W curves over

any field. If V × kn ∼= W × kn then V ∼= W .

(Fujita, Miyanishi, Sugie (1980), Russell (1981)): V

affine surface over field of char=0 such that V × kn ∼= kn+2,

then V ∼= k2. (Recent purely algebraic proof by

Makar-Limanov and Crachiola.)
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First counterexamples over R

(Hoechster (1972):) Let M be R-module, define

TR(M) := R ⊕ M ⊕ (M ⊗ M) ⊕ (M ⊗ M ⊗ M) ⊕ . . .

SR(M) := TR(M)/(m1 ⊗ m2 − m2 ⊗ m1 | m1, m2 ∈ M)

Let R := R[x , y , z ]/(x2 + y 2 + z2 − 1) and ϕ : R3 −→ R

given by ϕ(r1, r2, r3) = r1x̄ + r2ȳ + r3z̄ . Then

ker(ϕ) ⊕ R ∼= R3 but ker(ϕ) 6∼= R2. Consequently,

A := SR(ker(ϕ)) satisfies A[X ] ∼=R R[X , Y , Z ] but

A 6∼=R R[X , Y ].
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Preprint of Danielewski(83?): Examples over C!

Let V1 := {xy − z2 + 1 = 0}, V2 = {x2y − z2 + 1}. Then

V1 × C ∼= V2 × C but V1 6= V2.

Idea of proof:
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V1 := {xy − z2 + 1 = 0}, V2 = {x2y − z2 + 1}, B1 is line with

double origin

V1 × C ∼= V1 ×B1 V2
∼= V2 × C

ւ ց

V1 V2

ց ւ

B1
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Danielewski surfaces are not UFDs. In fact:

If V , W C-algebras of dim=2, then

V ×C C ∼= W ×C C −→ V ∼= W .

(Due to Miyanishi)
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A12[X ] ∼= A12 ⊗R A34
∼= A34[X ]

ր տ

A12 A34

տ ր

(rigid ring R)

How to prove that A12 is not always isomorphic to A34?

Amongst others - use ML(A12) = ML(A34) = R! ML invariant

is invariant subring. −→ determine automorphism group of

Aij , etc. . . A12 6∼= A34.

****THANK YOU****


