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F :C" — C" is a polynomial map if
F=(F,...,F,), Fi € C[Xy,..., X,]
Examples: all linear maps.

Notations:
Linear Polynomial

All ML,(C) MA,(C)
Invertible GL,(C) GA,(C)
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L= (aX+bY,cX +dY) in ML,(C)

b
det( ? ) € C* < L € GLy(C)
c d
F = (Fl, F2) € MA2(C)

%oy 7
det [ 7 o | €C" <= F € GA(C)

ox oY

Jacobian Conjecture in dimension n (JC(n)):
Let F € MA,(C). Then

det(Jac(F)) € C* = F is invertible.
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Let V be a vector space. Then
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Cancelation Problem:
Let V be a variety. Then

VxC2C" = v=Cn
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GL,(C) is generated by
» Permutations X; +—— X;
> Map (aXI + b)<j7X27' - 7Xn) (a € (C*7b S (C)

GA,(C) is generated by 777
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Elementary map: (X; + f(Xa,..., X,), Xo, ..., Xp),

invertible with inverse

(Xo = F(Xor o X)), Xos oo, Xo).
Triangular map: (X +f(Y,Z),Y +g(Z),Z+ ¢)

= (X, Y, Z+)(X, Y +g(2), 2)(X + (X, Y),Y,Z)
Jn(C):= set of triangular maps.
Aff,(C):= set of compositions of invertible linear maps and

translations.
TA,(C) :=< J,(C), Aff,(C) >
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Question: TA,(C) = GA,(C)?
n=2: (Jung-v/d Kulk, 1942)
TAL(C) = GAL(C)

Nagata's map:

X —=2(XZ+ Y?)Y —(XZ + Y?)?Z,
F= Y +(XZ+ Y?)Z,
Z

n = 3:(Shestakov-Umirbaev, 2004)
Nagata's map not tame, i.e. GA3(C) # TA3(C)
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Cayley-Hamilton:
Let L : C" — C" be a linear map. Then L is a zero of
P.(T) := det(TI — L).

What about generalizing ML,(C) — MA,(C)?

EXAMPLE:

Let F = (X?,Y?). Then deg(F") = 2".

There exists no relation

F'+a, 1F" 1+ ... +aF+al =0.

Definition: If F is a zero of some P(T) € C[T]\{0}, then we

will call F a Locally Finite Polynomial Endomorphism (short
LFPE).
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Some Remarks:

F is LFPE <= {deg(F")}sen is bounded.

(F" =305 aiF' is equivalent to {/, F, F?, ...} generates a
finite dimensional C-vector space.)

Ie:={P(T) e C[T] | P(F) =0} is an ideal of C[T]

(not completely trivial, as F(G + H) # FG + FH. But I¢ is
obviously closed under “4" and closed under multiplication by
T. That's enough!)

F is LFPE <= G 'FG is LFPE

Proof: due to the first remark.

But: the minimum polynomial may change if G is not linear!
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Example:

F:=(4X +4Y22Y).

F? = (16X + 32Y2,4Y),

So F3 —10F% 4+ 32F — 32/ =0, F zero of
T3 1072+ 32T — 32 = (T — 2)(T — 4)%
(NOT (F—=2l)o(F —4l)o(F—41)=0.)

F7 = (4"X + nd"Y2,2"Y)



Fn = (4"X + n4"Y2,2"Y), n € N.



F" = (4"X 4+ n4"Y2 2"Y), n € N.
We can define
Fr = (4'X + t4tY22tY), t € C.



F" = (4"X + n4"Y2.2"Y), n € N.
We can define

Fir = (4'X + t4tY2.2tY), t € C.
FiF, = Fepyso Fe; t€Cis a flow.

(Means you can write F, = F'.)



F"=(4"X + n4d"Y?2 2"Y), n € N.
We can define

Fir = (4'X + t4tY2.2tY), t € C.
FiF,=F; ,s0 F;; t € Cis a flow.
(Means you can write F, = F'.)

We'll get back on that. ..



F"=(4"X + n4d"Y?2 2"Y), n € N.
We can define

Fir = (4'X + t4tY2.2tY), t € C.
FiF,=F; ,s0 F;; t € Cis a flow.
(Means you can write F, = F'.)

We'll get back on that... First some results!
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n = 2: Classification of LFPE

Two essential cases:

F = (aX + P(Y), bY) (F invertible)

Zero of (T — b)(T —a)(T —a%)--- (T — a%), d = deg(P)
F =(aX+ YP(X,Y),0) (F not invertible)

Zero of T? — aT.
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n = 2: Classification of LFPE

F is LFPE, F(0) =

F invertible

F not invertible

0.
—

<~

F is conjugate of
(aX + P(Y), bY)
a,be C* P(Y) e C[Y].

F is conjugate of
(aX + YP(X,Y),0)
a,e C,P(X,Y)eC[X,Y]
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n = 2: Cayley-Hamilton for LFPE

F is LFPE, and F(0) = 0.
Let d = deg(F).
Let L be the linear part of F.

Then F is a zero of

Pe(T) = 11 (T2—(detL*)(TrL™) T+det(L2<+™)).
0<k<d-1
0<m<d

(k, m) #(0,0)
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Equivalent are:

» Fis LFPE
» deg(F™) is bounded

» n=2: deg(F?) < deg(F)

Conjecture: in dimension n,
F is LFPE < deg(F™) < deg(F)"* for all m € N.
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“Cayley-Hamilton" in n variables

Let D := maxen(deg(F™)). (note: conjecture D = d" 1)
Let Aq,...,\, be the eigenvalues of the linear part of F.

Then F is a zero of

11 (T —\%)
ac N
0<|a|<D

(where A* = AT* - - \9n)
(lal =1+ ...+ ap)
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How did we prove that?

if Fi = (F,...,F{) and F = 3> F X,
then >" a;F' = 0 < Za;l:jsg = 0Yj, a.
If {Fﬁg},-eN is such a sequence, then it is a linear recurrent

sequence belonging to Y a; T', etc....
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D is called locally nilpotent if:

For all g € C[Xi, ..., X,] there exists m € N such that
D™(g) = 0.

EXAMPLE: D = 8LX1'

D is called locally finite if:

For all g € C[Xy,..., X,], the vector space

Cg + CD(g) + CD?(g) + ... is finite dimensional.
EXAMPLE: D = X; 5%-.

Locally nilpotent = Locally finite
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Exponents of derivations

D locally finite derivation, then

exp(D)(g) = g + D(g) + 30%(g) + 5D°(g) + ... i
well-defined.

Inverse is exp(—D).

EXAMPLE: D = Y25 + Z.% on C[X, Y, Z]:

exp(D) = (exp(D)(X), exp(D)(Y), exp(D)(Z))
= (X+Y*+YZ+iZ°2Y+Z2)
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exp(D)? = exp(D) o exp(D) = exp(2D)

Fr = exp(nD) = (X +nY? +n*YZ + 272 Y + nZ,2)
i.e. {deg(exp(nD))},cn is bounded sequence

= exp(D) is LFPE.

So: F = exp(D) — F is LFPE.
Even: F; := exp(tD) is a flow.

So: we can make many examples of LFPEs!
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D locally finite automorphism, then unique decomposition
D = D, + D, where D, is locally nilpotent, D; is semisimple,
and D,D. = D;D,,.

Given F LFPE, then we find unique decomposition

F = F,Fs = FsF, where F, = exp(D,) where D, is locally
nilpotent.

an example:

F=(4X+4Y22Y) = (4X,2Y)o (X + Y2)Y)

(4X,2Y) = exp(AXOx + 1Y dy), where

A = log(4), u = log(2).

(X + Y2 Y) = exp(Y?0x).

Don’t know how to make D, given F;.
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F =exp(D,) <=

F is zero of (T — 1)" for some n

Example: F = exp(Y?20x) = (X + Y2, Y)
F? —2F +1=0i.e. zero of (T — 1)
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Why the problem with general case?

In case F zero of (T —1)", then F has only eigenvalue 1.
Then there is one natural choice for “log(F) = D", only ONE
of them is loc. NILPOTENT Compare to: log(1) = 0. But
could have been: log(1) = 27i. But 0 is natural choice.

if ¢ € C, then no natural choice log(c).
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Example: F? = aF + bl, b # 0 (for then F invertible)

F? =aF+bl =(a,b)(})

F?® =aF%+ bF = a(aF + bl)+ bF
al
=(a,b F
@o| o )6
1 n—2
a
F" = (av b) b 0 (II:>
a 1 ! -1
F" = (37 b) b 0 (ifz)
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Forcing. ..
F? = aF + bl.

F? =aF +bl =(ab)(})

Fr =<a,b)<z ;) (5
F =<a,b><z ;) ()

where t € C. One chooses

(b2)

as exponential map.  So: F LFPE then you can make F;.
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where t € C. QUESTION: Does that work?? Is F, flow?
(Note: can prove that this work if eigenvalues are “generic”,
to be precise:

AN =1 then all d; = 0))
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Almost last slide. . . generalizations

Not all F € MA,(C) are LFPEs. Why not generalize in some
way to grab more maps? Furter: Quasi-LFPEs: allow
coefficients not only in C, but in C(X)F. Nice, but different
coefficients allowed for different Fs. Interesting: QLFPEs have
{deg(F")},en bounded by linear sequence in n.

(Me & Han Peters:) allow power series C[[T]] in stead of
C[T]. Nice, but allows way too many maps. Interestingly:
automorphisms which are zeroes of power series generate
automorphism group! (Okay. ..we have a generating set of
GA,(C)...)
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l.e. Big Question: LFPE?7——7 exponent of LF derivation.

Does, given
F”:an,lF”_1+...+alF+aol
give a flow by
t
a,.1 1 0 ... 0 F1!
a,.» 01 ... 0 F—2
Ft — (an—laan—Za .. ‘730) . . .
aa 00 ... 0 Fn

Funny detail: true for linear F, but not trivial.

THANK YOU



