Locally finite polynomial endomorphisms

Stefan Maubach

April 2007

 $F : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ is a polynomial map if $F = (F_1, \ldots, F_n), F_i \in \mathbb{C}[X_1, \ldots, X_n].$

 $F : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ is a polynomial map if $F = (F_1, \dots, F_n), F_i \in \mathbb{C}[X_1, \dots, X_n].$ Examples: all linear maps. $F: \mathbb{C}^n \longrightarrow \mathbb{C}^n \text{ is a polynomial map if}$ $F = (F_1, \dots, F_n), F_i \in \mathbb{C}[X_1, \dots, X_n].$ Examples: all linear maps.
Notations:
Linear Polynomial $ML_n(\mathbb{C}) \quad MA_n(\mathbb{C})$

Invertible $GL_n(\mathbb{C}) = GA_n(\mathbb{C})$

L = (aX + bY, cX + dY) in $ML_2(\mathbb{C})$

 $L = (aX + bY, cX + dY) \text{ in } ML_2(\mathbb{C})$ $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^* \iff L \in GL_2(\mathbb{C})$

 $L = (aX + bY, cX + dY) \text{ in } ML_2(\mathbb{C})$ $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^* \Longleftrightarrow L \in GL_2(\mathbb{C})$

 $F = (F_1, F_2) \in MA_2(\mathbb{C})$

 $L = (aX + bY, cX + dY) \text{ in } ML_2(\mathbb{C})$ $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^* \iff L \in GL_2(\mathbb{C})$

 $F = (F_1, F_2) \in MA_2(\mathbb{C})$

$$\det \begin{pmatrix} \frac{\partial F_1}{\partial X} & \frac{\partial F_1}{\partial Y} \\ \frac{\partial F_2}{\partial X} & \frac{\partial F_2}{\partial Y} \end{pmatrix} \in \mathbb{C}^* \iff F \in GA_2(\mathbb{C})$$

$$\begin{split} L &= (aX + bY, cX + dY) \text{ in } ML_2(\mathbb{C}) \\ &\quad \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^* \Longleftrightarrow L \in GL_2(\mathbb{C}) \end{split}$$

 $F = (F_1, F_2) \in MA_2(\mathbb{C})$

$$\det \begin{pmatrix} \frac{\partial F_1}{\partial X} & \frac{\partial F_1}{\partial Y} \\ \frac{\partial F_2}{\partial X} & \frac{\partial F_2}{\partial Y} \end{pmatrix} \in \mathbb{C}^* \iff F \in GA_2(\mathbb{C})$$

Jacobian Conjecture in dimension n (JC(n)): Let $F \in MA_n(\mathbb{C})$. Then

 $det(Jac(F)) \in \mathbb{C}^* \Rightarrow F$ is invertible.

Let V be a vector space. Then

$$V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^n.$$

Let V be a vector space. Then

$$V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^n.$$

Cancelation Problem:

Let V be a variety. Then

$$V imes \mathbb{C}\cong \mathbb{C}^{n+1} \Longrightarrow V\cong \mathbb{C}^n.$$

• Permutations $X_1 \longleftrightarrow X_i$

• Permutations $X_1 \longleftrightarrow X_i$

▶ Map $(aX_1 + bX_j, X_2, \dots, X_n)$ $(a \in \mathbb{C}^*, b \in \mathbb{C})$

• Permutations $X_1 \longleftrightarrow X_i$

• Map $(aX_1 + bX_j, X_2, \dots, X_n)$ $(a \in \mathbb{C}^*, b \in \mathbb{C})$

 $GA_n(\mathbb{C})$ is generated by ???

 $(X_1 - f(X_2,\ldots,\overline{X_n}), X_2,\ldots,\overline{X_n}).$

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)

 $\overline{(X_1 - f(X_2, \dots, X_n), X_2, \dots, X_n)}.$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z) $J_n(\mathbb{C}) := \text{set of triangular maps.}$

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z) $J_n(\mathbb{C}) := \text{ set of triangular maps.}$ $Aff_n(\mathbb{C}) := \text{ set of compositions of invertible linear maps and translations.}$

 $(X_1 - f(X_2, ..., X_n), X_2, ..., X_n).$ Triangular map: (X + f(Y, Z), Y + g(Z), Z + c)

= (X, Y, Z + c)(X, Y + g(Z), Z)(X + f(X, Y), Y, Z) $J_n(\mathbb{C}) := \text{ set of triangular maps.}$ $Aff_n(\mathbb{C}) := \text{ set of compositions of invertible linear maps and translations.}$

 $TA_n(\mathbb{C}) := \langle J_n(\mathbb{C}), Aff_n(\mathbb{C}) \rangle$

Question: $TA_n(\mathbb{C}) = GA_n(\mathbb{C})$?

Question: $TA_n(\mathbb{C}) = GA_n(\mathbb{C})$? n = 2: (Jung-v/d Kulk, 1942) $TA_n(\mathbb{C}) = GA_n(\mathbb{C})$ Question: $TA_n(\mathbb{C}) = GA_n(\mathbb{C})$? n = 2: (Jung-v/d Kulk, 1942) $TA_n(\mathbb{C}) = GA_n(\mathbb{C})$ Nagata's map:

$$F = \begin{pmatrix} X - 2(XZ + Y^2)Y - (XZ + Y^2)^2Z, \\ Y + (XZ + Y^2)Z, \\ Z \end{pmatrix}$$

Question: $TA_n(\mathbb{C}) = \overline{GA_n(\mathbb{C})}$? n = 2: (Jung-v/d Kulk, 1942) $TA_n(\mathbb{C}) = GA_n(\mathbb{C})$ Nagata's map:

$$F = \begin{pmatrix} X - 2(XZ + Y^{2})Y - (XZ + Y^{2})^{2}Z, \\ Y + (XZ + Y^{2})Z, \\ Z \end{pmatrix}$$

n = 3:(Shestakov-Umirbaev, 2004) Nagata's map not tame, i.e. $GA_3(\mathbb{C}) \neq TA_3(\mathbb{C})$

Let $L : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a linear map. Then L is a zero of

 $P_L(T) := det(TI - L).$

Let $L: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a linear map. Then L is a zero of

 $P_L(T) := det(TI - L).$

What about generalizing $ML_n(\mathbb{C}) \longrightarrow MA_n(\mathbb{C})$?

Let $L: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a linear map. Then L is a zero of

 $P_L(T) := det(TI - L).$

What about generalizing $ML_n(\mathbb{C}) \longrightarrow MA_n(\mathbb{C})$? EXAMPLE: Let $F = (X^2, Y^2)$.

Let $L: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a linear map. Then L is a zero of

 $P_L(T) := det(TI - L).$

What about generalizing $ML_n(\mathbb{C}) \longrightarrow MA_n(\mathbb{C})$? EXAMPLE: Let $F = (X^2, Y^2)$. Then $deg(F^n) = 2^n$.

Let $L: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a linear map. Then L is a zero of

 $P_L(T) := det(TI - L).$

What about generalizing $ML_n(\mathbb{C}) \longrightarrow MA_n(\mathbb{C})$? EXAMPLE: Let $F = (X^2, Y^2)$. Then $deg(F^n) = 2^n$. There exists no relation $F^n + a_{n-1}F^{n-1} + \ldots + a_1F + a_0I = 0$.

Let $L: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a linear map. Then L is a zero of

 $P_L(T) := det(TI - L).$

What about generalizing $ML_n(\mathbb{C}) \longrightarrow MA_n(\mathbb{C})$? EXAMPLE: Let $F = (X^2, Y^2)$. Then $deg(F^n) = 2^n$. There exists no relation $F^{n} + a_{n-1}F^{n-1} + \ldots + a_{1}F + a_{0}I = 0.$ **Definition:** If F is a zero of some $P(T) \in \mathbb{C}[T] \setminus \{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE).

F is LFPE $\iff \{ deg(F^n) \}_{n \in \mathbb{N}}$ is bounded.

F is LFPE $\iff \{deg(F^n)\}_{n \in \mathbb{N}}$ is bounded. $(F^n = \sum_{i=0}^{n-1} a_i F^i \text{ is equivalent to } \{I, F, F^2, \ldots\}$ generates a finite dimensional \mathbb{C} -vector space.)

 $F \text{ is LFPE} \iff \{ \deg(F^n) \}_{n \in \mathbb{N}} \text{ is bounded.}$ $(F^n = \sum_{i=0}^{n-1} a_i F^i \text{ is equivalent to } \{I, F, F^2, \ldots\} \text{ generates a finite dimensional } \mathbb{C}\text{-vector space.})$ $I_F := \{ P(T) \in \mathbb{C}[T] \mid P(F) = 0 \} \text{ is an ideal of } \mathbb{C}[T]$

 $F \text{ is LFPE} \iff \{ deg(F^n) \}_{n \in \mathbb{N}} \text{ is bounded.}$ $(F^n = \sum_{i=0}^{n-1} a_i F^i \text{ is equivalent to } \{I, F, F^2, \ldots\} \text{ generates a finite dimensional } \mathbb{C}\text{-vector space.})$ $I_F := \{ P(T) \in \mathbb{C}[T] \mid P(F) = 0 \} \text{ is an ideal of } \mathbb{C}[T]$ $(\text{not completely trivial, as } F(G + H) \neq FG + FH.$

F is LFPE $\iff \{deg(F^n)\}_{n \in \mathbb{N}}$ is bounded. $(F^n = \sum_{i=0}^{n-1} a_i F^i \text{ is equivalent to } \{I, F, F^2, \ldots\}$ generates a finite dimensional \mathbb{C} -vector space.) $I_F := \{P(T) \in \mathbb{C}[T] \mid P(F) = 0\}$ is an ideal of $\mathbb{C}[T]$ (not completely trivial, as $F(G + H) \neq FG + FH$. But I_F is obviously closed under "+" and closed under multiplication by T. That's enough!)
Some Remarks:

F is LFPE $\iff \{deg(F^n)\}_{n \in \mathbb{N}}$ is bounded. $(F^n = \sum_{i=0}^{n-1} a_i F^i$ is equivalent to $\{I, F, F^2, \ldots\}$ generates a finite dimensional \mathbb{C} -vector space.) $I_F := \{P(T) \in \mathbb{C}[T] \mid P(F) = 0\}$ is an ideal of $\mathbb{C}[T]$ (not completely trivial, as $F(G + H) \neq FG + FH$. But I_F is obviously closed under "+" and closed under multiplication by T. That's enough!) F is LFPE $\iff G^{-1}FG$ is I FPE

Some Remarks:

F is LFPE $\iff \{deg(F^n)\}_{n \in \mathbb{N}}$ is bounded. $(F^n = \sum_{i=0}^{n-1} a_i F^i$ is equivalent to $\{I, F, F^2, \ldots\}$ generates a finite dimensional \mathbb{C} -vector space.) $I_F := \{P(T) \in \mathbb{C}[T] \mid P(F) = 0\}$ is an ideal of $\mathbb{C}[T]$ (not completely trivial, as $F(G + H) \neq FG + FH$. But I_F is obviously closed under "+" and closed under multiplication by T. That's enough!) F is LFPE $\iff G^{-1}FG$ is LFPE Proof: due to the first remark.

Some Remarks:

F is LFPE $\iff \{deg(F^n)\}_{n \in \mathbb{N}}$ is bounded. $(F^n = \sum_{i=0}^{n-1} a_i F^i$ is equivalent to $\{I, F, F^2, \ldots\}$ generates a finite dimensional \mathbb{C} -vector space.) $I_F := \{P(T) \in \mathbb{C}[T] \mid P(F) = 0\}$ is an ideal of $\mathbb{C}[T]$ (not completely trivial, as $F(G + H) \neq FG + FH$. But I_F is obviously closed under "+" and closed under multiplication by T. That's enough!) F is LFPE $\iff G^{-1}FG$ is LFPE Proof: due to the first remark.

But: the minimum polynomial may change if G is not linear!

 $F := (4X + 4Y^2, 2Y).$

$$F := (4X + 4Y^2, 2Y).$$

$$F^2 = (16X + 32Y^2, 4Y),$$

Example:

$$F := (4X + 4Y^2, 2Y).$$

$$F^2 = (16X + 32Y^2, 4Y),$$

So $F^3 - 10F^2 + 32F - 32I = 0$, F zero of
 $T^3 - 10T^2 + 32T - 32 = (T - 2)(T - 4)^2.$

Example:

$$F := (4X + 4Y^{2}, 2Y).$$

$$F^{2} = (16X + 32Y^{2}, 4Y),$$
So $F^{3} - 10F^{2} + 32F - 32I = 0, F$ zero of
$$T^{3} - 10T^{2} + 32T - 32 = (T - 2)(T - 4)^{2}.$$
(NOT $(F - 2I) \circ (F - 4I) \circ (F - 4I) = 0.$)

Example:

. . .

$$F := (4X + 4Y^{2}, 2Y).$$

$$F^{2} = (16X + 32Y^{2}, 4Y),$$
So $F^{3} - 10F^{2} + 32F - 32I = 0, F$ zero of
$$T^{3} - 10T^{2} + 32T - 32 = (T - 2)(T - 4)^{2}.$$
(NOT $(F - 2I) \circ (F - 4I) \circ (F - 4I) = 0.$)

 $F^n = (4^n X + n4^n Y^2, 2^n Y)$

$$F^n = (4^nX + n4^nY^2, 2^nY), n \in \mathbb{N}.$$

 $F^{n} = (4^{n}X + n4^{n}Y^{2}, 2^{n}Y), n \in \mathbb{N}.$ We can define $F_{t} = (4^{t}X + t4^{t}Y^{2}, 2^{t}Y), t \in \mathbb{C}.$ $F^{n} = (4^{n}X + n4^{n}Y^{2}, 2^{n}Y), n \in \mathbb{N}.$ We can define $F_{t} = (4^{t}X + t4^{t}Y^{2}, 2^{t}Y), t \in \mathbb{C}.$ $F_{t}F_{u} = F_{t+u} \text{ so } F_{t} ; t \in \mathbb{C} \text{ is a flow.}$ (Means you can write $F_{t} = F^{t}.$) $F^{n} = (4^{n}X + n4^{n}Y^{2}, 2^{n}Y), n \in \mathbb{N}.$ We can define $F_{t} = (4^{t}X + t4^{t}Y^{2}, 2^{t}Y), t \in \mathbb{C}.$ $F_{t}F_{u} = F_{t+u} \text{ so } F_{t} ; t \in \mathbb{C} \text{ is a flow.}$ (Means you can write $F_{t} = F^{t}.$)

We'll get back on that...

 $F^{n} = (4^{n}X + n4^{n}Y^{2}, 2^{n}Y), n \in \mathbb{N}.$ We can define $F_{t} = (4^{t}X + t4^{t}Y^{2}, 2^{t}Y), t \in \mathbb{C}.$ $F_{t}F_{u} = F_{t+u} \text{ so } F_{t} ; t \in \mathbb{C} \text{ is a flow.}$ (Means you can write $F_{t} = F^{t}.$)

We'll get back on that... First some results!

- - - .

Two essential cases:

Two essential cases: F = (aX + P(Y), bY)

Two essential cases: F = (aX + P(Y), bY)

F = (aX + YP(X, Y), 0)

Two essential cases: F = (aX + P(Y), bY)

 $\overline{F} = (aX + YP(X, Y), 0)$ Zero of $T^2 - aT$.

Two essential cases: F = (aX + P(Y), bY)Zero of $(T - b)(T - a)(T - a^2) \cdots (T - a^d), d = deg(P)$ F = (aX + YP(X, Y), 0)Zero of $T^2 - aT$.

Two essential cases: $F = (aX + P(Y), bY) \quad (F \text{ invertible})$ Zero of $(T - b)(T - a)(T - a^2) \cdots (T - a^d), d = deg(P)$ $F = (aX + YP(X, Y), 0) \quad (F \text{ not invertible})$ Zero of $T^2 - aT$.

F is LFPE, F(0) = 0.

$\begin{array}{ll} F \text{ is LFPE, } F(0) = 0 \ . \\ F \text{ invertible} & \Longleftrightarrow & F \text{ is conjugate of} \\ & & (aX + P(Y), bY) \\ & & a, b \in \mathbb{C}^*, P(Y) \in \mathbb{C}[Y]. \end{array}$

- $\begin{array}{ll} F \text{ is LFPE, } F(0) = 0 \ . \\ F \text{ invertible} & \Longleftrightarrow & F \text{ is conjugate of} \\ & & (aX + P(Y), bY) \\ & & a, b \in \mathbb{C}^*, P(Y) \in \mathbb{C}[Y]. \end{array}$
 - $\begin{array}{ll} F \text{ not invertible} & \Longleftrightarrow & F \text{ is conjugate of} \\ & (aX + YP(X,Y), 0) \\ & a, \in \mathbb{C}, P(X,Y) \in \mathbb{C}[X,Y]. \end{array}$

F is LFPE, and F(0) = 0. Let d = deg(F). Let L be the linear part of F.

F is LFPE, and F(0) = 0. Let d = deg(F). Let L be the linear part of F. Then F is a zero of

F is LFPE, and F(0) = 0. Let d = deg(F). Let L be the linear part of F. Then F is a zero of

 $P_{F}(T) := \prod_{\substack{0 \le k \le d-1 \\ 0 \le m \le d \\ (k,m) \ne (0,0)}} (T^{2} - (detL^{k})(TrL^{m})T + det(L^{2k+m})).$

► *F* is LFPE

- ► *F* is LFPE
- $deg(F^m)$ is bounded

- ► *F* is LFPE
- $deg(F^m)$ is bounded
- ▶ n = 2: $deg(F^2) \le deg(F)$

- ► *F* is LFPE
- ► deg(F^m) is bounded
- ▶ n = 2: $deg(F^2) \le deg(F)$

Conjecture: in dimension n, F is LFPE $\iff deg(F^m) \le deg(F)^{n-1}$ for all $m \in \mathbb{N}$.

"Cayley-Hamilton" in *n* variables

"Cayley-Hamilton" in *n* variables

Let $D := max_{m \in \mathbb{N}}(deg(F^m))$. (note: conjecture $D = d^{n-1}$)

"Cayley-Hamilton" in *n* variables

Let $D := max_{m \in \mathbb{N}}(deg(F^m))$. (note: conjecture $D = d^{n-1}$) Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the linear part of F.
Let $D := max_{m \in \mathbb{N}}(deg(F^m))$. (note: conjecture $D = d^{n-1}$) Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the linear part of F. Then F is a zero of

Let $D := \max_{m \in \mathbb{N}} (deg(F^m))$. (note: conjecture $D = d^{n-1}$) Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the linear part of F. Then F is a zero of

(where
$$\lambda^{\alpha} = \lambda_1^{\alpha_1} \cdots \lambda_n^{\alpha_n}$$
)

Let $D := \max_{m \in \mathbb{N}} (deg(F^m))$. (note: conjecture $D = d^{n-1}$) Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the linear part of F. Then F is a zero of

$$\prod_{\alpha \in \mathbb{N}^n} (T - \lambda^{\alpha})$$

(where $\lambda^{\alpha} = \lambda_1^{\alpha_1} \cdots \lambda_n^{\alpha_n}$)

Let $D := \max_{m \in \mathbb{N}} (deg(F^m))$. (note: conjecture $D = d^{n-1}$) Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the linear part of F. Then F is a zero of

$$\prod_{\substack{\alpha \in \mathbb{N}^n \\ \mathsf{0} < |\alpha| \le D}} (T - \lambda^{\alpha})$$

(where $\lambda^{\alpha} = \lambda_1^{\alpha_1} \cdots \lambda_n^{\alpha_n}$) ($|\alpha| = \alpha_1 + \ldots + \alpha_n$)

If $F^{i} = (F_{1}^{(i)}, \dots, F_{n}^{(i)})$ and $F_{j}^{(i)} = \sum F_{j,\alpha}^{(i)} X^{\alpha}$,

If $F^i = (F_1^{(i)}, \dots, F_n^{(i)})$ and $F_j^{(i)} = \sum F_{j,\alpha}^{(i)} X^{\alpha}$, then $\sum a_i F^i = 0 \iff \sum a_i F_{j,\alpha}^{(i)} = 0 \forall j, \alpha$.

If $F^i = (F_1^{(i)}, \ldots, F_n^{(i)})$ and $F_j^{(i)} = \sum F_{j,\alpha}^{(i)} X^{\alpha}$, then $\sum a_i F^i = 0 \iff \sum a_i F_{j,\alpha}^{(i)} = 0 \forall j, \alpha$. If $\{F_{j,\alpha}^{(i)}\}_{i \in \mathbb{N}}$ is such a sequence, then it is a linear recurrent sequence belonging to $\sum a_i T^i$, etc....

A derivation $D : \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$

A derivation $D : \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ is a map satisfying (1) \mathbb{C} -linear.

A derivation $D : \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ is a map satisfying (1) \mathbb{C} -linear. (2) D(fg) = D(f)g + fD(g) for all $f, g \in \mathbb{C}[X_1, \dots, X_n]$.

A derivation $D : \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ is a map satisfying (1) \mathbb{C} -linear. (2) D(fg) = D(f)g + fD(g) for all $f, g \in \mathbb{C}[X_1, \dots, X_n]$. A derivation will have the form:

A derivation $D: \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ is a map satisfying

(1) \mathbb{C} -linear.

(2) D(fg) = D(f)g + fD(g) for all $f, g \in \mathbb{C}[X_1, \dots, X_n]$.

A derivation will have the form:

 $a_1 \frac{\partial}{\partial X_1} + \ldots + a_n \frac{\partial}{\partial X_n}$ for some $a_i \in \mathbb{C}[X_1, \ldots, X_n]$.

A derivation $D : \mathbb{C}[X_1, \ldots, X_n] \longrightarrow \mathbb{C}[X_1, \ldots, X_n]$ is a map satisfying (1) \mathbb{C} -linear. (2) D(fg) = D(f)g + fD(g) for all $f, g \in \mathbb{C}[X_1, \ldots, X_n]$. A derivation will have the form: $a_1 \frac{\partial}{\partial X_1} + \ldots + a_n \frac{\partial}{\partial X_n}$ for some $a_i \in \mathbb{C}[X_1, \ldots, X_n]$. D is called **locally nilpotent** if:

A derivation $D: \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ is a map satisfying

(1) \mathbb{C} -linear.

(2) D(fg) = D(f)g + fD(g) for all $f, g \in \mathbb{C}[X_1, \dots, X_n]$.

A derivation will have the form:

 $a_1 \frac{\partial}{\partial X_1} + \ldots + a_n \frac{\partial}{\partial X_n}$ for some $a_i \in \mathbb{C}[X_1, \ldots, X_n]$. *D* is called **locally nilpotent** if:

For all $g \in \mathbb{C}[X_1, ..., X_n]$ there exists $m \in \mathbb{N}$ such that $D^m(g) = 0$.

- A derivation $D: \mathbb{C}[X_1, \dots, X_n] \longrightarrow \mathbb{C}[X_1, \dots, X_n]$ is a map satisfying
- (1) \mathbb{C} -linear.

(2) D(fg) = D(f)g + fD(g) for all $f, g \in \mathbb{C}[X_1, \dots, X_n]$.

A derivation will have the form:

 $a_1 \frac{\partial}{\partial X_1} + \ldots + a_n \frac{\partial}{\partial X_n}$ for some $a_i \in \mathbb{C}[X_1, \ldots, X_n]$. *D* is called **locally nilpotent** if:

For all $g \in \mathbb{C}[X_1, ..., X_n]$ there exists $m \in \mathbb{N}$ such that $D^m(g) = 0$. EXAMPLE: $D = \frac{\partial}{\partial X_1}$.

D is called **locally finite** if:

D is called **locally finite** if:

For all $g \in \mathbb{C}[X_1, ..., X_n]$, the vector space $\mathbb{C}g + \mathbb{C}D(g) + \mathbb{C}D^2(g) + ...$ is finite dimensional.

D is called **locally finite** if:

For all $g \in \mathbb{C}[X_1, ..., X_n]$, the vector space $\mathbb{C}g + \mathbb{C}D(g) + \mathbb{C}D^2(g) + ...$ is finite dimensional. EXAMPLE: $D = X_1 \frac{\partial}{\partial X_1}$.

D is called **locally finite** if:

For all $g \in \mathbb{C}[X_1, ..., X_n]$, the vector space $\mathbb{C}g + \mathbb{C}D(g) + \mathbb{C}D^2(g) + ...$ is finite dimensional. EXAMPLE: $D = X_1 \frac{\partial}{\partial X_1}$. Locally nilpotent \Rightarrow Locally finite

D locally finite derivation, then $exp(D)(g) := g + D(g) + \frac{1}{2!}D^2(g) + \frac{1}{3!}D^3(g) + \dots$ is well-defined.

D locally finite derivation, then $exp(D)(g) := g + D(g) + \frac{1}{2!}D^2(g) + \frac{1}{3!}D^3(g) + \dots$ is well-defined.

Inverse is exp(-D).

D locally finite derivation, then $exp(D)(g) := g + D(g) + \frac{1}{2!}D^2(g) + \frac{1}{3!}D^3(g) + \dots$ is well-defined. Inverse is exp(-D).

EXAMPLE: $D = Y^2 \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

D locally finite derivation, then $exp(D)(g) := g + D(g) + \frac{1}{2!}D^2(g) + \frac{1}{3!}D^3(g) + \dots$ is well-defined. Inverse is exp(-D). EXAMPLE: $D = Y^2 \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$: exp(D) =

D locally finite derivation, then $exp(D)(g) := g + D(g) + \frac{1}{2!}D^2(g) + \frac{1}{3!}D^3(g) + \dots$ is well-defined. Inverse is exp(-D). EXAMPLE: $D = Y^2 \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

exp(D) = (exp(D)(X), exp(D)(Y), exp(D)(Z))

D locally finite derivation, then $exp(D)(g) := g + D(g) + \frac{1}{2!}D^{2}(g) + \frac{1}{3!}D^{3}(g) + \dots \text{ is}$ well-defined. Inverse is exp(-D). EXAMPLE: $D = Y^{2}\frac{\partial}{\partial X} + Z\frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$: exp(D) = (exp(D)(X), exp(D)(Y), exp(D)(Z)) =

D locally finite derivation, then $exp(D)(g) := g + D(g) + \frac{1}{2!}D^2(g) + \frac{1}{3!}D^3(g) + \dots$ is well-defined. Inverse is exp(-D). EXAMPLE: $D = Y^2 \frac{\partial}{\partial X} + Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$: exp(D) = (exp(D)(X), exp(D)(Y), exp(D)(Z))

 $= (X + Y^2 + YZ + \frac{1}{3}Z^2, Y + Z, Z)$

 $exp(D)^2 = exp(D) \circ exp(D) = exp(2D)$

$$exp(D)^2 = exp(D) \circ exp(D) = exp(2D)$$

$$F^n = exp(nD) = (X + nY^2 + n^2YZ + \frac{n^3}{3}Z^2, Y + nZ, Z)$$

 $exp(D)^{2} = exp(D) \circ exp(D) = exp(2D)$ $F^{n} = exp(nD) = (X + nY^{2} + n^{2}YZ + \frac{n^{3}}{3}Z^{2}, Y + nZ, Z)$ i.e. $\{deg(exp(nD))\}_{n \in \mathbb{N}}$ is bounded sequence

 $exp(D)^{2} = exp(D) \circ exp(D) = exp(2D)$ $F^{n} = exp(nD) = (X + nY^{2} + n^{2}YZ + \frac{n^{3}}{3}Z^{2}, Y + nZ, Z)$ i.e. $\{deg(exp(nD))\}_{n \in \mathbb{N}}$ is bounded sequence $\Rightarrow exp(D)$ is LFPE. $exp(D)^{2} = exp(D) \circ exp(D) = exp(2D)$ $F^{n} = exp(nD) = (X + nY^{2} + n^{2}YZ + \frac{n^{3}}{3}Z^{2}, Y + nZ, Z)$ i.e. $\{deg(exp(nD))\}_{n \in \mathbb{N}}$ is bounded sequence $\Rightarrow exp(D)$ is LFPE.

So: $F = exp(D) \longrightarrow F$ is LFPE.

 $exp(D)^{2} = exp(D) \circ exp(D) = exp(2D)$ $F^{n} = exp(nD) = (X + nY^{2} + n^{2}YZ + \frac{n^{3}}{3}Z^{2}, Y + nZ, Z)$ i.e. $\{deg(exp(nD))\}_{n \in \mathbb{N}}$ is bounded sequence $\Rightarrow exp(D)$ is LFPE.

So: $F = exp(D) \longrightarrow F$ is LFPE. Even: $F_t := exp(tD)$ is a flow.
$exp(D)^{2} = exp(D) \circ exp(D) = exp(2D)$ $F^{n} = exp(nD) = (X + nY^{2} + n^{2}YZ + \frac{n^{3}}{3}Z^{2}, Y + nZ, Z)$ i.e. $\{deg(exp(nD))\}_{n \in \mathbb{N}}$ is bounded sequence $\Rightarrow exp(D)$ is LFPE.

So: $F = exp(D) \longrightarrow F$ is LFPE. Even: $F_t := exp(tD)$ is a flow. So: we can make many examples of LFPEs! $F = exp(D) \iff F$ has a flow

 $F = exp(D) \iff F \text{ has a flow}$ (A flow of F is: F_t for each $t \in \mathbb{C}$ $F_1 = F, F_0 = I, F_t F_u = F_{t+u}$.) $F = exp(D) \iff F \text{ has a flow}$ (A flow of F is: F_t for each $t \in \mathbb{C}$ $F_1 = F, F_0 = I, F_t F_u = F_{t+u}$.) $F = exp(D) \Rightarrow F \text{ is LFPE.}$ $F = exp(D) \iff F \text{ has a flow}$ (A flow of F is: $F_t \text{ for each } t \in \mathbb{C}$ $F_1 = F, F_0 = I, F_t F_u = F_{t+u}.$ $F = exp(D) \Rightarrow F \text{ is LFPE.}$? \Leftarrow ? D locally finite automorphism, then unique decomposition $D=D_n+D_s \label{eq:D}$

Given F LFPE, then we find unique decomposition $F = F_n F_s = F_s F_n$

Given F LFPE, then we find unique decomposition $F = F_n F_s = F_s F_n$ where $F_n = exp(D_n)$ where D_n is locally nilpotent.

an example:

Given F LFPE, then we find unique decomposition $F = F_n F_s = F_s F_n$ where $F_n = exp(D_n)$ where D_n is locally nilpotent.

,

an example:

 $F = (4X + 4Y^2, 2Y)$

Given F LFPE, then we find unique decomposition $F = F_n F_s = F_s F_n$ where $F_n = exp(D_n)$ where D_n is locally nilpotent.

an example:

 $F = (4X + 4Y^2, 2Y) = (4X, 2Y) \circ (X + Y^2, Y)$

Given F LFPE, then we find unique decomposition $F = F_n F_s = F_s F_n$ where $F_n = exp(D_n)$ where D_n is locally nilpotent.

an example:

 $F = (4X + 4Y^2, 2Y) = (4X, 2Y) \circ (X + Y^2, Y)$ $(4X, 2Y) = \exp(\lambda X \partial_X + \mu Y \partial_Y),$

Given F LFPE, then we find unique decomposition $F = F_n F_s = F_s F_n$ where $F_n = exp(D_n)$ where D_n is locally nilpotent.

an example:

 $F = (4X + 4Y^2, 2Y) = (4X, 2Y) \circ (X + Y^2, Y)$ (4X, 2Y) = exp($\lambda X \partial_X + \mu Y \partial_Y$), where $\lambda = \log(4), \mu = \log(2).$

Given F LFPE, then we find unique decomposition $F = F_n F_s = F_s F_n$ where $F_n = exp(D_n)$ where D_n is locally nilpotent.

an example:

 $F = (4X + 4Y^2, 2Y) = (4X, 2Y) \circ (X + Y^2, Y)$ (4X, 2Y) = exp($\lambda X \partial_X + \mu Y \partial_Y$), where $\lambda = \log(4), \mu = \log(2).$ (X + Y², Y) = exp(Y² ∂_X).

Given F LFPE, then we find unique decomposition $F = F_n F_s = F_s F_n$ where $F_n = exp(D_n)$ where D_n is locally nilpotent.

an example:

$$F = (4X + 4Y^2, 2Y) = (4X, 2Y) \circ (X + Y^2, Y)$$

$$(4X, 2Y) = \exp(\lambda X \partial_X + \mu Y \partial_Y), \text{ where}$$

$$\lambda = \log(4), \mu = \log(2).$$

$$(X + Y^2, Y) = \exp(Y^2 \partial_X).$$

Don't know how to make D_s , given F_s .

 $F = \exp(D_n)$

 $F = \exp(D_n)$ F is zero of $(T - 1)^n$ for some n

$$F = \exp(D_n) \iff$$

 F is zero of $(T-1)^n$ for some n

Case $F = \exp(\overline{D_n})$, D_n loc.nilp.:

$$F = \exp(D_n) \iff$$

 F is zero of $(T-1)^n$ for some m

Example: $F = exp(Y^2\partial_X) = (X + Y^2, Y)$

$$F = \exp(D_n) \iff$$

 F is zero of $(T-1)^n$ for some n

Example: $F = exp(Y^2 \partial_X) = (X + Y^2, Y)$ $F^2 - 2F + I = 0$

$$F = \exp(D_n) \iff$$

 F is zero of $(T-1)^n$ for some n

Example: $F = exp(Y^2 \partial_X) = (X + Y^2, Y)$ $F^2 - 2F + I = 0$ i.e. zero of $(T - 1)^2$.

In case F zero of $(T-1)^n$, then F has only eigenvalue 1.

In case F zero of $(T - 1)^n$, then F has only eigenvalue 1. Then there is one natural choice for " $\log(F) = D$ ", only ONE of them is loc. NILPOTENT

In case F zero of $(T - 1)^n$, then F has only eigenvalue 1. Then there is one natural choice for "log(F) = D", only ONE of them is loc. NILPOTENT Compare to: log(1) = 0.

In case F zero of $(T-1)^n$, then F has only eigenvalue 1. Then there is one natural choice for " $\log(F) = D$ ", only ONE of them is loc. NILPOTENT Compare to: log(1) = 0. But could have been: $log(1) = 2\pi i$. But 0 is natural choice.

In case F zero of $(T-1)^n$, then F has only eigenvalue 1. Then there is one natural choice for " $\log(F) = D$ ", only ONE of them is loc. NILPOTENT Compare to: log(1) = 0. But could have been: $log(1) = 2\pi i$. But 0 is natural choice. if $c \in \mathbb{C}$, then no natural choice $\log(c)$.

Example: $F^2 = aF + bI$, $b \neq 0$ (for then F invertible)

 $F^2 = aF + bI = (a, b) {F \choose I}$

$$F^{2} = aF + bI = (a, b) {F \choose I}$$

$$F^{3} = aF^{2} + bF = a(aF + bI) + bF$$

$$\begin{array}{rcl} F^2 &= aF + bI &= (a,b) {F \choose I} \\ F^3 &= aF^2 + bF &= a(aF + bI) + bF \\ &= (a,b) \left(\begin{array}{c} a & 1 \\ b & 0 \end{array} \right) {F \choose I} \end{array}$$

$$F^{2} = aF + bI = (a, b) {\binom{F}{I}}$$

$$F^{3} = aF^{2} + bF = a(aF + bI) + bF$$

$$= (a, b) {\binom{a \ 1}{b \ 0}} {\binom{F}{I}}$$

$$F^{n} = (a, b) {\binom{a \ 1}{b \ 0}} {\binom{F}{I}}$$

$$F^{2} = aF + bI = (a, b) {\binom{F}{I}}$$

$$F^{3} = aF^{2} + bF = a(aF + bI) + bF$$

$$= (a, b) {\binom{a \ 1}{b \ 0}} {\binom{F}{I}}$$

$$F^{n} = (a, b) {\binom{a \ 1}{b \ 0}} {\binom{F}{I}}$$

$$F^{n} = (a, b) {\binom{a \ 1}{b \ 0}} {\binom{F^{-1}}{F^{-2}}}$$
$F^2 = aF + bI.$

$$F^{2} = aF + bI = (a, b) {F \choose I}$$

$$F^{n} = (a, b) {a \ 1 \choose b \ 0}^{n} {F^{-1} \choose F^{-2}}$$

 $\overline{F^2} = \overline{aF + bI}.$

$$F^{2} = aF + bI = (a, b) {\binom{F}{I}}$$

$$F^{n} = (a, b) {\binom{a \ 1}{b \ 0}}^{n} {\binom{F^{-1}}{F^{-2}}}$$

$$F_{t} = (a, b) {\binom{a \ 1}{b \ 0}}^{t} {\binom{F^{-1}}{F^{-2}}}$$

where $t \in \mathbb{C}$.

 $F^2 = aF + bI$.

$$F^{2} = aF + bI = (a, b) {\binom{F}{I}}$$

$$F^{n} = (a, b) {\binom{a \ 1}{b \ 0}}^{n} {\binom{F^{-1}}{F^{-2}}}$$

$$F_{t} = (a, b) {\binom{a \ 1}{b \ 0}}^{t} {\binom{F^{-1}}{F^{-2}}}$$

where $t \in \mathbb{C}$. One chooses

$$\left(\begin{array}{cc}a&1\\b&0\end{array}\right)^t$$

as exponential map.

 $E^2 = aF + bI.$

$$F^{2} = aF + bI = (a, b) {\binom{F}{I}}$$

$$F^{n} = (a, b) {\binom{a \ 1}{b \ 0}}^{n} {\binom{F^{-1}}{F^{-2}}}$$

$$F_{t} = (a, b) {\binom{a \ 1}{b \ 0}}^{t} {\binom{F^{-1}}{F^{-2}}}$$

where $t \in \mathbb{C}$. One chooses

$$\left(\begin{array}{cc}a&1\\b&0\end{array}\right)^t$$

as exponential map. So: F LFPE then you can make F_t .

 $F^2 = \overline{aF + bI}.$

$$F^{2} = aF + bI = (a, b) {\binom{F}{I}}$$

$$F^{n} = (a, b) {\binom{a \ 1}{b \ 0}}^{n} {\binom{F^{-1}}{F^{-2}}}$$

$$F_{t} = (a, b) {\binom{a \ 1}{b \ 0}}^{t} {\binom{F^{-1}}{F^{-2}}}$$

where $t \in \mathbb{C}$.

 $F^2 = aF + bI.$

$$F^{2} = aF + bI = (a, b) {\binom{F}{I}}$$

$$F^{n} = (a, b) {\binom{a \ 1}{b \ 0}}^{n} {\binom{F^{-1}}{F^{-2}}}$$

$$F_{t} = (a, b) {\binom{a \ 1}{b \ 0}}^{t} {\binom{F^{-1}}{F^{-2}}}$$

where $t \in \mathbb{C}$. QUESTION: Does that work?? Is F_t flow?

 $F^2 = aF + bI$.

$$F^{2} = aF + bI = (a, b) {\binom{F}{I}}$$

$$F^{n} = (a, b) {\binom{a \ 1}{b \ 0}}^{n} {\binom{F^{-1}}{F^{-2}}}$$

$$F_{t} = (a, b) {\binom{a \ 1}{b \ 0}}^{t} {\binom{F^{-1}}{F^{-2}}}$$

where $t \in \mathbb{C}$. QUESTION: Does that work?? Is F_t flow? (Note: can prove that this work if eigenvalues are "generic", to be precise:

$$\lambda_1^{d_1}\cdots\lambda_n^{d_n}=1$$
 then all $d_i=0.)$

Not all $F \in MA_n(\mathbb{C})$ are LFPEs.

Not all $F \in MA_n(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps?

Not all $F \in MA_n(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C} , but in $\mathbb{C}(X)^F$.

Not all $F \in MA_n(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C} , but in $\mathbb{C}(X)^F$. Nice, but different coefficients allowed for different Fs.

Not all $F \in MA_n(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C} , but in $\mathbb{C}(X)^F$. Nice, but different coefficients allowed for different Fs. Interesting: QLFPEs have $\{deg(F^n)\}_{n\in\mathbb{N}}$ bounded by linear sequence in n.

Not all $F \in MA_n(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C} , but in $\mathbb{C}(X)^F$. Nice, but different coefficients allowed for different Fs. Interesting: QLFPEs have $\{deg(F^n)\}_{n\in\mathbb{N}}$ bounded by linear sequence in n. (Me & Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[T]$.

Not all $F \in MA_n(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C} , but in $\mathbb{C}(X)^F$. Nice, but different coefficients allowed for different Fs. Interesting: QLFPEs have $\{deg(F^n)\}_{n \in \mathbb{N}}$ bounded by linear sequence in n. (Me & Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[T]$. Nice, but allows way too many maps.

Not all $F \in MA_n(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C} , but in $\mathbb{C}(X)^F$. Nice, but different coefficients allowed for different Fs. Interesting: QLFPEs have $\{deg(F^n)\}_{n \in \mathbb{N}}$ bounded by linear sequence in n. (Me & Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[T]$. Nice, but allows way too many maps.

Not all $F \in MA_n(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C} , but in $\mathbb{C}(X)^F$. Nice, but different coefficients allowed for different Fs. Interesting: QLFPEs have $\{deg(F^n)\}_{n\in\mathbb{N}}$ bounded by linear sequence in n. (Me & Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[\mathcal{T}]$. Nice, but allows way too many maps. Interestingly: automorphisms which are zeroes of power series generate automorphism group!

Not all $F \in MA_n(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C} , but in $\mathbb{C}(X)^F$. Nice, but different coefficients allowed for different Fs. Interesting: QLFPEs have $\{deg(F^n)\}_{n\in\mathbb{N}}$ bounded by linear sequence in n. (Me & Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[\mathcal{T}]$. Nice, but allows way too many maps. Interestingly: automorphisms which are zeroes of power series generate automorphism group! (Okay... we have a generating set of $GA_n(\mathbb{C})$...)

I.e. Big Question: $LFPE? \longrightarrow$? exponent of LF derivation.

I.e. Big Question: LFPE? \longrightarrow ? exponent of LF derivation. Does, given

 $F^n = a_{n-1}F^{n-1} + \ldots + a_1F + a_0I$

I.e. Big Question: LFPE? \longrightarrow ? exponent of LF derivation. Does, given

 $F^n = a_{n-1}F^{n-1} + \ldots + a_1F + a_0I$

give a flow by

$$F_{t} = (a_{n-1}, a_{n-2}, \dots, a_{0}) \begin{pmatrix} a_{n-1} & 1 & 0 & \dots & 0 \\ a_{n-2} & 0 & 1 & \dots & 0 \\ \vdots & & \vdots & & \\ a_{0} & 0 & 0 & \dots & 0 \end{pmatrix}^{t} \begin{pmatrix} F^{-1} \\ F^{-2} \\ \vdots \\ F^{-n} \end{pmatrix}$$

I.e. Big Question: $LFPE? \longrightarrow ?$ exponent of LF derivation. Does, given

 $F^n = a_{n-1}F^{n-1} + \ldots + a_1F + a_0I$

give a flow by

$$F_{t} = (a_{n-1}, a_{n-2}, \dots, a_{0}) \begin{pmatrix} a_{n-1} & 1 & 0 & \dots & 0 \\ a_{n-2} & 0 & 1 & \dots & 0 \\ \vdots & & \vdots & & \\ a_{0} & 0 & 0 & \dots & 0 \end{pmatrix}^{t} \begin{pmatrix} F^{-1} \\ F^{-2} \\ \vdots \\ F^{-n} \end{pmatrix}$$

Funny detail: true for linear F, but not trivial.

I.e. Big Question: $LFPE? \longrightarrow ?$ exponent of LF derivation. Does, given

 $F^n = a_{n-1}F^{n-1} + \ldots + a_1F + a_0I$

give a flow by

$$F_{t} = (a_{n-1}, a_{n-2}, \dots, a_{0}) \begin{pmatrix} a_{n-1} & 1 & 0 & \dots & 0 \\ a_{n-2} & 0 & 1 & \dots & 0 \\ \vdots & & \vdots & & \\ a_{0} & 0 & 0 & \dots & 0 \end{pmatrix}^{t} \begin{pmatrix} F^{-1} \\ F^{-2} \\ \vdots \\ F^{-n} \end{pmatrix}$$

Funny detail: true for linear F, but not trivial.

THANK YOU