(Almost) rigid rings and infinitely generated invariants.

Stefan Maubach

October 2007

Some Notations

If A is a ring, then DER(A), LND(A) is set of (locally nilpotent) derivations on A. $LND^*(A) := LND(A) \setminus \{0\}.$ $\mathbb{C}^{[n]} := \mathbb{C}[X_1, \dots, X_n]$

A ring A is called rigid if $LND(A) = \{0\}$. Example: \mathbb{C} .

A ring A is called rigid if $LND(A) = \{0\}$. Example: \mathbb{C} . A ring A is called almost rigid if all $D \in LND^*(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" \iff "ML(A) = HD(A)"

A ring A is called rigid if $LND(A) = \{0\}$. Example: \mathbb{C} . A ring A is called almost rigid if all $D \in LND^*(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" \iff "ML(A) = HD(A)" A ring A is called not rigid at all if it is not (almost) rigid. Example: $\mathbb{C}[X, Y]$.

- A ring A is called rigid if $LND(A) = \{0\}$. Example: \mathbb{C} . A ring A is called almost rigid if all $D \in LND^*(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" \iff
- "ML(A) = HD(A)"
- A ring A is called not rigid at all if it is not (almost) rigid. Example: $\mathbb{C}[X, Y]$.
- If you grab a "random" prime ideal $\mathfrak{p} \in f(X_1, \ldots, X_n) \in \mathbb{C}^{[n]}$, then it *seems* like $\mathbb{C}^{[n]}/\mathfrak{p}$ is with chance 1 a rigid ring. (Perhaps even replace "prime ideal" by "radical ideal".)

- A ring A is called rigid if $LND(A) = \{0\}$. Example: \mathbb{C} . A ring A is called almost rigid if all $D \in LND^*(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" \iff
- "ML(A) = HD(A)"
- A ring A is called not rigid at all if it is not (almost) rigid. Example: $\mathbb{C}[X, Y]$.
- If you grab a "random" prime ideal $\mathfrak{p} \in f(X_1, \ldots, X_n) \in \mathbb{C}^{[n]}$, then it *seems* like $\mathbb{C}^{[n]}/\mathfrak{p}$ is with chance 1 a rigid ring.
- (Perhaps even replace "prime ideal" by "radical ideal".)
- I.e. rigid rings are important as they seem to be "almost all rings".

- A ring A is called rigid if $LND(A) = \{0\}$. Example: \mathbb{C} . A ring A is called almost rigid if all $D \in LND^*(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" \iff
- "ML(A) = HD(A)"
- A ring A is called not rigid at all if it is not (almost) rigid. Example: $\mathbb{C}[X, Y]$.
- If you grab a "random" prime ideal $\mathfrak{p} \in f(X_1, \ldots, X_n) \in \mathbb{C}^{[n]}$, then it *seems* like $\mathbb{C}^{[n]}/\mathfrak{p}$ is with chance 1 a rigid ring.
- (Perhaps even replace "prime ideal" by "radical ideal".)
- I.e. rigid rings are important as they seem to be "almost all rings".
- But it is not that easy to prove that something is rigid!

Method 1: Makar-Limanov techniques Consider $A := \mathbb{C}^{[n]}/\mathfrak{p}$. How to show that A is rigid?

Method 1: Makar-Limanov techniques

Consider $A := \mathbb{C}^{[n]}/\mathfrak{p}$. How to show that A is rigid? Choose a smart *degree function* on A, given by a *grading* on $\mathbb{C}^{[n]}$. Write \widehat{f} for "highest degree part of f".

Method 1: Makar-Limanov techniques

Consider $A := \mathbb{C}^{[n]}/\mathfrak{p}$. How to show that A is rigid? Choose a smart *degree function* on A, given by a *grading* on $\mathbb{C}^{[n]}$. Write \widehat{f} for "highest degree part of f". If $\widehat{A} := \mathbb{C}^{[n]}/\mathfrak{p}$ is rigid, then A rigid!

Example

Let

 $A := \mathbb{C}[x, y, z] = \mathbb{C}[X, Y, Z]/(X^aY^b + Z^c + XYZ + X + Y + Z)$ where $a, b, c \ge 2$. Choose a degree function on $\mathbb{C}[X, Y, Z]$ such that top degree part is $X^aY^b + Z^c$.

Theorem: there exist no homogeneous nonzero LNDs on $\mathbb{C}[X, Y, Z]/(X^aY^b + Z^c).$

Corollary: there exist no nonzero LNDs on

$$\mathbb{C}[X, Y, Z]/(X^aY^b + Z^c).$$

Corollary: there exist no nonzero LNDs on A.

Method 2: parametrization techniques

Method 2: parametrization techniques Let A be a domain, $D \in LND(A)$.

Method 2: parametrization techniques Let A be a domain, $D \in LND(A)$. If $D \neq 0$, then we embed $A \longrightarrow K[S]$. Here K is algebraic closure of A^D . S = p/D(p), where $p \in A$ is a preslice $(D(p) \neq 0, D^2(p) = 0)$. This is simple but incredibly useful!!

Method 2: parametrization techniques Let A be a domain, $D \in LND(A)$. If $D \neq 0$, then we embed $A \longrightarrow K[S]$. Here K is algebraic closure of A^D . S = p/D(p), where $p \in A$ is a preslice $(D(p) \neq 0, D^2(p) = 0)$. This is simple but incredibly useful!! Let me give some examples:

If $A = k[a_1, ..., a_n]$ domain, $D \in LND^*(A)$, $A \longrightarrow K[S]$ embedding.

If $A = k[a_1, ..., a_n]$ domain, $D \in \text{LND}^*(A)$, $A \longrightarrow K[S]$ embedding. Then each $a_i = f_i(S) \in K[S]$.

If $A = k[a_1, ..., a_n]$ domain, $D \in LND^*(A)$, $A \longrightarrow K[S]$ embedding. Then each $a_i = f_i(S) \in K[S]$. **Theorem:** Let $D \in LND(A)$ such that $D^n(a) = \lambda a$ for some $a, b \in A$. Then D(a) = 0. (Most often this theorem is stated for n = 1.)

If $A = k[a_1, ..., a_n]$ domain, $D \in LND^*(A)$, $A \longrightarrow K[S]$ embedding. Then each $a_i = f_i(S) \in K[S]$. **Theorem:** Let $D \in LND(A)$ such that $D^n(a) = \lambda a$ for some $a, b \in A$. Then D(a) = 0. (Most often this theorem is stated for n = 1.) **Proof:** $f^{(n)} = gf$ can only be true if g = 0 or f = 0.

If $A = k[a_1, \ldots, a_n]$ domain, $D \in \text{LND}^*(A)$, $A \longrightarrow K[S]$ embedding. Then each $a_i = f_i(S) \in K[S]$. **Theorem:** Let $D \in LND(A)$ such that $D^n(a) = \lambda a$ for some $a, b \in A$. Then D(a) = 0. (Most often this theorem is stated for n = 1.) **Proof:** $f^{(n)} = gf$ can only be true if g = 0 or f = 0. Problem on a domain reduced to a problem on polynomials on K[S].

If $A = k[a_1, \ldots, a_n]$ domain, $D \in \text{LND}^*(A)$, $A \longrightarrow K[S]$ embedding. Then each $a_i = f_i(S) \in K[S]$. **Theorem:** Let $D \in LND(A)$ such that $D^n(a) = \lambda a$ for some <u> $a, b \in A$. Then</u> D(a) = 0. (Most often this theorem is stated for $n = \underline{1}$.) **Proof:** $f^{(n)} = gf$ can only be true if g = 0 or f = 0. Problem on a domain reduced to a problem on polynomials on K[S].

Let's do another one!

Let A be a domain and let D be a derivation satisfying aD(b) = cbD(a) for some "generic" $a, b, c \in A$. Then D(a) = D(b) = 0.

Let A be a domain and let D be a derivation satisfying aD(b) = cbD(a) for some "generic" $a, b, c \in A$. Then D(a) = D(b) = 0. **Theorem:** Let A be a domain and let D be a derivation that

satisfies $\lambda bD(a) = caD(b)$, where $\lambda \in A^D$, $a, b, c \in A$, and $c/\lambda \notin \mathbb{Q}^+$. Then D = 0.

Let A be a domain and let D be a derivation satisfying aD(b) = cbD(a) for some "generic" $a, b, c \in A$. Then D(a) = D(b) = 0.

Theorem: Let A be a domain and let D be a derivation that satisfies $\lambda bD(a) = caD(b)$, where $\lambda \in A^D$, $a, b, c \in A$, and $c/\lambda \notin \mathbb{Q}^+$. Then D = 0.

Proof: Becomes $\lambda gf' = hfg'$ where $f, g, h \in K[S], \lambda \in K$.

Let A be a domain and let D be a derivation satisfying aD(b) = cbD(a) for some "generic" $a, b, c \in A$. Then D(a) = D(b) = 0.

Theorem: Let A be a domain and let D be a derivation that satisfies $\lambda bD(a) = caD(b)$, where $\lambda \in A^D$, $a, b, c \in A$, and $c/\lambda \notin \mathbb{Q}^+$. Then D = 0.

Proof: Becomes $\lambda gf' = hfg'$ where $f, g, h \in K[S], \lambda \in K$. Suppose f, g are not constant, then h is constant.

Let A be a domain and let D be a derivation satisfying aD(b) = cbD(a) for some "generic" $a, b, c \in A$. Then D(a) = D(b) = 0. **Theorem:** Let A be a domain and let D be a derivation that

satisfies $\lambda bD(a) = caD(b)$, where $\lambda \in A^D$, $a, b, c \in A$, and $c/\lambda \notin \mathbb{Q}^+$. Then D = 0.

Proof: Becomes $\lambda gf' = hfg'$ where $f, g, h \in K[S], \lambda \in K$. Suppose f, g are not constant, then h is constant. If deg(f) = n, deg(g) = m, then highest degree term: $n\lambda S^{n+m-1} = mhS^{n+m-1}$.

Let A be a domain and let D be a derivation satisfying aD(b) = cbD(a) for some "generic" $a, b, c \in A$. Then D(a) = D(b) = 0.

Theorem: Let A be a domain and let D be a derivation that satisfies $\lambda bD(a) = caD(b)$, where $\lambda \in A^D$, $a, b, c \in A$, and $c/\lambda \notin \mathbb{Q}^+$. Then D = 0.

Proof: Becomes $\lambda gf' = hfg'$ where $f, g, h \in K[S], \lambda \in K$. Suppose f, g are not constant, then h is constant. If deg(f) = n, deg(g) = m, then highest degree term: $n\lambda S^{n+m-1} = mhS^{n+m-1}$. Thus $h/\lambda = n/m \in \mathbb{Q}^+$. Contradiction, so f, g constant.

Always Mason's theorem!

Mason's Theorem: Let $f, g, h \in K[X]$ not all constant, gcd(f, g, h) = 1 and f + g = h. Then $deg(f) < \mathcal{N}(fgh)$ (\mathcal{N} is number of zeroes). **Generalization:** (de Bondt) Let $f_1, \ldots, f_n \in K[X]$ not all constant, $f_1 + \ldots + f_n = 0$, and some requirement replacing gcd(f, g, h) = 1. Then $deg(f_1) < (n - 2)\mathcal{N}(f_1f_2 \cdots f_n)$.

The Typical Example: Brieskorn-Catalan-Fermat

Let
$$A := \mathbb{C}^{[n]}/(X_1^{d_1} + \ldots + X_n^{d_n}), n \ge 3$$
. If $\frac{1}{d_1} + \ldots + \frac{1}{d_n} \le \frac{1}{n-2}$

then A is rigid.

Well, first: a motivation.

Well, first: a motivation. In a paper of *Gurjar, Masuda, Miyanishi, Russell*:

Question: Can the Derksen invariant be infinitely generated?

Well, first: a motivation. In a paper of *Gurjar, Masuda, Miyanishi, Russell*:

Question: Can the Derksen invariant be infinitely generated? Ok, now example:

Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, $F_i \in \mathbb{C}^{[n]}$.

Well, first: a motivation. In a paper of *Gurjar, Masuda, Miyanishi, Russell*:

Question: Can the Derksen invariant be infinitely generated? Ok, now example:

Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, $F_i \in \mathbb{C}^{[n]}$. If

$$\frac{1}{d_1} + \ldots + \frac{1}{d_n} \le \frac{1}{n-2}$$

(+some extra requirement) then any $D \in LND(A)$ satisfies $D(F_1) = \ldots = D(F_n) = 0.$

Well, first: a motivation. In a paper of *Gurjar*, *Masuda*, *Miyanishi*, *Russell*:

Question: Can the Derksen invariant be infinitely generated? Ok, now example:

Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, $F_i \in \mathbb{C}^{[n]}$. If

$$\frac{1}{d_1} + \ldots + \frac{1}{d_n} \le \frac{1}{n-2}$$

(+some extra requirement) then any $D \in LND(A)$ satisfies $D(F_1) = \ldots = D(F_n) = 0.$

IDEA: take one of those examples of LNDs on $\mathbb{C}^{[n]}$ that have infinitely generated kernel, and *force* this to be the *only* derivation that exists!

Known: Robert's derivation: $D_R := X^3 \partial_S + Y^3 \partial_T + Z^3 \partial_U + X^2 Y^2 Z^2 \partial_V$ has infinitely generated kernel.

Known: Robert's derivation: $D_R := X^3 \partial_S + Y^3 \partial_T + Z^3 \partial_U + X^2 Y^2 Z^2 \partial_V$ has infinitely generated kernel. Let $F_1 := X^3 T - Y^3 S$, $F_2 := X^3 U - Z^3 S$, $F_3 := Y^2 Z^2 S - XV$.

Known: Robert's derivation: $D_R := X^3 \partial_S + Y^3 \partial_T + Z^3 \partial_U + X^2 Y^2 Z^2 \partial_V$ has infinitely generated kernel. Let $F_1 := X^3 T - Y^3 S$, $F_2 := X^3 U - Z^3 S$, $F_3 := Y^2 Z^2 S - XV$. If $D(F_1) = D(F_2) = D(F_3) = 0$, then $D = D_R$ or D = 0.

Known: Robert's derivation: $D_{\rm R} := X^3 \partial_{\rm S} + Y^3 \partial_{\rm T} + Z^3 \partial_{\rm U} + X^2 Y^2 Z^2 \partial_{\rm V}$ has infinitely generated kernel. Let $F_1 := X^3 T - Y^3 S$, $F_2 := X^3 U - Z^3 S$, $F_3 := Y^2 Z^2 S - XV$. If $D(F_1) = D(F_2) = D(F_3) = 0$, then $D = D_R$ or D = 0. Let's make a ring where Robert's derivation is the only one that exists!

Robert's derivation: $X^3\partial_5 + Y^3\partial_7 + Z^3\partial_U + X^2Y^2Z^2\partial_V$. Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, where $F_1 := X^3T - Y^3S, F_2 := X^3U - Z^3S, F_3 := Y^2Z^2S - XV$.

Robert's derivation: $X^3 \partial_S + Y^3 \partial_T + Z^3 \partial_U + X^2 Y^2 Z^2 \partial_V$. Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, where $F_1 := X^3 T - Y^3 S, F_2 := X^3 U - Z^3 S, F_3 := Y^2 Z^2 S - XV$. Let's just try this and hope it works!

Robert's derivation: $X^3\partial_S + Y^3\partial_T + Z^3\partial_U + X^2Y^2Z^2\partial_V$. Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, where $F_1 := X^3T - Y^3S, F_2 := X^3U - Z^3S, F_3 := Y^2Z^2S - XV$. Let's just try this and hope it works! Actually, this is where the Real Work starts!

Robert's derivation: $X^3\partial_S + Y^3\partial_T + Z^3\partial_U + X^2Y^2Z^2\partial_V$. Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, where $F_1 := X^3T - Y^3S$, $F_2 := X^3U - Z^3S$, $F_3 := Y^2Z^2S - XV$. Let's just try this and hope it works! Actually, this is where the Real Work starts! A is domain?

Robert's derivation: $X^3\partial_S + Y^3\partial_T + Z^3\partial_U + X^2Y^2Z^2\partial_V$. Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, where $F_1 := X^3T - Y^3S$, $F_2 := X^3U - Z^3S$, $F_3 := Y^2Z^2S - XV$. Let's just try this and hope it works! Actually, this is where the Real Work starts! A is domain? Yes, for some d_i .

Robert's derivation: $X^3\partial_S + Y^3\partial_T + Z^3\partial_U + X^2Y^2Z^2\partial_V$. Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, where $F_1 := X^3T - Y^3S$, $F_2 := X^3U - Z^3S$, $F_3 := Y^2Z^2S - XV$. Let's just try this and hope it works! Actually, this is where the Real Work starts! A is domain? Yes, for some d_i . A is UFD?

Robert's derivation: $X^3\partial_S + Y^3\partial_T + Z^3\partial_U + X^2Y^2Z^2\partial_V$. Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, where $F_1 := X^3T - Y^3S$, $F_2 := X^3U - Z^3S$, $F_3 := Y^2Z^2S - XV$. Let's just try this and hope it works! Actually, this is where the Real Work starts! A is domain? Yes, for some d_i . A is UFD? Yes, but quite nontrivial!

Robert's derivation: $X^3 \partial_{S} + Y^3 \partial_{T} + Z^3 \partial_{U} + X^2 Y_{-}^2 Z^2 \partial_{V}$. Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, where $F_1 := X^3 T - Y^3 S, F_2 := X^3 U - Z^3 S, F_3 := Y^2 Z^2 S - XV.$ Let's just try this and hope it works! Actually, this is where the Real Work starts! A is domain? Yes, for some d_i . A is UFD? Yes, but quite nontrivial! A stays infinitely generated?

Robert's derivation: $X^3 \partial_{S} + Y^3 \partial_{T} + Z^3 \partial_{U} + X^2 Y_{-}^2 Z^2 \partial_{V}$. Let $A := \mathbb{C}^{[n]}/(F_1^{d_1} + \ldots + F_n^{d_n})$ be a domain, where $F_1 := X^3 T - Y^3 S, F_2 := X^3 U - Z^3 S, F_3 := Y^2 Z^2 S - XV.$ Let's just try this and hope it works! Actually, this is where the Real Work starts! A is domain? Yes, for some d_i . A is UFD? Yes, but quite nontrivial! A stays infinitely generated? Yes - but this is also very nontrivial, and a tad technical.

Drop UFD!

Drop UFD! Idea: take $D = T^3 \partial_X - T^2 \partial_Y$ on $\mathbb{C}[T^2, T^3][X, Y]$.

Drop UFD! Idea: take $D = T^3 \partial_X - T^2 \partial_Y$ on $\mathbb{C}[T^2, T^3][X, Y]$. Define $A := \mathbb{C}[T^2, T^3, X, Y, z] :=$ $\mathbb{C}[T^2, T^3, X, Y, Z]/(Z^2 - T^4(T^2X + T^3Y)^2 - 1)$.

Drop UFD! Idea: take $D = T^3 \partial_X - T^2 \partial_Y$ on $\mathbb{C}[T^2, T^3][X, Y]$. Define $A := \mathbb{C}[T^2, T^3, X, Y, z] :=$ $\mathbb{C}[T^2, T^3, X, Y, Z]/(Z^2 - T^4(T^2X + T^3Y)^2 - 1)$. Now $0 = D(1) = D(z^2 - T^4(T^2X + T^3Y)^2) =$ $D((z - T^2(T^2X + T^3Y))(z + T^2(T^2X + T^3Y)))$

Drop UFD! Idea: take $D = T^3 \partial_X - T^2 \partial_Y$ on $\mathbb{C}[T^2, T^3][X, Y]$. Define $A := \mathbb{C}[T^2, T^3, X, Y, z] :=$ $\mathbb{C}[T^2, T^3, X, Y, Z]/(Z^2 - T^4(T^2X + T^3Y)^2 - 1)$. Now $0 = D(1) = D(z^2 - T^4(T^2X + T^3Y)^2) =$ $D((z - T^2(T^2X + T^3Y))(z + T^2(T^2X + T^3Y)))$ so $0 = D(z) = D(T^2(T^2X + T^3Y))$

Drop UFD! Idea: take $D = T^3 \partial_X - T^2 \partial_Y$ on $\mathbb{C}[T^2, T^3][X, Y]$. Define $A := \mathbb{C}[T^2, T^3, X, Y, z] :=$ $\mathbb{C}[T^2, T^3, X, Y, Z]/(Z^2 - T^4(T^2X + T^3Y)^2 - 1)$. Now $0 = D(1) = D(z^2 - T^4(T^2X + T^3Y)^2) =$ $D((z - T^2(T^2X + T^3Y))(z + T^2(T^2X + T^3Y)))$ so $0 = D(z) = D(T^2(T^2X + T^3Y))$ etc...D is multiple of $T^3\partial_{\mathbf{x}} - T^2\partial_{\mathbf{y}}$

Now easy: $A^D = \mathbb{C}[T, z, X + TY] \cap A$ not finitely generated.