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Notations:
Linear Polynomial

All MLn(C) MAn(C)

Invertible GLn(C) GAn(C)
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Jacobian Conjecture in dimension n (JC(n)):

Let F ∈ MAn(C). Then

det(Jac(F )) ∈ C
∗ ⇒ F is invertible.
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Cancelation Problem:

Let V be a variety. Then

V × C ∼= C
n+1 =⇒ V ∼= C

n.
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invertible with inverse

(X1 − f (X2, . . . , Xn), X2, . . . , Xn).

Triangular map: (X + f (Y , Z ), Y + g(Z ), Z + c)

= (X , Y , Z + c)(X , Y + g(Z ), Z )(X + f (X , Y ), Y , Z )

Jn(C):= set of triangular maps.

Affn(C):= set of compositions of invertible linear maps and

translations.

TAn(C) :=< Jn(C), Affn(C) >
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Question: TAn(C) = GAn(C)?

n = 2 : (Jung-v/d Kulk, 1942)

TAn(C) = GAn(C)

Nagata’s map:

F =







X − 2(XZ + Y 2)Y − (XZ + Y 2)2Z ,

Y + (XZ + Y 2)Z ,

Z







n = 3:(Shestakov-Umirbaev, 2004)

Nagata’s map not tame, i.e. GA3(C) 6= TA3(C)
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Cayley-Hamilton:

Let L : C
n −→ C

n be a linear map. Then L is a zero of

PL(T ) := det(TI − L).

What about generalizing MLn(C) −→ MAn(C)?

EXAMPLE:

Let F = (X 2, Y 2). Then deg(F n) = 2n.

There exists no relation

F n + an−1F
n−1 + . . . + a1F + a0I = 0.

Definition: If F is a zero of some P(T ) ∈ C[T ]\{0}, then we

will call F a Locally Finite Polynomial Endomorphism (short

LFPE).
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Some Remarks:

F is LFPE ⇐⇒ {deg(F n)}n∈N is bounded.

(F n =
∑n−1

i=0 aiF
i is equivalent to {I , F , F 2, . . .} generates a

finite dimensional C-vector space.)

IF := {P(T ) ∈ C[T ] | P(F ) = 0} is an ideal of C[T ]

(not completely trivial, as F (G + H) 6= FG + FH . But IF is

obviously closed under “+” and closed under multiplication by

T . That’s enough!)

F is LFPE ⇐⇒ G−1FG is LFPE

Proof: due to the first remark.

But: the minimum polynomial may change if G is not linear!
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n = 2: Classification of LFPE

F is LFPE, F (0) = 0 .

F invertible ⇐⇒ F is conjugate of

(aX + P(Y ), bY )

a, b ∈ C
∗, P(Y ) ∈ C[Y ].

F not invertible ⇐⇒ F is conjugate of

(aX + YP(X , Y ), 0)

a,∈ C, P(X , Y ) ∈ C[X , Y ].
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n = 2: Cayley-Hamilton for LFPE

F is LFPE, and F (0) = 0.

Let d = deg(F ).

Let L be the linear part of F .

Then F is a zero of

PF (T ) :=
∏

0 ≤ k ≤ d − 1

0 ≤ m ≤ d

(k , m) 6= (0, 0)

(T 2−(detLk)(TrLm)T+det(L2k+m)).
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Equivalent are:

◮ F is LFPE

◮ deg(Fm) is bounded

◮ n = 2: deg(F 2) ≤ deg(F )

Conjecture: in dimension n,

F is LFPE ⇐⇒ deg(Fm) ≤ deg(F )n−1 for all m ∈ N.
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“Cayley-Hamilton” in n variables

Let D := maxm∈N(deg(Fm)). (note: conjecture D = dn−1)

Let λ1, . . . , λn be the eigenvalues of the linear part of F .

Then F is a zero of

∏

α ∈ N
n

0 < |α| ≤ D

(T − λα)

(where λα = λα1
1 · · ·λ

αn
n )

(|α| = α1 + . . . + αn)
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How did we prove that?

If F i = (F
(i)
1 , . . . , F

(i)
n ) and F

(i)
j =

∑

F
(i)
j ,αXα,

then
∑

aiF
i = 0 ⇐⇒

∑

aiF
(i)
j ,α = 0∀j , α.

If {F
(i)
j ,α}i∈N is such a sequence, then it is a linear recurrent

sequence belonging to
∑

aiT
i , etc.. . .
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D locally finite derivation, then

exp(D)(g) := g + D(g) + 1
2!

D2(g) + 1
3!

D3(g) + . . . is

well-defined.

Inverse is exp(−D).

EXAMPLE: D = Y 2 ∂
∂X

+ Z ∂
∂Y

on C[X , Y , Z ]:

exp(D) = (exp(D)(X ), exp(D)(Y ), exp(D)(Z ))
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3
Z 2, Y + Z , Z )
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So: we can make many examples of LFPEs!
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D locally finite automorphism, then unique decomposition

D = Dn + Ds where Dn is locally nilpotent, Ds is semisimple,

and DnDs = DsDn.

Given F LFPE, then we find unique decomposition

F = FnFs = FsFn where Fn = exp(Dn) where Dn is locally

nilpotent.

an example:

F = (4X + 4Y 2, 2Y ) = (4X , 2Y ) ◦ (X + Y 2, Y )

(4X , 2Y ) = exp(λX∂X + µY ∂Y ), where

λ = log(4), µ = log(2).

(X + Y 2, Y ) = exp(Y 2∂X ).

Don’t know how to make Ds , given Fs .
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Case F = exp(Dn), Dn loc.nilp.:

F = exp(Dn) ⇐⇒

F is zero of (T − 1)n for some n

Example: F = exp(Y 2∂X ) = (X + Y 2, Y )

F 2 − 2F + I = 0 i.e. zero of (T − 1)2.
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Why the problem with general case?

In case F zero of (T − 1)n, then F has only eigenvalue 1.

Then there is one natural choice for “log(F ) = D”, only ONE

of them is loc. NILPOTENT Compare to: log(1) = 0. But

could have been: log(1) = 2πi . But 0 is natural choice.

if c ∈ C, then no natural choice log(c).
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)

F n = (a, b)

(

a 1

b 0
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(

F−1

F−2

)

Ft = (a, b)

(

a 1

b 0

)t
(

F−1

F−2

)

where t ∈ C. QUESTION: Does that work?? Is Ft flow?

(Note: can prove that this work if eigenvalues are “generic”,

to be precise:

λd1
1 · · ·λ

dn
n = 1 then all di = 0.)
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Almost last slide. . . generalizations

Not all F ∈ MAn(C) are LFPEs. Why not generalize in some

way to grab more maps? Furter: Quasi-LFPEs: allow

coefficients not only in C, but in C(X )F . Nice, but different

coefficients allowed for different F s. Interesting: QLFPEs have

{deg(F n)}n∈N bounded by linear sequence in n.

(Me & Han Peters:) allow power series C[[T ]] in stead of

C[T ]. Nice, but allows way too many maps. Interestingly:

automorphisms which are zeroes of power series generate

automorphism group! (Okay. . . we have a generating set of

GAn(C). . . )
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