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Some Notations

If A is a ring, then

DER(A), LND(A) is set of (locally nilpotent) derivations on A.

LND∗(A) := LND(A)\{0}.

C[n] := C[X1, . . . , Xn]
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Rigid, Almost Rigid, Not Rigid At All

A ring A is called rigid if LND(A) = {0}. Example: C.

A ring A is called almost rigid if all D ∈ LND∗(A) have the

same kernel. Example: C[X ]. “Almost rigid” ⇐⇒

“ML(A) = HD(A)”

A ring A is called not rigid at all if it is not (almost) rigid.

Example: C[X , Y ].

If you grab a “random” prime ideal p ∈ f (X1, . . . , Xn) ∈ C[n],

then it seems like C[n]/p is with chance 1 a rigid ring.

(Perhaps even replace “prime ideal” by “radical ideal”.)

I.e. rigid rings are important as they seem to be “almost all

rings”.

But - it is not that easy to prove that something is rigid!
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How to prove something is rigid?

Method 1: Makar-Limanov techniques

Consider A := C[n]/p. How to show that A is rigid? Choose a

smart degree function on A, given by a grading on C[n]. Write

f̂ for “highest degree part of f ”.

If Â := C[n]/p̂ is rigid, then A rigid!



Example

Let

A := C[x , y , z ] = C[X , Y , Z ]/(X aY b +Z c +XYZ +X +Y +Z )

where a, b, c ≥ 2. Choose a degree function on C[X , Y , Z ]

such that top degree part is X aY b + Z c .

Theorem: there exist no homogeneous nonzero LNDs on

C[X , Y , Z ]/(X aY b + Z c).

Corollary: there exist no nonzero LNDs on

C[X , Y , Z ]/(X aY b + Z c).

Corollary: there exist no nonzero LNDs on A.
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Method 2: parametrization techniques

Let A be a domain, D ∈ LND(A).

If D 6= 0, then we embed A −→ K [S ].

Here K is algebraic closure of AD . S = p/D(p), where p ∈ A

is a preslice (D(p) 6= 0, D2(p) = 0).

This is simple but incredibly useful!!

Let me give some examples:
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Parametrization Technique

If A = k[a1, . . . , an] domain, D ∈ LND∗(A), A −→ K [S ]

embedding. Then each ai = fi(S) ∈ K [S ].

Theorem: Let D ∈ LND(A) such that Dn(a) = λa for some

a, b ∈ A. Then D(a) = 0. (Most often this theorem is stated

for n = 1.)

Proof: f (n) = gf can only be true if g = 0 or f = 0.

Problem on a domain reduced to a problem on polynomials on

K [S ].

Let’s do another one!
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Parametrization Technique

Let A be a domain and let D be a derivation satisfying

aD(b) = cbD(a) for some “generic” a, b, c ∈ A. Then

D(a) = D(b) = 0.

Theorem: Let A be a domain and let D be a derivation that

satisfies λbD(a) = caD(b), where λ ∈ AD , a, b, c ∈ A, and

c/λ 6∈ Q+. Then D = 0.

Proof: Becomes λgf ′ = hfg ′ where f , g , h ∈ K [S ], λ ∈ K .

Suppose f , g are not constant, then h is constant. If

deg(f ) = n, deg(g) = m, then highest degree term:

nλSn+m−1 = mhSn+m−1. Thus h/λ = n/m ∈ Q+.

Contradiction, so f , g constant.



Always Mason’s theorem!

Mason’s Theorem: Let f , g , h ∈ K [X ] not all constant,

gcd(f , g , h) = 1 and f + g = h. Then deg(f ) < N (fgh) (N is

number of zeroes).

Generalization: (de Bondt) Let f1, . . . , fn ∈ K [X ] not all

constant, f1 + . . . + fn = 0, and some requirement replacing

gcd(f , g , h) = 1. Then deg(f1) < (n − 2)N (f1f2 · · · fn).



The Typical Example:

Brieskorn-Catalan-Fermat

Let A := C[n]/(X d1
1 + . . . + X dn

n ), n ≥ 3. If

1

d1
+ . . . +

1

dn

≤
1

n − 2

then A is rigid.
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A not-so-typical example
Well, first: a motivation. In a paper of Gurjar, Masuda,

Miyanishi, Russell:

Question: Can the Derksen invariant be infinitely generated?

Ok, now example:

Let A := C[n]/(F d1
1 + . . . + F dn

n
) be a domain, Fi ∈ C[n]. If

1

d1
+ . . . +

1

dn

≤
1

n − 2

(+some extra requirement) then any D ∈ LND(A) satisfies

D(F1) = . . . = D(Fn) = 0.

IDEA: take one of those examples of LNDs on C[n] that have

infinitely generated kernel, and force this to be the only

derivation that exists!
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Known:

Robert’s derivation:

DR := X 3∂S + Y 3∂T + Z 3∂U + X 2Y 2Z 2∂V has infinitely

generated kernel.

Let F1 := X 3T −Y 3S , F2 := X 3U −Z 3S , F3 := Y 2Z 2S −XV .

If D(F1) = D(F2) = D(F3) = 0, then D = DR or D = 0.

Let’s make a ring where Robert’s derivation is the only one

that exists!
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A non-finitely generated kernel

Robert’s derivation: X 3∂S + Y 3∂T + Z 3∂U + X 2Y 2Z 2∂V .

Let A := C[n]/(F d1
1 + . . . + F dn

n ) be a domain, where

F1 := X 3T − Y 3S , F2 := X 3U − Z 3S , F3 := Y 2Z 2S − XV .

Let’s just try this and hope it works! Actually, this is where

the Real Work starts!

A is domain? Yes, for some di .

A is UFD? Yes, but quite nontrivial!

A stays infinitely generated? Yes - but this is also very

nontrivial, and a tad technical.
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A simpler example of a non-finitely

generated kernel

Drop UFD!

Idea: take D = T 3∂X − T 2∂Y on C[T 2, T 3][X , Y ].

Define A := C[T 2, T 3, X , Y , z ] :=

C[T 2, T 3, X , Y , Z ]/(Z 2 − T 4(T 2X + T 3Y )2 − 1). Now

0 = D(1) = D(z2 − T 4(T 2X + T 3Y )2) =

D((z − T 2(T 2X + T 3Y ))(z + T 2(T 2X + T 3Y ))) so

0 = D(z) = D(T 2(T 2X + T 3Y )) etc. . .D is multiple of

T 3∂X − T 2∂Y .

Now easy: AD = C[T , z , X + TY ] ∩ A not finitely generated.


