(Almost) rigid rings and infinitely generated invariants.

Stefan Maubach

October 2007

Some Notations

If A is a ring, then
$\operatorname{DER}(A), \operatorname{LND}(A)$ is set of (locally nilpotent) derivations on A.
$\operatorname{LND}^{*}(A):=\operatorname{LND}(A) \backslash\{0\}$.
$\mathbb{C}^{[n]}:=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$

Rigid, Almost Rigid, Not Rigid At All

A ring A is called rigid if $\operatorname{LND}(A)=\{0\}$. Example: \mathbb{C}.

Rigid, Almost Rigid, Not Rigid At All

A ring A is called rigid if $\operatorname{LND}(A)=\{0\}$. Example: \mathbb{C}. A ring A is called almost rigid if all $D \in \operatorname{LND}^{*}(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" $" M L(A)=H D(A) "$

Rigid, Almost Rigid, Not Rigid At All

A ring A is called rigid if $\operatorname{LND}(A)=\{0\}$. Example: \mathbb{C}. A $\operatorname{ring} A$ is called almost rigid if all $D \in \operatorname{LND}^{*}(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" \Longleftrightarrow " $M L(A)=H D(A) "$
A ring A is called not rigid at all if it is not (almost) rigid.
Example: $\mathbb{C}[X, Y]$.

Rigid, Almost Rigid, Not Rigid At All

A ring A is called rigid if $\operatorname{LND}(A)=\{0\}$. Example: \mathbb{C}.
A ring A is called almost rigid if all $D \in \operatorname{LND}^{*}(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" \Longleftrightarrow " $M L(A)=H D(A)$ "
A ring A is called not rigid at all if it is not (almost) rigid.
Example: $\mathbb{C}[X, Y]$.
If you grab a "random" prime ideal $\mathfrak{p} \in f\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{[n]}$, then it seems like $\mathbb{C}^{[n]} / \mathfrak{p}$ is with chance 1 a rigid ring.
(Perhaps even replace "prime ideal" by "radical ideal".)

Rigid, Almost Rigid, Not Rigid At All

A ring A is called rigid if $\operatorname{LND}(A)=\{0\}$. Example: \mathbb{C}.
A $\operatorname{ring} A$ is called almost rigid if all $D \in \operatorname{LND}^{*}(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" \Longleftrightarrow " $M L(A)=H D(A) "$
A ring A is called not rigid at all if it is not (almost) rigid. Example: $\mathbb{C}[X, Y]$.
If you grab a "random" prime ideal $\mathfrak{p} \in f\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{[n]}$, then it seems like $\mathbb{C}^{[n]} / \mathfrak{p}$ is with chance 1 a rigid ring.
(Perhaps even replace "prime ideal" by "radical ideal".)
l.e. rigid rings are important as they seem to be "almost all rings".

Rigid, Almost Rigid, Not Rigid At All

A ring A is called rigid if $\operatorname{LND}(A)=\{0\}$. Example: \mathbb{C}.
A $\operatorname{ring} A$ is called almost rigid if all $D \in \operatorname{LND}^{*}(A)$ have the same kernel. Example: $\mathbb{C}[X]$. "Almost rigid" \Longleftrightarrow " $M L(A)=H D(A) "$
A ring A is called not rigid at all if it is not (almost) rigid. Example: $\mathbb{C}[X, Y]$.
If you grab a "random" prime ideal $\mathfrak{p} \in f\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{[n]}$, then it seems like $\mathbb{C}^{[n]} / \mathfrak{p}$ is with chance 1 a rigid ring.
(Perhaps even replace "prime ideal" by "radical ideal".)
l.e. rigid rings are important as they seem to be "almost all rings"
But - it is not that easy to prove that something is rigid!

How to prove something is rigid?

Method 1: Makar-Limanov techniques
Consider $A:=\mathbb{C}^{[n]} / \mathfrak{p}$. How to show that A is rigid?

How to prove something is rigid?

Method 1: Makar-Limanov techniques
Consider $A:=\mathbb{C}^{[n]} / \mathfrak{p}$. How to show that A is rigid? Choose a smart degree function on A, given by a grading on $\mathbb{C}^{[n]}$. Write \widehat{f} for "highest degree part of f ".

How to prove something is rigid?

Method 1: Makar-Limanov techniques
Consider $A:=\mathbb{C}^{[n]} / \mathfrak{p}$. How to show that A is rigid? Choose a smart degree function on A, given by a grading on $\mathbb{C}^{[n]}$. Write \widehat{f} for "highest degree part of f ".
If $\widehat{A}:=\mathbb{C}^{[n]} / \widehat{p}$ is rigid, then A rigid!

Example

Let
$A:=\mathbb{C}[x, y, z]=\mathbb{C}[X, Y, Z] /\left(X^{a} Y^{b}+Z^{c}+X Y Z+X+Y+Z\right)$
where $a, b, c \geq 2$. Choose a degree function on $\mathbb{C}[X, Y, Z]$
such that top degree part is $X^{a} Y^{b}+Z^{c}$.
Theorem: there exist no homogeneous nonzero LNDs on
$\mathbb{C}[X, Y, Z] /\left(X^{a} Y^{b}+Z^{c}\right)$.
Corollary: there exist no nonzero LNDs on
$\mathbb{C}[X, Y, Z] /\left(X^{a} Y^{b}+Z^{c}\right)$.
Corollary: there exist no nonzero LNDs on A.

How to prove something is rigid?

Method 2: parametrization techniques

How to prove something is rigid?

Method 2: parametrization techniques
Let A be a domain, $D \in \operatorname{LND}(A)$.

How to prove something is rigid?

Method 2: parametrization techniques
Let A be a domain, $D \in \operatorname{LND}(A)$.
If $D \neq 0$, then we embed $A \longrightarrow K[S]$.
Here K is algebraic closure of A^{D}. $S=p / D(p)$, where $p \in A$ is a preslice $\left(D(p) \neq 0, D^{2}(p)=0\right)$.
This is simple but incredibly useful!!

How to prove something is rigid?

Method 2: parametrization techniques
Let A be a domain, $D \in \operatorname{LND}(A)$.
If $D \neq 0$, then we embed $A \longrightarrow K[S]$.
Here K is algebraic closure of A^{D}. $S=p / D(p)$, where $p \in A$ is a preslice $\left(D(p) \neq 0, D^{2}(p)=0\right)$.
This is simple but incredibly useful!!
Let me give some examples:

Parametrization Technique

If $A=k\left[a_{1}, \ldots, a_{n}\right]$ domain, $D \in \operatorname{LND}^{*}(A), A \longrightarrow K[S]$ embedding.

Parametrization Technique

If $A=k\left[a_{1}, \ldots, a_{n}\right]$ domain, $D \in \operatorname{LND}^{*}(A), A \longrightarrow K[S]$ embedding. Then each $a_{i}=f_{i}(S) \in K[S]$.

Parametrization Technique

If $A=k\left[a_{1}, \ldots, a_{n}\right]$ domain, $D \in \operatorname{LND}^{*}(A), A \longrightarrow K[S]$ embedding. Then each $a_{i}=f_{i}(S) \in K[S]$.
Theorem: Let $D \in \operatorname{LND}(A)$ such that $D^{n}(a)=\lambda$ a for some $a, b \in A$. Then $D(a)=0$. (Most often this theorem is stated for $n=1$.)

Parametrization Technique

If $A=k\left[a_{1}, \ldots, a_{n}\right]$ domain, $D \in \operatorname{LND}^{*}(A), A \longrightarrow K[S]$ embedding. Then each $a_{i}=f_{i}(S) \in K[S]$.
Theorem: Let $D \in \operatorname{LND}(A)$ such that $D^{n}(a)=\lambda a$ for some $a, b \in A$. Then $D(a)=0$. (Most often this theorem is stated for $n=1$.)
Proof: $f^{(n)}=g f$ can only be true if $g=0$ or $f=0$.

Parametrization Technique

If $A=k\left[a_{1}, \ldots, a_{n}\right]$ domain, $D \in \operatorname{LND}^{*}(A), A \longrightarrow K[S]$
embedding. Then each $a_{i}=f_{i}(S) \in K[S]$.
Theorem: Let $D \in \operatorname{LND}(A)$ such that $D^{n}(a)=\lambda a$ for some $a, b \in A$. Then $D(a)=0$. (Most often this theorem is stated for $n=1$.)
Proof: $f^{(n)}=g f$ can only be true if $g=0$ or $f=0$.
Problem on a domain reduced to a problem on polynomials on $K[S]$.

Parametrization Technique

If $A=k\left[a_{1}, \ldots, a_{n}\right]$ domain, $D \in \operatorname{LND}^{*}(A), A \longrightarrow K[S]$
embedding. Then each $a_{i}=f_{i}(S) \in K[S]$.
Theorem: Let $D \in \operatorname{LND}(A)$ such that $D^{n}(a)=\lambda a$ for some $a, b \in A$. Then $D(a)=0$. (Most often this theorem is stated for $n=1$.)
Proof: $f^{(n)}=g f$ can only be true if $g=0$ or $f=0$.
Problem on a domain reduced to a problem on polynomials on $K[S]$.
Let's do another one!

Parametrization Technique

Let A be a domain and let D be a derivation satisfying $a D(b)=c b D(a)$ for some "generic" $a, b, c \in A$. Then $D(a)=D(b)=0$.

Parametrization Technique

Let A be a domain and let D be a derivation satisfying $a D(b)=c b D(a)$ for some "generic" $a, b, c \in A$. Then $D(a)=D(b)=0$.
Theorem: Let A be a domain and let D be a derivation that satisfies $\lambda b D(a)=c a D(b)$, where $\lambda \in A^{D}, a, b, c \in A$, and $c / \lambda \notin \mathbb{Q}^{+}$. Then $D=0$.

Parametrization Technique

Let A be a domain and let D be a derivation satisfying
$a D(b)=c b D(a)$ for some "generic" $a, b, c \in A$. Then $D(a)=D(b)=0$.
Theorem: Let A be a domain and let D be a derivation that satisfies $\lambda b D(a)=c a D(b)$, where $\lambda \in A^{D}, a, b, c \in A$, and $c / \lambda \notin \mathbb{Q}^{+}$. Then $D=0$.
Proof: Becomes $\lambda g f^{\prime}=h f g^{\prime}$ where $f, g, h \in K[S], \lambda \in K$.

Parametrization Technique

Let A be a domain and let D be a derivation satisfying
$a D(b)=c b D(a)$ for some "generic" $a, b, c \in A$. Then $D(a)=D(b)=0$.
Theorem: Let A be a domain and let D be a derivation that satisfies $\lambda b D(a)=c a D(b)$, where $\lambda \in A^{D}, a, b, c \in A$, and $c / \lambda \notin \mathbb{Q}^{+}$. Then $D=0$.
Proof: Becomes $\lambda g f^{\prime}=h f g^{\prime}$ where $f, g, h \in K[S], \lambda \in K$.
Suppose f, g are not constant, then h is constant.

Parametrization Technique

Let A be a domain and let D be a derivation satisfying $a D(b)=c b D(a)$ for some "generic" $a, b, c \in A$. Then $D(a)=D(b)=0$.
Theorem: Let A be a domain and let D be a derivation that satisfies $\lambda b D(a)=c a D(b)$, where $\lambda \in A^{D}, a, b, c \in A$, and $c / \lambda \notin \mathbb{Q}^{+}$. Then $D=0$.
Proof: Becomes $\lambda g f^{\prime}=h f g^{\prime}$ where $f, g, h \in K[S], \lambda \in K$.
Suppose f, g are not constant, then h is constant. If $\operatorname{deg}(f)=n, \operatorname{deg}(g)=m$, then highest degree term: $n \lambda S^{n+m-1}=m h S^{n+m-1}$.

Parametrization Technique

Let A be a domain and let D be a derivation satisfying
$a D(b)=c b D(a)$ for some "generic" $a, b, c \in A$. Then $D(a)=D(b)=0$.
Theorem: Let A be a domain and let D be a derivation that satisfies $\lambda b D(a)=c a D(b)$, where $\lambda \in A^{D}, a, b, c \in A$, and $c / \lambda \notin \mathbb{Q}^{+}$. Then $D=0$.
Proof: Becomes $\lambda g f^{\prime}=h f g^{\prime}$ where $f, g, h \in K[S], \lambda \in K$.
Suppose f, g are not constant, then h is constant. If $\operatorname{deg}(f)=n, \operatorname{deg}(g)=m$, then highest degree term: $n \lambda S^{n+m-1}=m h S^{n+m-1}$. Thus $h / \lambda=n / m \in \mathbb{Q}^{+}$.
Contradiction, so f, g constant.

Always Mason's theorem!

Mason's Theorem: Let $f, g, h \in K[X]$ not all constant, $\operatorname{gcd}(f, g, h)=1$ and $f+g=h$. Then $\operatorname{deg}(f)<\mathcal{N}(f g h)(\mathcal{N}$ is number of zeroes).
Generalization: (de Bondt) Let $f_{1}, \ldots, f_{n} \in K[X]$ not all constant, $f_{1}+\ldots+f_{n}=0$, and some requirement replacing $\operatorname{gcd}(f, g, h)=1$. Then $\operatorname{deg}\left(f_{1}\right)<(n-2) \mathcal{N}\left(f_{1} f_{2} \cdots f_{n}\right)$.

The Typical Example:

Brieskorn-Catalan-Fermat

Let $A:=\mathbb{C}^{[n]} /\left(X_{1}^{d_{1}}+\ldots+X_{n}^{d_{n}}\right), n \geq 3$. If

$$
\frac{1}{d_{1}}+\ldots+\frac{1}{d_{n}} \leq \frac{1}{n-2}
$$

then A is rigid.

A not-so-typical example

A not-so-typical example

Well, first: a motivation.

A not-so-typical example

Well, first: a motivation. In a paper of Gurjar, Masuda, Miyanishi, Russell:
Question: Can the Derksen invariant be infinitely generated?

A not-so-typical example

Well, first: a motivation. In a paper of Gurjar, Masuda, Miyanishi, Russell:
Question: Can the Derksen invariant be infinitely generated?
Ok, now example:
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, $F_{i} \in \mathbb{C}^{[n]}$.

A not-so-typical example

Well, first: a motivation. In a paper of Gurjar, Masuda, Miyanishi, Russell:
Question: Can the Derksen invariant be infinitely generated?
Ok, now example:
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, $F_{i} \in \mathbb{C}^{[n]}$. If

$$
\frac{1}{d_{1}}+\ldots+\frac{1}{d_{n}} \leq \frac{1}{n-2}
$$

(+some extra requirement) then any $D \in \operatorname{LND}(A)$ satisfies $D\left(F_{1}\right)=\ldots=D\left(F_{n}\right)=0$.

A not-so-typical example

Well, first: a motivation. In a paper of Gurjar, Masuda, Miyanishi, Russell:
Question: Can the Derksen invariant be infinitely generated? Ok, now example:
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, $F_{i} \in \mathbb{C}^{[n]}$. If

$$
\frac{1}{d_{1}}+\ldots+\frac{1}{d_{n}} \leq \frac{1}{n-2}
$$

(+some extra requirement) then any $D \in \operatorname{LND}(A)$ satisfies $D\left(F_{1}\right)=\ldots=D\left(F_{n}\right)=0$.
IDEA: take one of those examples of LNDs on $\mathbb{C}^{[n]}$ that have infinitely generated kernel, and force this to be the only derivation that exists!

A non-finitely generated kernel

Known:
Robert's derivation:
$D_{R}:=X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$ has infinitely generated kernel.

A non-finitely generated kernel

Known:
Robert's derivation:
$D_{R}:=X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$ has infinitely generated kernel.
Let $F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.

A non-finitely generated kernel

Known:
Robert's derivation:
$D_{R}:=X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$ has infinitely generated kernel.
Let $F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.
If $D\left(F_{1}\right)=D\left(F_{2}\right)=D\left(F_{3}\right)=0$, then $D=D_{R}$ or $D=0$.

A non-finitely generated kernel

Known:
Robert's derivation:
$D_{R}:=X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$ has infinitely generated kernel.
Let $F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.
If $D\left(F_{1}\right)=D\left(F_{2}\right)=D\left(F_{3}\right)=0$, then $D=D_{R}$ or $D=0$.
Let's make a ring where Robert's derivation is the only one that exists!

A non-finitely generated kernel

Robert's derivation: $X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$.
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, where
$F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.

A non-finitely generated kernel

Robert's derivation: $X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$.
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, where
$F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.
Let's just try this and hope it works!

A non-finitely generated kernel

Robert's derivation: $X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$.
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, where $F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.
Let's just try this and hope it works! Actually, this is where the Real Work starts!

A non-finitely generated kernel

Robert's derivation: $X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$.
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, where
$F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.
Let's just try this and hope it works! Actually, this is where the Real Work starts!
A is domain?

A non-finitely generated kernel

Robert's derivation: $X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$.
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, where $F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.
Let's just try this and hope it works! Actually, this is where the Real Work starts!
A is domain? Yes, for some d_{i}.

A non-finitely generated kernel

Robert's derivation: $X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$.
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, where $F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.
Let's just try this and hope it works! Actually, this is where the Real Work starts!
A is domain? Yes, for some d_{i}.
A is UFD?

A non-finitely generated kernel

Robert's derivation: $X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$.
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, where $F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.
Let's just try this and hope it works! Actually, this is where the Real Work starts!
A is domain? Yes, for some d_{i}.
A is UFD? Yes, but quite nontrivial!

A non-finitely generated kernel

Robert's derivation: $X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$.
Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, where $F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$.
Let's just try this and hope it works! Actually, this is where the Real Work starts!
A is domain? Yes, for some d_{i}.
A is UFD? Yes, but quite nontrivial!
A stays infinitely generated?

A non-finitely generated kernel

Robert's derivation: $X^{3} \partial_{S}+Y^{3} \partial_{T}+Z^{3} \partial_{U}+X^{2} Y^{2} Z^{2} \partial_{V}$. Let $A:=\mathbb{C}^{[n]} /\left(F_{1}^{d_{1}}+\ldots+F_{n}^{d_{n}}\right)$ be a domain, where $F_{1}:=X^{3} T-Y^{3} S, F_{2}:=X^{3} U-Z^{3} S, F_{3}:=Y^{2} Z^{2} S-X V$. Let's just try this and hope it works! Actually, this is where the Real Work starts!
A is domain? Yes, for some d_{i}.
A is UFD? Yes, but quite nontrivial!
A stays infinitely generated? Yes - but this is also very nontrivial, and a tad technical.

A simpler example of a non-finitely generated kernel

A simpler example of a non-finitely generated kernel

Drop UFD!

A simpler example of a non-finitely

generated kernel

Drop UFD!
Idea: take $D=T^{3} \partial_{X}-T^{2} \partial_{Y}$ on $\mathbb{C}\left[T^{2}, T^{3}\right][X, Y]$.

A simpler example of a non-finitely

generated kernel

Drop UFD!
Idea: take $D=T^{3} \partial_{X}-T^{2} \partial_{Y}$ on $\mathbb{C}\left[T^{2}, T^{3}\right][X, Y]$.
Define $A:=\mathbb{C}\left[T^{2}, T^{3}, X, Y, z\right]:=$
$\mathbb{C}\left[T^{2}, T^{3}, X, Y, Z\right] /\left(Z^{2}-T^{4}\left(T^{2} X+T^{3} Y\right)^{2}-1\right)$.

A simpler example of a non-finitely

generated kernel

Drop UFD!
Idea: take $D=T^{3} \partial_{X}-T^{2} \partial_{Y}$ on $\mathbb{C}\left[T^{2}, T^{3}\right][X, Y]$.
Define $A:=\mathbb{C}\left[T^{2}, T^{3}, X, Y, z\right]:=$
$\mathbb{C}\left[T^{2}, T^{3}, X, Y, Z\right] /\left(Z^{2}-T^{4}\left(T^{2} X+T^{3} Y\right)^{2}-1\right)$. Now
$0=D(1)=D\left(z^{2}-T^{4}\left(T^{2} X+T^{3} Y\right)^{2}\right)=$
$D\left(\left(z-T^{2}\left(T^{2} X+T^{3} Y\right)\right)\left(z+T^{2}\left(T^{2} X+T^{3} Y\right)\right)\right)$

A simpler example of a non-finitely

generated kernel

Drop UFD!
Idea: take $D=T^{3} \partial_{X}-T^{2} \partial_{Y}$ on $\mathbb{C}\left[T^{2}, T^{3}\right][X, Y]$.
Define $A:=\mathbb{C}\left[T^{2}, T^{3}, X, Y, z\right]:=$
$\mathbb{C}\left[T^{2}, T^{3}, X, Y, Z\right] /\left(Z^{2}-T^{4}\left(T^{2} X+T^{3} Y\right)^{2}-1\right)$. Now
$0=D(1)=D\left(z^{2}-T^{4}\left(T^{2} X+T^{3} Y\right)^{2}\right)=$
$D\left(\left(z-T^{2}\left(T^{2} X+T^{3} Y\right)\right)\left(z+T^{2}\left(T^{2} X+T^{3} Y\right)\right)\right)$ so
$0=D(z)=D\left(T^{2}\left(T^{2} X+T^{3} Y\right)\right)$

A simpler example of a non-finitely

generated kernel

Drop UFD!

Idea: take $D=T^{3} \partial_{X}-T^{2} \partial_{Y}$ on $\mathbb{C}\left[T^{2}, T^{3}\right][X, Y]$.
Define $A:=\mathbb{C}\left[T^{2}, T^{3}, X, Y, z\right]:=$
$\mathbb{C}\left[T^{2}, T^{3}, X, Y, Z\right] /\left(Z^{2}-T^{4}\left(T^{2} X+T^{3} Y\right)^{2}-1\right)$. Now
$0=D(1)=D\left(z^{2}-T^{4}\left(T^{2} X+T^{3} Y\right)^{2}\right)=$
$D\left(\left(z-T^{2}\left(T^{2} X+T^{3} Y\right)\right)\left(z+T^{2}\left(T^{2} X+T^{3} Y\right)\right)\right)$ so
$0=D(z)=D\left(T^{2}\left(T^{2} X+T^{3} Y\right)\right)$ etc..D is multiple of $T^{3} \partial_{X}-T^{2} \partial_{y}$.
Now easy: $A^{D}=\mathbb{C}[T, z, X+T Y] \cap A$ not finitely generated.

