Locally finite polynomial endomorphisms

Stefan Maubach

April 2007
$F: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is a polynomial map if $F=\left(F_{1}, \ldots, F_{n}\right), F_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
$F: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is a polynomial map if $F=\left(F_{1}, \ldots, F_{n}\right), F_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
Examples: all linear maps.
$F: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is a polynomial map if $F=\left(F_{1}, \ldots, F_{n}\right), F_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
Examples: all linear maps.
Notations:
Linear Polynomial
All $\quad M L_{n}(\mathbb{C}) \quad M A_{n}(\mathbb{C})$
Invertible $G L_{n}(\mathbb{C}) \quad G A_{n}(\mathbb{C})$
$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$
$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$$
F=\left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C})
$$

$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C})
$$

$$
F=\left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C})
$$

$$
\operatorname{det}\left(\begin{array}{cc}
\frac{\partial F_{1}}{\partial X} & \frac{\partial F_{1}}{\partial Y} \\
\frac{\partial F_{2}}{\partial X} & \frac{\partial \partial 2_{2}}{\partial Y}
\end{array}\right) \in \mathbb{C}^{*} \stackrel{? ?}{\Longleftrightarrow} F \in G A_{2}(\mathbb{C})
$$

$L=(a X+b Y, c X+d Y)$ in $M L_{2}(\mathbb{C})$

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{C}^{*} \Longleftrightarrow L \in G L_{2}(\mathbb{C}) \\
F=\left(F_{1}, F_{2}\right) \in M A_{2}(\mathbb{C}) \\
\operatorname{det}\left(\begin{array}{cc}
\frac{\partial F_{1}}{\partial X_{2}} & \frac{\partial F_{1}}{\partial Y} \\
\frac{\partial F_{2}}{\partial X} & \frac{\partial F_{2}}{\partial Y}
\end{array}\right) \in \mathbb{C}^{*} \stackrel{? ?}{\rightleftarrows} F \in G A_{2}(\mathbb{C})
\end{gathered}
$$

Jacobian Conjecture in dimension $n(\mathrm{JC}(\mathrm{n})$):
Let $F \in M A_{n}(\mathbb{C})$. Then

$$
\operatorname{det}(\operatorname{Jac}(F)) \in \mathbb{C}^{*} \Rightarrow F \text { is invertible. }
$$

Let V be a vector space. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

Let V be a vector space. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

Cancelation Problem:
Let V be a variety. Then

$$
V \times \mathbb{C} \cong \mathbb{C}^{n+1} \Longrightarrow V \cong \mathbb{C}^{n}
$$

$G L_{n}(\mathbb{C})$ is generated by

$G L_{n}(\mathbb{C})$ is generated by

- Permutations $X_{1} \longleftrightarrow X_{i}$
$G L_{n}(\mathbb{C})$ is generated by
- Permutations $X_{1} \longleftrightarrow X_{i}$
- Map $\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in \mathbb{C}^{*}, b \in \mathbb{C}\right)$
$G L_{n}(\mathbb{C})$ is generated by
- Permutations $X_{1} \longleftrightarrow X_{i}$
- $\operatorname{Map}\left(a X_{1}+b X_{j}, X_{2}, \ldots, X_{n}\right)\left(a \in \mathbb{C}^{*}, b \in \mathbb{C}\right)$
$G A_{n}(\mathbb{C})$ is generated by ???

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$

$$
=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)
$$

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$
$J_{n}(\mathbb{C}):=$ set of triangular maps.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$
$J_{n}(\mathbb{C}):=$ set of triangular maps.
$A f f_{n}(\mathbb{C}):=$ set of compositions of invertible linear maps and translations.

Elementary map: $\left(X_{1}+f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$, invertible with inverse
$\left(X_{1}-f\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$.
Triangular map: $(X+f(Y, Z), Y+g(Z), Z+c)$
$=(X, Y, Z+c)(X, Y+g(Z), Z)(X+f(X, Y), Y, Z)$
$J_{n}(\mathbb{C}):=$ set of triangular maps.
$A f f_{n}(\mathbb{C}):=$ set of compositions of invertible linear maps and translations.
$T A_{n}(\mathbb{C}):=<J_{n}(\mathbb{C}), A f f_{n}(\mathbb{C})>$

Question: $T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$?

Question: $T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$?
$n=2$: (Jung-v/d Kulk, 1942)
$T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$

Question: $T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$?
$n=2$: (Jung-v/d Kulk, 1942)
$T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$
Nagata's map:

$$
F=\left(\begin{array}{c}
X-2\left(X Z+Y^{2}\right) Y-\left(X Z+Y^{2}\right)^{2} Z \\
Y+\left(X Z+Y^{2}\right) Z \\
Z
\end{array}\right)
$$

Question: $T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$?
$n=2$: (Jung-v/d Kulk, 1942)
$T A_{n}(\mathbb{C})=G A_{n}(\mathbb{C})$
Nagata's map:

$$
F=\left(\begin{array}{c}
X-2\left(X Z+Y^{2}\right) Y-\left(X Z+Y^{2}\right)^{2} Z \\
Y+\left(X Z+Y^{2}\right) Z \\
Z
\end{array}\right)
$$

$n=3$:(Shestakov-Umirbaev, 2004)
Nagata's map not tame, i.e. $G A_{3}(\mathbb{C}) \neq T A_{3}(\mathbb{C})$

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L) .
$$

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L)
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$?

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L) .
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$? EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$.

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L) .
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$? EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L) .
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$.

Cayley-Hamilton:

Let $L: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be a linear map. Then L is a zero of

$$
P_{L}(T):=\operatorname{det}(T I-L) .
$$

What about generalizing $M L_{n}(\mathbb{C}) \longrightarrow M A_{n}(\mathbb{C})$?
EXAMPLE:
Let $F=\left(X^{2}, Y^{2}\right)$. Then $\operatorname{deg}\left(F^{n}\right)=2^{n}$.
There exists no relation
$F^{n}+a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} I=0$.
Definition: If F is a zero of some $P(T) \in \mathbb{C}[T] \backslash\{0\}$, then we will call F a Locally Finite Polynomial Endomorphism (short LFPE).

Some Remarks:

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
$\left(F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}\right.$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
($F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$.

)

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
($F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But I_{F} is obviously closed under "+" and closed under multiplication by
T. That's enough!)

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
($F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But I_{F} is obviously closed under " + " and closed under multiplication by
T. That's enough!)
F is LFPE $\Longleftrightarrow G^{-1} F G$ is LFPE

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
($F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But I_{F} is obviously closed under "+" and closed under multiplication by
T. That's enough!)
F is LFPE $\Longleftrightarrow G^{-1} F G$ is LFPE
Proof: due to the first remark.

Some Remarks:

F is LFPE $\Longleftrightarrow\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded.
($F^{n}=\sum_{i=0}^{n-1} a_{i} F^{i}$ is equivalent to $\left\{I, F, F^{2}, \ldots\right\}$ generates a finite dimensional \mathbb{C}-vector space.)
$I_{F}:=\{P(T) \in \mathbb{C}[T] \mid P(F)=0\}$ is an ideal of $\mathbb{C}[T]$
(not completely trivial, as $F(G+H) \neq F G+F H$. But I_{F} is obviously closed under "+" and closed under multiplication by
T. That's enough!)
F is LFPE $\Longleftrightarrow G^{-1} F G$ is LFPE
Proof: due to the first remark.
But: the minimum polynomial may change if G is not linear!

Example:

$$
F:=\left(4 X+4 Y^{2}, 2 Y\right)
$$

Example:

$$
\begin{aligned}
& F:=\left(4 X+4 Y^{2}, 2 Y\right) \\
& F^{2}=\left(16 X+32 Y^{2}, 4 Y\right),
\end{aligned}
$$

Example:

$$
\begin{aligned}
& F:=\left(4 X+4 Y^{2}, 2 Y\right) \\
& F^{2}=\left(16 X+32 Y^{2}, 4 Y\right) \\
& \text { So } F^{3}-10 F^{2}+32 F-32 I=0, F \text { zero of } \\
& T^{3}-10 T^{2}+32 T-32=(T-2)(T-4)^{2} .
\end{aligned}
$$

Example:

$$
\begin{aligned}
& F:=\left(4 X+4 Y^{2}, 2 Y\right) \\
& F^{2}=\left(16 X+32 Y^{2}, 4 Y\right)
\end{aligned}
$$

So $F^{3}-10 F^{2}+32 F-32 I=0, F$ zero of
$T^{3}-10 T^{2}+32 T-32=(T-2)(T-4)^{2}$.
$($ NOT $(F-2 I) \circ(F-4 I) \circ(F-4 I)=0$.

Example:

$$
\begin{aligned}
& F:=\left(4 X+4 Y^{2}, 2 Y\right) \\
& F^{2}=\left(16 X+32 Y^{2}, 4 Y\right)
\end{aligned}
$$

$$
\text { So } F^{3}-10 F^{2}+32 F-32 I=0, F \text { zero of }
$$

$$
T^{3}-10 T^{2}+32 T-32=(T-2)(T-4)^{2}
$$

$$
(\operatorname{NOT}(F-2 I) \circ(F-4 I) \circ(F-4 I)=0 .)
$$

$$
F^{n}=\left(4^{n} X+n 4^{n} Y^{2}, 2^{n} Y\right)
$$

$$
F^{n}=\left(4^{n} X+n 4^{n} Y^{2}, 2^{n} Y\right), n \in \mathbb{N}
$$

$F^{n}=\left(4^{n} X+n 4^{n} Y^{2}, 2^{n} Y\right), n \in \mathbb{N}$.
We can define

$$
F_{t}=\left(4^{t} X+t 4^{t} Y^{2}, 2^{t} Y\right), t \in \mathbb{C} .
$$

$F^{n}=\left(4^{n} X+n 4^{n} Y^{2}, 2^{n} Y\right), n \in \mathbb{N}$.
We can define
$F_{t}=\left(4^{t} X+t 4^{t} Y^{2}, 2^{t} Y\right), t \in \mathbb{C}$.
$F_{t} F_{u}=F_{t+u}$ so $F_{t} ; t \in \mathbb{C}$ is a flow.
(Means you can write $F_{t}=F^{t}$.)
$F^{n}=\left(4^{n} X+n 4^{n} Y^{2}, 2^{n} Y\right), n \in \mathbb{N}$.
We can define
$F_{t}=\left(4^{t} X+t 4^{t} Y^{2}, 2^{t} Y\right), t \in \mathbb{C}$.
$F_{t} F_{u}=F_{t+u}$ so $F_{t} ; t \in \mathbb{C}$ is a flow.
(Means you can write $F_{t}=F^{t}$.)

We'll get back on that. . .
$F^{n}=\left(4^{n} X+n 4^{n} Y^{2}, 2^{n} Y\right), n \in \mathbb{N}$.
We can define
$F_{t}=\left(4^{t} X+t 4^{t} Y^{2}, 2^{t} Y\right), t \in \mathbb{C}$.
$F_{t} F_{u}=F_{t+u}$ so $F_{t} ; t \in \mathbb{C}$ is a flow.
(Means you can write $F_{t}=F^{t}$.)

We'll get back on that. . . First some results!

$n=2:$ Classification of LFPE

$n=2:$ Classification of LFPE

Two essential cases:

$n=2:$ Classification of LFPE

Two essential cases:

$$
F=(a X+P(Y), b Y)
$$

$n=2:$ Classification of LFPE

Two essential cases:

$$
F=(a X+P(Y), b Y)
$$

$$
F=(a X+Y P(X, Y), 0)
$$

$n=2:$ Classification of LFPE

Two essential cases:
$F=(a X+P(Y), b Y)$
$F=(a X+Y P(X, Y), 0)$
Zero of $T^{2}-a T$.

$n=2:$ Classification of LFPE

Two essential cases:
$F=(a X+P(Y), b Y)$
Zero of $(T-b)(T-a)\left(T-a^{2}\right) \cdots\left(T-a^{d}\right), d=\operatorname{deg}(P)$
$F=(a X+Y P(X, Y), 0)$
Zero of $T^{2}-a T$.

$n=2:$ Classification of LFPE

Two essential cases:
$F=(a X+P(Y), b Y) \quad(F$ invertible $)$
Zero of $(T-b)(T-a)\left(T-a^{2}\right) \cdots\left(T-a^{d}\right), d=\operatorname{deg}(P)$
$F=(a X+Y P(X, Y), 0) \quad(F$ not invertible $)$
Zero of $T^{2}-a T$.

$n=2:$ Classification of LFPE

$n=2:$ Classification of LFPE

$$
F \text { is LFPE, } F(0)=0
$$

$n=2:$ Classification of LFPE

F is LFPE, $F(0)=0$.
F invertible
$\Longleftrightarrow F$ is conjugate of

$$
\begin{aligned}
& (a X+P(Y), b Y) \\
& a, b \in \mathbb{C}^{*}, P(Y) \in \mathbb{C}[Y] .
\end{aligned}
$$

$n=2:$ Classification of LFPE

F is LFPE, $F(0)=0$.
F invertible
$\Longleftrightarrow \quad F$ is conjugate of
$(a X+P(Y), b Y)$
$a, b \in \mathbb{C}^{*}, P(Y) \in \mathbb{C}[Y]$.
F not invertible $\Longleftrightarrow F$ is conjugate of

$$
\begin{aligned}
& (a X+Y P(X, Y), 0) \\
& a, \in \mathbb{C}, P(X, Y) \in \mathbb{C}[X, Y] .
\end{aligned}
$$

$n=2:$ Cayley-Hamilton for LFPE

$n=2:$ Cayley-Hamilton for LFPE

F is LFPE, and $F(0)=0$.
Let $d=\operatorname{deg}(F)$.
Let L be the linear part of F.

$n=2:$ Cayley-Hamilton for LFPE

F is LFPE, and $F(0)=0$.
Let $d=\operatorname{deg}(F)$.
Let L be the linear part of F.
Then F is a zero of

$n=2:$ Cayley-Hamilton for LFPE

F is LFPE, and $F(0)=0$.
Let $d=\operatorname{deg}(F)$.
Let L be the linear part of F.
Then F is a zero of

$$
\begin{array}{cl}
P_{F}(T):= & \prod_{\substack{0}}\left(T^{2}-\left(\operatorname{det} L^{k}\right)\left(\operatorname{Tr} L^{m}\right) T+d-1\right. \\
\\
& \left.(k, m) \neq m \leq d\left(L^{2 k+m}\right)\right) .
\end{array}
$$

Equivalent are:

Equivalent are:

$\checkmark F$ is LFPE

Equivalent are:

- F is LFPE
- $\operatorname{deg}\left(F^{m}\right)$ is bounded

Equivalent are:

- F is LFPE
- $\operatorname{deg}\left(F^{m}\right)$ is bounded
> $n=2: \operatorname{deg}\left(F^{2}\right) \leq \operatorname{deg}(F)$

Equivalent are:

- F is LFPE
- $\operatorname{deg}\left(F^{m}\right)$ is bounded
$\downarrow n=2: \operatorname{deg}\left(F^{2}\right) \leq \operatorname{deg}(F)$

Conjecture: in dimension n, F is LFPE $\Longleftrightarrow \operatorname{deg}\left(F^{m}\right) \leq \operatorname{deg}(F)^{n-1}$ for all $m \in \mathbb{N}$.

"Cayley-Hamilton" in n variables

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right)$. (note: conjecture $\left.D=d^{n-1}\right)$

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right)$. (note: conjecture $D=d^{n-1}$)
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$). (note: conjecture $\left.D=d^{n-1}\right)$
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.
Then F is a zero of

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right.$). (note: conjecture $\left.D=d^{n-1}\right)$
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.
Then F is a zero of
$\left(\right.$ where $\left.\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}^{\alpha_{n}}\right)$

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right)$. (note: conjecture $D=d^{n-1}$)
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.
Then F is a zero of

$$
\prod_{\alpha \in \mathbb{N}^{n}}\left(T-\lambda^{\alpha}\right)
$$

$\left(\right.$ where $\left.\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}^{\alpha_{n}}\right)$

"Cayley-Hamilton" in n variables

Let $D:=\max _{m \in \mathbb{N}}\left(\operatorname{deg}\left(F^{m}\right)\right)$. (note: conjecture $D=d^{n-1}$)
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of the linear part of F.
Then F is a zero of

$$
\prod_{\substack{\alpha \in \mathbb{N}^{n}}}\left(T-\lambda^{\alpha}\right)
$$

(where $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}^{\alpha_{n}}$)
$\left(|\alpha|=\alpha_{1}+\ldots+\alpha_{n}\right)$

How did we prove that?

How did we prove that?

$$
\text { If } F^{i}=\left(F_{1}^{(i)}, \ldots, F_{n}^{(i)}\right) \text { and } F_{j}^{(i)}=\sum F_{j, \alpha}^{(i)} \chi^{\alpha},
$$

How did we prove that?

If $F^{i}=\left(F_{1}^{(i)}, \ldots, F_{n}^{(i)}\right)$ and $F_{j}^{(i)}=\sum F_{j, \alpha}^{(i)} X^{\alpha}$,
then $\sum a_{i} F^{i}=0 \Longleftrightarrow \sum a_{i} F_{j, \alpha}^{(i)}=0 \forall j, \alpha$.

How did we prove that?

If $F^{i}=\left(F_{1}^{(i)}, \ldots, F_{n}^{(i)}\right)$ and $F_{j}^{(i)}=\sum F_{j, \alpha}^{(i)} \chi^{\alpha}$,
then $\sum a_{i} F^{i}=0 \Longleftrightarrow \sum a_{i} F_{j, \alpha}^{(i)}=0 \forall j, \alpha$.
If $\left\{F_{j, \alpha}^{(i)}\right\}_{i \in \mathbb{N}}$ is such a sequence, then it is a linear recurrent sequence belonging to $\sum a_{i} T^{i}$, etc... .

Now some theory. . .

Now some theory. . .

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$

Now some theory. . .

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) \mathbb{C}-linear.

Now some theory. . .

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) \mathbb{C}-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

Now some theory. . .

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) \mathbb{C}-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:

Now some theory. . .

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) \mathbb{C}-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:
$a_{1} \frac{\partial}{\partial X_{1}}+\ldots+a_{n} \frac{\partial}{\partial X_{n}}$ for some $a_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

Now some theory. . .

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) \mathbb{C}-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:
$a_{1} \frac{\partial}{\partial X_{1}}+\ldots+a_{n} \frac{\partial}{\partial X_{n}}$ for some $a_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
D is called locally nilpotent if:

Now some theory. . .

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) \mathbb{C}-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:
$a_{1} \frac{\partial}{\partial X_{1}}+\ldots+a_{n} \frac{\partial}{\partial X_{n}}$ for some $a_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
D is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.

Now some theory. . .

A derivation $D: \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \longrightarrow \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is a map satisfying
(1) \mathbb{C}-linear.
(2) $D(f g)=D(f) g+f D(g)$ for all $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

A derivation will have the form:
$a_{1} \frac{\partial}{\partial X_{1}}+\ldots+a_{n} \frac{\partial}{\partial X_{n}}$ for some $a_{i} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
D is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
D is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
D is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
D is called locally finite if:
D is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
D is called locally finite if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, the vector space
$\mathbb{C} g+\mathbb{C} D(g)+\mathbb{C} D^{2}(g)+\ldots$ is finite dimensional.
D is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
D is called locally finite if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, the vector space
$\mathbb{C} g+\mathbb{C} D(g)+\mathbb{C} D^{2}(g)+\ldots$ is finite dimensional.
EXAMPLE: $D=X_{1} \frac{\partial}{\partial X_{1}}$.
D is called locally nilpotent if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ there exists $m \in \mathbb{N}$ such that $D^{m}(g)=0$.
EXAMPLE: $D=\frac{\partial}{\partial X_{1}}$.
D is called locally finite if:
For all $g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, the vector space
$\mathbb{C} g+\mathbb{C} D(g)+\mathbb{C} D^{2}(g)+\ldots$ is finite dimensional.
EXAMPLE: $D=X_{1} \frac{\partial}{\partial X_{1}}$.
Locally nilpotent \Rightarrow Locally finite

Exponents of derivations

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

$$
\exp (D)=
$$

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

$$
\exp (D)=(\exp (D)(X), \exp (D)(Y), \exp (D)(Z))
$$

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

$$
\exp (D)=(\exp (D)(X), \exp (D)(Y), \exp (D)(Z))
$$

Exponents of derivations

D locally finite derivation, then
$\exp (D)(g):=g+D(g)+\frac{1}{2!} D^{2}(g)+\frac{1}{3!} D^{3}(g)+\ldots$ is well-defined.
Inverse is $\exp (-D)$.
EXAMPLE: $D=Y^{2} \frac{\partial}{\partial X}+Z \frac{\partial}{\partial Y}$ on $\mathbb{C}[X, Y, Z]$:

$$
\begin{aligned}
\exp (D) & =(\exp (D)(X), \exp (D)(Y), \exp (D)(Z)) \\
& =\left(X+Y^{2}+Y Z+\frac{1}{3} Z^{2}, Y+Z, Z\right)
\end{aligned}
$$

$$
\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)
$$

$$
\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)
$$

$$
F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{3} Z^{2}, Y+n Z, Z\right)
$$

$$
\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)
$$

$$
F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{3} Z^{2}, Y+n Z, Z\right)
$$

i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{3} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{3} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.

So: $F=\exp (D) \longrightarrow F$ is LFPE.
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{3} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.

So: $F=\exp (D) \longrightarrow F$ is LFPE.
Even: $F_{t}:=\exp (t D)$ is a flow.
$\exp (D)^{2}=\exp (D) \circ \exp (D)=\exp (2 D)$
$F^{n}=\exp (n D)=\left(X+n Y^{2}+n^{2} Y Z+\frac{n^{3}}{3} Z^{2}, Y+n Z, Z\right)$
i.e. $\{\operatorname{deg}(\exp (n D))\}_{n \in \mathbb{N}}$ is bounded sequence
$\Rightarrow \exp (D)$ is LFPE.

So: $F=\exp (D) \longrightarrow F$ is LFPE.
Even: $F_{t}:=\exp (t D)$ is a flow.
So: we can make many examples of LFPEs!
$F=\exp (D) \Longleftrightarrow F$ has a flow
$F=\exp (D) \Longleftrightarrow F$ has a flow
(A flow of F is:
F_{t} for each $t \in \mathbb{C}$
$\left.F_{1}=F, F_{0}=I, F_{t} F_{u}=F_{t+u}.\right)$
$F=\exp (D) \Longleftrightarrow F$ has a flow
(A flow of F is:
F_{t} for each $t \in \mathbb{C}$
$\left.F_{1}=F, F_{0}=I, F_{t} F_{u}=F_{t+u}.\right)$
$F=\exp (D) \Rightarrow F$ is LFPE.
$F=\exp (D) \Longleftrightarrow F$ has a flow
(A flow of F is:
F_{t} for each $t \in \mathbb{C}$
$\left.F_{1}=F, F_{0}=I, F_{t} F_{u}=F_{t+u}.\right)$
$F=\exp (D) \Rightarrow F$ is LFPE.
$? \leftarrow$?
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple,
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(4 X+4 Y^{2}, 2 Y\right)$
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(4 X+4 Y^{2}, 2 Y\right)=(4 X, 2 Y) \circ\left(X+Y^{2}, Y\right)$
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(4 X+4 Y^{2}, 2 Y\right)=(4 X, 2 Y) \circ\left(X+Y^{2}, Y\right)$
$(4 X, 2 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$,
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(4 X+4 Y^{2}, 2 Y\right)=(4 X, 2 Y) \circ\left(X+Y^{2}, Y\right)$
$(4 X, 2 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$, where
$\lambda=\log (4), \mu=\log (2)$.
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(4 X+4 Y^{2}, 2 Y\right)=(4 X, 2 Y) \circ\left(X+Y^{2}, Y\right)$
$(4 X, 2 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$, where
$\lambda=\log (4), \mu=\log (2)$.
$\left(X+Y^{2}, Y\right)=\exp \left(Y^{2} \partial x\right)$.
D locally finite automorphism, then unique decomposition $D=D_{n}+D_{s}$ where D_{n} is locally nilpotent, D_{s} is semisimple, and $D_{n} D_{s}=D_{s} D_{n}$.

Given F LFPE, then we find unique decomposition $F=F_{n} F_{s}=F_{s} F_{n}$ where $F_{n}=\exp \left(D_{n}\right)$ where D_{n} is locally nilpotent.
an example:
$F=\left(4 X+4 Y^{2}, 2 Y\right)=(4 X, 2 Y) \circ\left(X+Y^{2}, Y\right)$
$(4 X, 2 Y)=\exp \left(\lambda X \partial_{X}+\mu Y \partial_{Y}\right)$, where
$\lambda=\log (4), \mu=\log (2)$.
$\left(X+Y^{2}, Y\right)=\exp \left(Y^{2} \partial x\right)$.

Don't know how to make D_{s}, given F_{s}.

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right)
$$

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right)
$$

F is zero of $(T-1)^{n}$ for some n

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right) \Longleftrightarrow
$$

F is zero of $(T-1)^{n}$ for some n

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right) \Longleftrightarrow
$$

F is zero of $(T-1)^{n}$ for some n

Example: $F=\exp \left(Y^{2} \partial x\right)=\left(X+Y^{2}, Y\right)$

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$$
F=\exp \left(D_{n}\right) \Longleftrightarrow
$$

F is zero of $(T-1)^{n}$ for some n

Example: $F=\exp \left(Y^{2} \partial x\right)=\left(X+Y^{2}, Y\right)$
$F^{2}-2 F+I=0$

Case $F=\exp \left(D_{n}\right), D_{n}$ loc.nilp.:

$F=\exp \left(D_{n}\right) \Longleftrightarrow$
F is zero of $(T-1)^{n}$ for some n

Example: $F=\exp \left(Y^{2} \partial x\right)=\left(X+Y^{2}, Y\right)$
$F^{2}-2 F+I=0$ i.e. zero of $(T-1)^{2}$.

Why the problem with general case?

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .
Then there is one natural choice for $" \log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$.

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$. But could have been: $\log (1)=2 \pi i$. But 0 is natural choice.

Why the problem with general case?

In case F zero of $(T-1)^{n}$, then F has only eigenvalue 1 .
Then there is one natural choice for " $\log (F)=D$ ", only ONE of them is loc. NILPOTENT Compare to: $\log (1)=0$. But could have been: $\log (1)=2 \pi i$. But 0 is natural choice.
if $c \in \mathbb{C}$, then no natural choice $\log (c)$.

Nevertheless. . .

Nevertheless. . .

Example: $F^{2}=a F+b l, b \neq 0$ (for then F invertible)

Nevertheless. . .

Example: $F^{2}=a F+b l, b \neq 0$ (for then F invertible)

$$
F^{2}=a F+b l=(a, b)\binom{F}{l}
$$

Nevertheless. . .

Example: $F^{2}=a F+b l, b \neq 0$ (for then F invertible)

$$
\begin{aligned}
& F^{2}=a F+b l=(a, b)\binom{F}{\prime} \\
& F^{3}=a F^{2}+b F=a(a F+b l)+b F
\end{aligned}
$$

Nevertheless. . .

Example: $F^{2}=a F+b l, b \neq 0$ (for then F invertible)

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{\prime} \\
F^{3}=a F^{2}+b F & =a(a F+b l)+b F \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)\binom{F}{l}
\end{aligned}
$$

Nevertheless. . .

Example: $F^{2}=a F+b l, b \neq 0$ (for then F invertible)

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{I} \\
F^{3}=a F^{2}+b F & =a(a F+b /)+b F \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)\binom{F}{I} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n-2}\binom{F}{I}
\end{aligned}
$$

Nevertheless. . .

Example: $F^{2}=a F+b l, b \neq 0$ (for then F invertible)

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{3}=a F^{2}+b F & =a(a F+b /)+b F \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)\binom{F}{I} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n-2}\binom{F}{l} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{F^{-1}}{F^{-2}}
\end{aligned}
$$

Forcing. . .

$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{F^{-1}}{F-2}
\end{aligned}
$$

Forcing. . .

$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{F^{-1}}{F^{-2}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{F^{-1}}{F^{-2}}
\end{aligned}
$$

where $t \in \mathbb{C}$.

Forcing. . .

$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{F^{-1}}{F^{-2}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{F^{-1}}{F^{-2}}
\end{aligned}
$$

where $t \in \mathbb{C}$. One chooses

$$
\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}
$$

as exponential map.

Forcing. . .

$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
F^{n} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{F^{-1}}{F^{-2}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{F^{-1}}{F^{-2}}
\end{aligned}
$$

where $t \in \mathbb{C}$. One chooses

$$
\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}
$$

as exponential map. So: F LFPE then you can make F_{t}.
$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{F^{-1}}{F^{-2}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{F^{-1}}{F^{-2}}
\end{aligned}
$$

where $t \in \mathbb{C}$.
$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{F^{-1}}{F^{-2}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{F^{-1}}{F^{-2}}
\end{aligned}
$$

where $t \in \mathbb{C}$. QUESTION: Does that work?? Is F_{t} flow?
$F^{2}=a F+b l$.

$$
\begin{aligned}
F^{2}=a F+b l & =(a, b)\binom{F}{1} \\
& =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{n}\binom{F^{-1}}{F^{-2}} \\
F_{t} & =(a, b)\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)^{t}\binom{F^{-1}}{F^{-2}}
\end{aligned}
$$

where $t \in \mathbb{C}$. QUESTION: Does that work?? Is F_{t} flow?
(Note: can prove that this work if eigenvalues are "generic", to be precise:
$\lambda_{1}^{d_{1}} \cdots \lambda_{n}^{d_{n}}=1$ then all $\left.d_{i}=0.\right)$

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs.

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps?

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C}, but in $\mathbb{C}(X)^{F}$.

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C}, but in $\mathbb{C}(X)^{F}$. Nice, but different coefficients allowed for different Fs.

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C}, but in $\mathbb{C}(X)^{F}$. Nice, but different coefficients allowed for different $F s$. Interesting: QLFPEs have $\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ bounded by linear sequence in n.

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C}, but in $\mathbb{C}(X)^{F}$. Nice, but different coefficients allowed for different $F s$. Interesting: QLFPEs have $\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ bounded by linear sequence in n.
(Me \& Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[T]$.

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C}, but in $\mathbb{C}(X)^{F}$. Nice, but different coefficients allowed for different $F s$. Interesting: QLFPEs have $\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ bounded by linear sequence in n.
(Me \& Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[T]$. Nice, but allows way too many maps.

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C}, but in $\mathbb{C}(X)^{F}$. Nice, but different coefficients allowed for different $F s$. Interesting: QLFPEs have $\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ bounded by linear sequence in n.
(Me \& Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[T]$. Nice, but allows way too many maps.

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C}, but in $\mathbb{C}(X)^{F}$. Nice, but different coefficients allowed for different $F s$. Interesting: QLFPEs have $\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ bounded by linear sequence in n. (Me \& Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[T]$. Nice, but allows way too many maps. Interestingly: automorphisms which are zeroes of power series generate automorphism group!

Almost last slide. . . generalizations

Not all $F \in M A_{n}(\mathbb{C})$ are LFPEs. Why not generalize in some way to grab more maps? Furter: Quasi-LFPEs: allow coefficients not only in \mathbb{C}, but in $\mathbb{C}(X)^{F}$. Nice, but different coefficients allowed for different $F s$. Interesting: QLFPEs have $\left\{\operatorname{deg}\left(F^{n}\right)\right\}_{n \in \mathbb{N}}$ bounded by linear sequence in n. (Me \& Han Peters:) allow power series $\mathbb{C}[[T]]$ in stead of $\mathbb{C}[T]$. Nice, but allows way too many maps. Interestingly: automorphisms which are zeroes of power series generate automorphism group! (Okay... we have a generating set of $G A_{n}(\mathbb{C}) \ldots$)

last slide . . .

Finally. . . last slide . . . phew. . .

Finally. . . last slide . . . phew. . .

I.e. Big Question: $L F P E$? \longrightarrow ? exponent of LF derivation.

Finally. . . last slide . . . phew. . .

I.e. Big Question: $L F P E$? \longrightarrow ? exponent of LF derivation.

Does, given
$F^{n}=a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} l$

Finally. . . last slide . . . phew. . .

I.e. Big Question: $L F P E$? \longrightarrow ? exponent of LF derivation.

Does, given
$F^{n}=a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} l$
give a flow by
$F_{t}=\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)\left(\begin{array}{ccccc}a_{n-1} & 1 & 0 & \ldots & 0 \\ a_{n-2} & 0 & 1 & \ldots & 0 \\ \vdots & & & \vdots & \\ a_{0} & 0 & 0 & \ldots & 0\end{array}\right)^{t}\left(\begin{array}{c}F^{-1} \\ F^{-2} \\ \vdots \\ F^{-n}\end{array}\right)$

Finally. . . last slide . . . phew. . .

I.e. Big Question: $L F P E$? \longrightarrow ? exponent of LF derivation.

Does, given
$F^{n}=a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} l$
give a flow by
$F_{t}=\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)\left(\begin{array}{ccccc}a_{n-1} & 1 & 0 & \ldots & 0 \\ a_{n-2} & 0 & 1 & \ldots & 0 \\ \vdots & & & \vdots & \\ a_{0} & 0 & 0 & \ldots & 0\end{array}\right)^{t}\left(\begin{array}{c}F^{-1} \\ F^{-2} \\ \vdots \\ F^{-n}\end{array}\right)$
Funny detail: true for linear F, but not trivial.

Finally... last slide . . . phew. . .

I.e. Big Question: $L F P E$? \longrightarrow ? exponent of LF derivation.

Does, given
$F^{n}=a_{n-1} F^{n-1}+\ldots+a_{1} F+a_{0} l$
give a flow by
$F_{t}=\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)\left(\begin{array}{ccccc}a_{n-1} & 1 & 0 & \ldots & 0 \\ a_{n-2} & 0 & 1 & \ldots & 0 \\ \vdots & & & \vdots & \\ a_{0} & 0 & 0 & \ldots & 0\end{array}\right)^{t}\left(\begin{array}{c}F^{-1} \\ F^{-2} \\ \vdots \\ F^{-n}\end{array}\right)$
Funny detail: true for linear F, but not trivial.

THANK YOU

